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I. INTRODUCTION 

He excessive use of viscoelastic pipes in water 

supply and irrigation systems draw the attention for 

studying their viscoelastic behaviors under transient 

flow conditions. This is an essential requirement for 

managing accurately various water resources systems under 

actual properties. The present paper is concerned only with 

analyzing analytically the one-dimensional water hammer 

problem in viscoelastic pipe due to sudden closure of 

downstream valve in a simple pipe system consisting of a tank-

pipe-valve. 

Due to the difficulty associated with the exact analytical 

solution of the one-dimensional governing equations of the 

transient flow problems because of the inherited nonlinearity, 

numerical solution is generally used to analyze the problem. In 

 
Received: (11 June, 2022) - Accepted: (02 August, 2022)  

*Corresponding Author: Hossam A.A. Abdel-Gawad, Houston, Irrigation 

& Hydraulics Department, Faculty of Engineering, Mansoura University, El-

case of elastic pipes, several numerical methods are used, as 

mentioned in [1,2]. However, limited efforts are developed to 

analyze viscoelastic pipes, e.g., the method of characteristics 

(MOC) [3], the finite volume method (FVM) [4] and recently 

the wave characteristic method (WCM) [2]. For the same 

computational effort, the MOC, which is the most popular 

numerical method used by the researchers, has a higher degree 

of accuracy of the calculated results with respect to the FVM, 

and almost has comparable accuracy according to the WCM 

[2]. 

To the author's knowledge, all the numerical programs used 

to analyze the present problem, were generated to handle a 

prespecified research problems and are not available to the 

designers. The necessity of the analytical solution not only 

stems from the accurate results of the analytical approach 

compared to the numerical one, but also due to lacking a 

commercial software to handle the problem.  
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 Abstract— The challenge of the present paper is improving an analytical 

solution for the one-dimensional water hammer in viscoelastic pipeline due to 

sudden end valve closure. The importance of the analytical solution is providing 

the necessary design information, especially in absence of an analyzing software. 

New exact dimensionless analytical equation is derived to determine the 

attenuated pressure wave head along the first pressure wave trip, and the 

viscoelastic term is merged in the wave celerity expression. Then, the integration 

process is utilized to rederive an approximate analytical equation for the 

pressure head at the valve during the first half pressure wave cycle, which 

involves the maximum design pressure head. Performance of the analytical 

results is compared with numerical results of the method of characteristics, for 

nearly all literature studies of the problem. Perfect performance for the 

analytical results is obtained for frictionless pipes that are a little bit distorted as 

the ratio, of the steady state friction head losses in the pipe to the Joukowsky 

pressure head, increases. Therefore, a nonlinear deterministic optimization 

algorithm is adopted to improve the integration constant of the friction term, 

which enhances the accuracy of the analytical results. 
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Pipelines are usually designed under maximum pressure 

head resulting from sudden shutdowns of pumps or valves. 

Such pressure occurs within the first half wave cycle, with 

exception to the very long cross country elastic pipes which 

reach their pressure peaks in longer periods [5]. The subsequent 

two subsections are concerned with the analytical philosophy 

that can be used to analyze the proposed problem. Two 

analytical approaches are used to solve the present problem 

analytically. 
 

A.  First Analytical Approach 

First approach is often started with manipulating the 

governing water hammer differential partial equations with the 

MOC. The produced two ordinary differential equations are 

handled to capture two analytical equations, i.e.: 1) the 

attenuated pressure head wave at the wave front during the first 

trip to the tank, and 2) the pressure head variation at the valve 

within the first half pressure wave cycle. The Joukowsky 

equation is used to substitute the change in the pressure head at 

the wave front with the change in the velocity or vice versa, and 

an integration process is used to conclude the pressure head at 

the valve. 

For elastic pipes, two exact analytical equations were 

concluded to calculate the attenuated pressure head [6]. 

Exponential equation is derived for weak jumps, and hyperbolic 

equation for large jumps with adverse flow direction. Another 

approximate analytical equation was developed for pressure 

head at the valve [7]. The quasi-invariant principle along the 

characteristic lines was adopted, where the quadratic equation 

in the velocity behind the wave front was relaxed to a linear 

one.  

Using an explicit expression for the head at the wave front, 

Liou [5] derived an exact exponential equation representing the 

attenuated pressure at the wave front in elastic pipe, and another 

approximate analytical equation for the pressure head at the 

valve. The same attenuated pressure equation with different 

process was concluded, [8], by differentiating the momentum 

and the continuity equations with respect to time and space, 

respectively, and eliminating the mixed derivatives to conclude 

a nonlinear wave equation in one dependent variable, i.e. 

second order differential equation in the flow velocity. Then, 

with assistance of the Taylor series, a simple approximate 

expression was derived for both head at the valve and velocity 

along the pipe length only within the first wave trip.  

To the author's knowledge, Keramat and Haghighi [9] 

developed the only approximate analytical equation used for 

viscoelastic pipes using the present approach. Their work is 

dependent on the unknown velocities behind the propagated 

wave front and merged the retarded strain within the wave 

celerity. Thus, another technique is required to determine theses 

unknown velocities to use that analytical equation. The present 

research is concerned with improving the work of Keramat and 

Haghighi [9] to be easily applicable, by determining 

analytically the exact analytical velocity at the pressure wave 

front and rederiving an approximate analytical equation for the 

pressure head at the valve during the first half pressure wave 

cycle. 

Jones and Wood [10] developed an analytical solution for 

gradual closure of the valve by lumping the effect of quadratic 

friction loss at one or several imaginary orifices along the 

elastic pipe. That study is applicable only under the assumption 

of non-reversal flow within the pipe, i.e. partial closing of the 

valve. Recently, an approximate analytical method was derived 

[11] for the accumulated pressure head at the valve, during the 

first half pressure wave cycle. This method considers, only, 

frictionless elastic pipes consisting of two reaches with lower 

hydraulic impedance for the reach associated to the valve. 

 

B. Second Analytical Approach 

The second approach is based on decomposing the 

mathematical representation, i.e., both the governing equations 

and the boundary conditions, into multiple solvable problems, 

and with the superposition principle the final solution can be 

achieved. Han et al. [12] used the multiple scales asymptotic 

analysis method that is based on recognizing the effective time 

scales of the different parts of the governing equations, and 

representing each time scale by additional independent times 

variables. The dependent variables, flow velocity and pressure 

head, are expanded along both original and additional time 

scales and by equating the produced terms at every time scale, 

several differential equations are separated and solved 

analytically in consecutive steps. The longest time scale limits 

the validity range of the solution, while increasing the number 

of terms adopted from the expansion series enhances its 

accuracy. That method was employed to describe an 

approximate analytical solution for an inclined elastic pipe due 

to sudden valve closure [13]. Later, it was applied for blood 

hammer within nonuniform artery radius and laminar flow 

condition [14], and for water hammer in medium viscoelastic 

pipe with only one weak feedback Kelvin element [15]. While 

the method can simulate the whole pressure wave pattern for 

the longest time scale, it hasn’t a closed form for the analytical 

expressions that represent the water hammer in any viscoelastic 

pipe. Depending on the varied range of the retarded times and 

modulus of elasticity for different Kelvin elements, various 

time scales and consequently analytical expressions can be 

produced.  

Sobey [16,17] produced analytical infinite converging 

series to the linearized wave equation, i.e. second order 

nonlinear wave equation, extracted from cross differentiating of 

the original hyperbolic governing equations and neglecting one 

of the dependent variables. The non-homogeneity embedded, in 

both linearized wave equation and its boundary conditions, was 

treated by arranging the problem into two solvable ones and 

with assistance of the superposition principle, the final 

analytical solution was combined. 

The different analytical solutions discussed in the present 

subsection cannot be solved easily, a complicated computations 

must be accomplished before catching the analytical results. 

Also, they have a limited degree of accuracy, due to the 

truncated error produced from using a limited number of terms 

from the infinite series that represent the exact analytical 

solutions. The multiple scale approach is dependent on retarded 

times of the Kelvin elements used to represent the viscoelastic 

properties of the pipe; consequently, the multiple time scales 
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analytical approach must be rederived for different pipes 

characteristics. 
 

C. Objective and Layout of the Work 

Due to absence of commercial software, the recent 

traditional analyses of transient flow in viscoelastic pipes are 

based on an improper simplification. That is ignoring the 

viscoelastic characteristics of the pipes and considering them as 

elastic pipes with a consequent significant overestimation for 

the calculated pressure heads and capital costs of the pipes. 

Until now, there are no straightforward easy and applicable 

analytical equations that can be used to solve the present 

problem by a hand calculator or an Excel spreadsheet. The 

proposed analytical solution tackles that disadvantage. 

The remaining of the present paper consists of three 

sections. Section II is concerned with the governing equations 

and the proposed analysis of both the exact attenuated pressure 

head at the front of the first propagated wave, and the 

approximate analytical pressure head at the valve during the 

first half pressure cycle. Different results are presented, 

compared with the MOC results, and discussed in subsections 

III.A and III.B. Subsection III.C is concerned with improving 

integration accuracy by updating the friction term using a 

deterministic nonlinear optimization approach. Finally, 

conclusions and recommendations are presented in section IV. 
 

II. METHODOLOGY 

A. Governing Equations 

Simplified continuity and momentum equations, used to 

simulate the one dimensional transient flow in viscoelastic 

pipes, are [9,18]: 
 

𝜕𝐻

𝜕𝑡
+  

𝑎2

𝑔

𝜕𝑉

𝜕𝑥
+  

2𝑎2

𝑔

𝜕𝜀𝑟

𝜕𝑡
= 0                            (1) 

𝑔
𝜕𝐻

𝜕𝑥
+  

𝜕𝑉

𝜕𝑡
+ 

𝑓𝑉|𝑉|

2𝐷
= 0                 (2) 

 

where: 
 

𝜀𝑟(𝑡) = 𝐽(𝑠) ∗ 𝑑𝜎′(𝑡 − 𝑠) = 𝜎′(𝑠) ∗ 𝑑𝐽(𝑡 − 𝑠),        (3) 

𝐽(𝑠) = ∑ 𝐽𝑖(𝑠)
𝑁𝑘
𝑖=1 = ∑ 𝐽𝑖 . (1 − 𝑒𝑥𝑝

−
𝑠

𝜏𝑖)
𝑁𝑘
𝑖=1 ,          (4) 

∴ 𝜀𝑟(𝑡) = ∑ 𝜀𝑟𝑖(𝑡)
𝑖=𝑁𝑘

𝑖=1
 

              = 𝑧. ∑ |∫
𝜕𝐻′(𝑡−𝑠)

𝜕𝑠
 𝐽𝑖  . (1 − 𝑒𝑥𝑝

−
𝑠

𝜏𝑖) 𝑑𝑠
𝑠=𝑡

𝑠=0
|

𝑖=𝑁𝑘
𝑖=1   

              = 𝑧. ∑ |∫ 𝐻′(𝑠).
𝐽𝑖

𝜏𝑖
 . 𝑒𝑥𝑝

−
(𝑡−𝑠)

𝜏𝑖 𝑑𝑠
𝑠=𝑡

𝑠=0
|

𝑖=𝑁𝑘
𝑖=1 ,        (5) 

 

H is the hydraulic head measured from a horizontal datum 

passing the valve center line, t is elapsed time from the onset of 

the transient action, a is constant wave celerity, g is gravity 

acceleration, V is average liquid velocity within the pipe cross 

section, x is distance along the pipe measured from the tank, see 

Fig. 1, D is inner pipe diameter, f is Darcy friction factor, r is 

retarded strain within the viscoelastic pipe, *d is Sieltjes 

convolution operator, ri is the retarded strain of Kelvin element 

i, Nk is number of Kelvin elements, z = gD/(2e) is a constant, 

σ' = z.H' is the change in pipe wall internal stresses,  is a pipe 

fixation factor, is liquid density, e is pipe thickness, H' is the 

net change in the pressure head = H – H0, H0 is the initial steady 

hydraulic head, Ji(s) is the creep compliance function for Kelvin 

element i at time s, Ji = Ji () = 1/Ei is the creep compliance 

coefficient for Kelvin element i, and Ei,i are modulus of spring 

elasticity and retardation time for Kelvin element i, 

respectively. 

Minor terms with insignificant effect VH/x and Vsin are 

eliminated from (1), where is the pipe slope, which is positive 

upward, and minor term VV/x is ignored in (2). Equations (1) 

and (2) can be transformed to a dimensionless form using (6): 
 

𝑋 =
𝑥

𝐿
 , 𝑣 =

𝑉

𝑉0
 , 𝑇 =  

𝑡.𝑎

𝐿
 ,   ℎ =

𝐻

∆𝐻0
 ,  ∆𝐻0 =

𝑎.𝑉0

𝑔
 , 𝜀 =

𝜀𝑟

∆𝐻0
    (6) 

 

where X and T are the dimensionless independent variables that 

represent relative distance from the tank and relative time, 

respectively, h and v are dimensionless dependent unknown 

variables represent relative hydraulic head and relative velocity, 

respectively, L is the total pipe length, V0 is initial steady 

velocity along the pipe, H0 is the Joukowsky pressure head 

due to sudden valve closure. The dimensionless governing 

equations become: 
 

𝜕ℎ

𝜕𝑇
+  

𝜕𝑣

𝜕𝑋
+

2𝑎2

𝑔

𝜕𝜀

𝜕𝑇
= 0                  (7) 

𝜕ℎ

𝜕𝑋
+  

𝜕𝑣

𝜕𝑇
+  

𝑓𝐿𝑉0

2𝑎𝐷
𝑣|𝑣| = 0                 (8) 

 

where, 

𝜀(𝑇) =
𝜀𝑟(𝑡)

∆𝐻0

=
∑ 𝜀𝑟𝑖(𝑡)

𝑖=𝑁𝑘
𝑖=1

∆𝐻0

 

          = 𝑧. ∑ |∫
𝜕ℎ′(𝑇−𝑠)

𝜕𝑠
 𝐽𝑖  (1 − 𝑒𝑥𝑝−𝑠.𝑈𝑖)𝑑𝑠

𝑠=𝑇

𝑠=0
|

𝑖=𝑁𝑘
𝑖=1   

          =  𝑧. ∑ |∫ ℎ′(𝑠).
𝑈𝑖

𝐸𝑖
 . 𝑒𝑥𝑝−𝑈𝑖(𝑇−𝑠)𝑑𝑠

𝑠=𝑇

𝑠=0
|

𝑖=𝑁𝑘
𝑖=1 ,        (9) 

 

 represents the retarded strain, r, as a function of the relative 

change in the hydraulic head ℎ′ = 𝐻′/H0, instead of 𝐻′, and Ui 

= L/(ai) is a dimensionless parameter that represents the ratio 

of the time required for the pressure wave to travel the total pipe 

length to the retardation time of the Kelvin element i. 

 

 

Fig. 1 Propagated pressure wave head H over the initial hydraulic grade 

line for: 1) elastic pipe (dotted curve), 2) viscoelastic pipe (straight curve).  
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B. Attenuated Pressure Wave Head 

As mentioned previously, in the introduction section, two 

analytical approaches are always used to find the analytical 

solutions. The first approach retains with direct solvable 

analytical equations, and it is succeeded in concluding direct 

applicable analytical equations for the elastic pipes only. 

Whereas the second one needs more complicated calculations, 

acceptance of a limited degree of accuracy, and some solutions 

must be rederived depending on the characteristics of the 

viscoelastic pipe. Therefore, the first approach is adopted here, 

which is based on integrating the ordinary differential equations 

generated from applying the MOC on the partial differential 

governing equations. 

It is worth to mention that by ignoring both the retarded 

strain (i.e., elastic pipe) and the friction (i.e., frictionless pipe), 

from the governing equations (1) and (2) respectively, the MOC 

leads to exact analytical solution. For frictional pipe, the 

numerical values of the pressure wave heads or the velocities at 

the propagated wave front are an inevitable essential 

requirement for integrating the ordinary differential equations 

produced from the MOC. Thus, the task of the present section 

is to produce an exact analytical equation for the increase in the 

pressure head at the wave front or the flow velocity just behind 

that wave, for the first wave trip from the valve to the tank. 

Sudden closure of the downstream valve, see Fig. 1, 

generates an instantaneous pressure wave head, H0, at the 

valve, that is propagated upstream with celerity a, over the 

initial steady hydraulic grade line (HGL). For frictional elastic 

pipes, as the pressure wave travels upstream, it moves upward 

over the initial slope of the HGL. To satisfy the updated slope 

of the HGL, the celerity behind the wave front will not reduce 

to zero. Consequently, some flow crosses the wave front 

causing an accumulated liquid mass behind it, named line 

packing. As time elapses, the accumulated line packing 

produces a gradual time dependent rising in the HGL. In 

viscoelastic pipes, the viscous effect of the pipe wall will 

produce a retarded strain that enlarges the pipe cross section. 

Depending on degree of expansion, for the pipe cross section, 

the accumulated flow mass behind the wave front can be stored 

without excess in the pressure head downstream the wave front. 

However, in the case of a considerable high degree of 

viscoelasticity, the enlargement in the pipe volume is more than 

the accumulated mass, which produces pressure head drops. 

The MOC is used here to estimate the pressure wave head, 

at the wave front, as it propagates along the pipe for T ≤ 1. 

Instantaneous pressure wave head equals to H = a(V0  V)/g, 

and in a dimensionless form can be represented as h = H0 

= 1  v = v, where v = (V  V0)/V0 is the instantaneous 

relative drop in initial liquid velocity at the wave front. The 

ordinary differential equation along the first characteristic line 

C-, see Fig. 2, can be determined by subtracting (7) and (8) and 

considering 𝜕𝑋/𝜕𝑇 = (1/𝑎)𝜕𝑥/𝜕𝑡 = −1, as: 

 
𝑑ℎ

𝑑𝑇
 −  

𝑑𝑣

𝑑𝑇
+  𝑅𝑣2 +

2𝑎2

𝑔

𝜕𝜀

𝜕𝑇
= 0             (10) 

 

where, R = fLV0/(2aD) is a dimensionless ratio of the total 

steady friction head loss along the pipe length hfL = 

fLV0
2/(2gD), to the Joukowsky pressure head H0. During the 

pressure wave first trip along the pipe, the velocity 

direction/sign is not varied and remains positive from the tank 

to the valve, thus 𝑣|𝑣| can be replaced by 𝑣2 in (8). Applying 

the Leibniz rule for the derivative of (9) with respect to T, the 

last term in (10) can be represented as: 
 

2𝑎2

𝑔

𝜕𝜀

𝜕𝑇
= −

2𝑎2

𝑔
∑ 𝑈𝑖𝜀𝑖

𝑁𝑘
𝑖=1 +  ∑ 𝑈𝑖 . 𝑌𝑖 . ℎ′(𝑇)

𝑁𝑘
𝑖=1       (11) 

 

where, i = ri/H0 is the Kelvin element strain as a function of 

h' instead of H' and instantaneously equal to zero at the wave 

front, and 𝑌𝑖 is a dimensionless parameter equal to Da2/(e.Ei) 

for the Kelvin element i. Different terms of (10) are 

compensated as: the viscoelastic term is substituted from (11), 

dv/dT by dv/dT =  dh/dT, h by [hfl – fxV0
2/(2gD) + H]/H0, 

dh/dT by [R + dh/dT], and (1  v2) by (1  v).(1 + v) = v(2 

+ v) = h(2  h). Then, (10) can be represented by a 

nonlinear ordinary differential equation as: 
 

2
𝑑∆ℎ

𝑑𝑇
+ (2𝑅 + 𝑍)∆ℎ − 𝑅(∆ℎ)2 = 0         (12) 

 

where, Z =  ∑ 𝑍𝑖
𝑁𝑘
𝑖=1 = ∑ 𝑈𝑖 . 𝑌𝑖

𝑁𝑘
𝑖=1 =

𝛼𝜌𝐷𝑎𝐿

𝑒
. ∑

𝐽𝑖

𝜏𝑖

𝑁𝑘
𝑖=1  . Solving 

(12) with the valve boundary condition, i.e. h = 1 at T = 0, the 

following exact analytical equation is obtained, [19]: 
 

∆ℎ = −∆𝑣 =
2𝑅+ 𝑍

𝑅+(𝑅+𝑍)𝑒𝑥𝑝(𝑅+ 0.5𝑍)𝑇 ,   0 ≤ 𝑇 ≤ 1     (13) 

 

Neglecting the viscoelastic term, Z, leads to an analytical 

equation for elastic pipe [5,6,8]. Equation (13) shows the extra 

effect of viscoelasticity, Z, in attenuating the propagated 

pressure wave head. In contrast to the constant propagated 

pressure head in a frictionless elastic pipe, (H0 at R = 0), 

viscoelasticity adsorbs that pressure head with propagation. 

From (13), it is interesting to note that the relative behavior of 

the dimensionless dependent variables, h and v, at the 

propagated wave front will be the same for different 

combinations of flow and pipe characteristics that have the 

same R and Z. 

 

C. Pressure Head at The Valve 

Fortunately, the relative strain  at the wave front is zero for 

𝑇 ≤ 1, this enables a straightforward replacing of d/dT with h' 

in (10). This is not the case when handling the ordinary 

differential equation along the characteristic line C+, see Fig. 2, 

as the unknown relative strain,  along that line must be known 

in advance. To handle that problem, the strain rate, 𝜕𝜀𝑟/𝜕𝑡 in 

(1), is inset within the constant wave celerity, a, during the first 

half pressure wave cycle, i.e. 𝑇 ≤ 2. Applying the Leibniz rule 

for the derivative of the second part of  (3), with respect to t, 

and assuming a linear change in the pressure head H' with time, 

then [9]: 

 

2
𝜕𝜀𝑟

𝜕𝑡
= 2𝑧.

𝜕

𝜕𝑡
∫ 𝐻′(𝑡 − 𝑠).

𝑑𝐽(𝑠)

𝑑𝑠
𝑑𝑠

𝑡

0
 ≅ 2𝑧.

𝜕𝐻′

𝜕𝑡
. 𝐽(𝑡)    (14) 
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where 𝜕𝐻′/𝜕𝑡 = 𝜕𝐻/𝜕𝑡. From (1) and (14), the following 

continuity equation is obtained, [9]: 
 

[
𝜌𝑔

𝑘
+

𝑧

𝐸0
+ 𝑧. 𝐽(𝑡)]

𝜕𝐻

𝜕𝑡
+ 

𝜕𝑉

𝜕𝑥
=  

𝑔

𝑐2

𝜕𝐻

𝜕𝑡
+ 

𝜕𝑉

𝜕𝑥
= 0      (15) 

 

where, 
 

1

𝑐(𝑡)
=  √𝜌

𝑘
+

𝛼𝜌𝐷

𝑒
[

1

𝐸0
+ ∑

1

𝐸𝑖
(1 − 𝑒𝑥𝑝

−
𝑡

𝜏𝑖)
𝑁𝑘
𝑖=0 ],      (16) 

 

c(t) is a time dependent wave celerity and equal to, a, at time = 

0, k is the modulus of liquid elasticity, and J0 = 1/E0 is the 

inverse of instantaneous modulus of elasticity for the pipe wall.  
 

 

Fig. 2 Characteristic lines for constant wave speed a, the dashed lines;  

and characteristic curves for time dependent wave speed c(t),  

the continuous curves. (The figure shows the application positions 
 of the different equations) 

 

Adding (2) and (15), and considering 𝜕𝑥/𝜕𝑡 = 𝑐(𝑡), the 

ordinary differential equation along the positive characteristic 

curve, C+, can be represented as, (17): 
 

𝑔

𝑐

𝑑𝐻

𝑑𝑡
+ 

𝑑𝑉

𝑑𝑡
+  

𝑓𝑉|𝑉|

2𝐷
= 0               (17) 

 

Integrating that ordinary differential equation (17) along the 

positive characteristic curve C+, between the wave front 

position at any point along the pipe and the valve, leads to a 

direct dimensional equation, (18a), for the unknown hydraulic 

head at the valve, that is valid for the first half pressure cycle. 

A dimensionless form of (18a) is presented in (18b): 
 

𝐻𝑣|2𝑡 =  
𝑐(𝑡𝑣)

𝑐(𝑡𝑤)
 𝐻𝑤|𝑡𝑤

+
𝑐(𝑡𝑣)

𝑔
 𝑉𝑤 −

𝑓.𝑐(𝑡𝑣)

2𝑔𝐷
∫ 𝑉2𝑡𝑣

𝑡𝑤
𝑑𝑡 =  

𝑐(𝑡𝑣)

𝑐(𝑡𝑤)
 (

𝑓𝑙𝑤𝑣𝑉0
2

2𝑔𝐷
+ ∆𝐻𝑤) +

𝑐(𝑡𝑣)

𝑔
 (𝑉0 + ∆𝑉𝑤) −

𝑓𝑙𝑤𝑣

2𝑔𝐷

𝑉𝑤
2

𝑃
     (18a) 

 

then, 
 

ℎ𝑣(2𝑇)  =  𝑅𝑇𝑐(𝑡𝑣)/𝑐(𝑡𝑤) + 𝑐(𝑡𝑣)/𝑎 − 𝑅𝑇𝑣𝑤
2 /𝑃      (18b) 

 
where, 
 

0 ≤ 𝑡 ≤
𝐿

𝑎
 ,  0 ≤ 𝑡𝑤 ≤

𝐿

𝑐(𝑡2)
,   𝑡𝑣 ≈ 2𝑡𝑤 , 0 ≤ (𝑇 = 𝑙𝑤𝑣/𝐿) ≤ 1 

 

Hv and Hw are the pressure heads at the valve and the 

propagated wave front, respectively, tw is the required time for 

the wave front to travel the length lwv along the pipe, Vw is the 

velocity just behind the wave front, vw = Vw/V0 is the relative 

velocity and can be determined from (13) by substituting T = 

lwv/L, Vw = Vw - V0 = g.Hw/c(tw) is the sudden drop in the 

velocity behind the wave front, Hw is the sudden increase in 

the hydraulic head at the wave front, hv(2T) = 𝐻𝑣|2𝑡/∆𝐻0 is the 

relative pressure head at the valve at the dimensionless time 2T 

which represents the real time 2t in the dimensionless form, and 

P is a coefficient that depends on the velocity distribution shape 

within the pipe along C+ from the wave front at time tw to the 

valve at time tv = 2tw, see Fig. 2. Assuming a linear change of 

the velocity from Vw to zero, as proved by Liou [5] for elastic 

pipes, leads P to be equal 3, see Appendix A. An improvement 

of that assumption is studied in the subsequent subsection III. 

C. It is worthy to notice that neglecting the viscosity effect and 

using constant wave celerity, in (18b), leads to the same 

dimensionless analytical equation derived by Liou [5] for 

elastic pipes.  

Wave celerity c is decreased exponentially, with elapsed 

time, from the initial elastic wave celerity a = c(0) to c(∞), thus 

as the wave is propagated, both c(tw) and c(tv) approach c(∞). 

The traveling length lwv is considered equal to the elapsed time 

tw multiplied by the final wave celerity c(tw), instead of the 

average of the variant celerity along the travel path, with 

insignificant error. Calculation of the average wave celerity 

along the pipe is restricted only to numerical integration of c(t), 

see (16), which complicates the analytical process and increases 

the computation effort. The expected errors from adopting any 

assumption including replacing the average wave celerity along 

the pipe with the final one at the wave front, will be examined 

later in subsections III.B and III.C. Integration of the first term 

of (17) is presented in Appendix B. 

While the proposed process, used for deriving the present 

analytical equations, is based on the soul of the previously 

published work by Keramat and Haghighi [9], there are 

noticeable differences in the final results due to the following 

points: 

1) despite of using a decreasing celerity approach for the 

propagated wave seems more logical, all the current 

numerical methods, used to simulate transient flow in 

viscoelastic pipes (MOC, WCM, FVM), are based on using 

a fixed celerity approach to preserve a constant 

discretization mesh between subsequent transient time 

steps. The present analytical equations and the numerical 

methods lead to a difference in the elapsed time necessary 

for travelling the first half wave, equal to 2[L/c(t2) - L/a] at 

the valve see Fig. 2, with consequent nonidentical extension 

for the first pressure wave half cycle. Therefore, other 

criteria unlike the elapsed time must be adopted to make the 

results of the two approaches comparable. The main energy 

source that creates the water hammer is the sudden drop of 

the velocity within a certain volume of the water, thus it is 

fair to compare the results at constant volumes affected, i.e. 

the same travelled lengths of the pipe by both the fixed 

celerity and the decreasing one. Thus, the analytical 

pressure head at the valve at time 2tw = tv, must be compared 

with the numerical one at time equal to 2t =2lwv/a = 

2tw.c(tw)/a, as done in the left-hand side of (18a). 

 

t 

x 

Valve 

 x = L 
Tank   

x = 0 

L, 2t2  

L, 2t1  

L, tv =2tw  

 x = l  

l, tw =l/c(tw) 

l, t =l/a 

C + 

Eq. (17) 

 

C - 

Eq. (10) 

0, t2 = L/c(t2) 

 
0, t 1 = L/a 

 

 

x = L 

Eq. (18) 

 

at the wave 

front Eq. (13) 

Eqs. (10) 
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2) the first term in the right-hand side in (18 a) and (18 b) is 

multiplied by c(tv)/c(tw), instead of one [9], which is 

produced from the integration process. That factor of 

multiplication has a variant range with an initial value 1 to 

about 0.9 in the early time steps, depending on the pipe 

characteristics, then it increases again with elapsed time to 

approach 1. It is found that this factor gives a more accurate 

results with respect to fine MOC results in cases of studying 

short pipes or at early time steps for any pipe length. The 

period which is affected by that factor can be estimated as 

3max, i.e. when all the exponents in the last term in (16) 

approach zeros. 

3) A clear form for the friction’s contribution is found in the last 

term in (18a), which is based on the present concluded exact 

velocity behind the wave front, (13). Consequently, the 

proposed analytical equations (18 a) and (18 b) have no need 

to adopt a special technique to evaluate the friction term in 

advance as its requested by Keramat and Haghighi [9]. 
 

D. Steps of The Analytical Solution 

The required steps to exploit the proposed analytical 

solution, for the pressure head at the valve, can be summarized 

as follows:  

1) determine the wave celerities a = c(0), and c() from (16), 

2) calculate the dimensionless variables R = fLV0/(2aD), and Z 

= 
𝛼𝜌𝐷𝑎𝐿

𝑒
. ∑

𝐽𝑖

𝜏𝑖

𝑁𝑘
𝑖=1 ,  

3) estimate the required time for the wave to travel from the 

valve to the tank, t2, which can be initially assumed as t2 = 

L/c(∞), then by using (16) repeatedly by trial and error, t2 is 

adjusted and decreased to L/c(t2),  

4) for any chosen time, 0 < tw < t2, calculate both c(tw) and c(tv 

= 2tw) using (16), 

5) the dimensionless time corresponding to tw is T = c(tw).tw/L = 

lwv/L,  

6) the relative velocity just behind the wave front, vw = Vw/V0, 

can be calculated from (13) using T, and  

7) Finally, determine the unknown pressure head, Hv, at the 

valve at time tv = 2 tw, from (18a), or its dimensionless form, 

hv at the dimensionless time 2T, from (18b). 
 

For the rest of the research, the dimensionless form of the 

pressure head, i.e., (18b), is used to facilitate the comparison 

between different results, as they are scaled to the 

dimensionless relative variables T and h. 
 

 

III. RESULTS AND DISCUSSION 
 

 

 

Previous literature is reviewed to specify the logical range 

of variations in the three dimensionless parameters U, Y, and Z. 

Four different plastic materials are found in the literature as: 1) 

High density polyethylene (HDPE), 2) Medium density 

polyethylene (MDPE), 3) Low density polyethylene (LDPE), 

and 4) Polyvinyl chloride (PVC), see Table 1. 

The first dimensional parameter, U =  Ui, is mainly 

dependent on the total pipe length and the retarded times of 

different Kelvin elements. In general, the retarded times of 

Kelvin elements are taken as 0.0 s < t < 10 s, Table 1, with 

exception of one HDPE case, that has a retarded time for a 

Kelvin element equal to 40.35 s. From the data in Table 1, the 

magnitude of U reaches an upper value of 37.2 for both HDPE 

and PVC pipes and inflated to more than 1500 for both MDPE 

and LDPE pipes. However, U increases for all pipe materials 

with increasing the pipe length. 

The dimensionless parameter,  Yi, is dependent on a2 and 

 Ji. The compressibility effect of water that is represented by 

the term k, (16), is nearly about 4.65 x 10-7 s2/m2. For  = 1 

and with a lower practical ratio of D/e = 8, the elastic 

 

TABLE (1) 

LITERATURE DATA OF FLOW AND VISCOELASTIC PIPES CHARACTERISTICS 
 

Plastic 

types 
Ref. 

L 

m 
f 

D 

mm 

e 

mm 

V0 

m/s 

J0 

(10-10pa-1) 

Ji 

(10-10Pa-1) 

Ti 

s 

Y 

J/J0 
R Z 

HDPE 

[3,20] 277 0.0252 50.6 6.3 0.54* 7.0 

1.057, 1.054, 

0.9051, 

0.2617, 0.7456 

0.05, 0.5, 1.5, 

5, 10 
0.575 0.094 2.4 

[21] 103.2 0.01823 44 3 2.05 8.302 2.17, 1.7, 0.91 0.03, 0.5, 3 0.6 0.149 3.3 

[22] 554 0.02 50.6 6.3 0.15* 6.92* 
1.044, 1.037, 

1.145 
0.05, 0.5, 1.5 0.46 0.04 4.7 

[23] 138.8 0.0182 44 3 2.36 5.4 
0.645, 0.415, 
0.96, 

0.263, 0.453 

0.05, 0.5, 1.5, 

5, 10 
0.507 0.19 1.1 

[24] 220 0.0205* 93.3 8.1 0.63* 6.3 0.6, 1.052, 1.12 
0.08302, 0.6538, 
40.35 

0.44 0.038 0.8 

MDPES [25] 37.2 0.035* 22 1.6 0.3 15.5 7.54, 10.46, 12.37 
0.000089, 0.0222, 

1.864 
1.96 0.042 960 

LDPE [26,27] 43.1 0.024* 41.6 4.2 0.57 17.9a 
10.09, 13.97, 

16.28 

0.000115, 0.0221, 

1.822 
2.25 0.03 891 

PVC 
[28] 203.2 0.024* 75 5.2 0.4* 3.258 0.225 0.05 0.07 0.028 0.6 

[29] 275.2 0.023* 235.4 7.3 0.16 3.44 0.0848, 0.1136 0.05, 0.5 0.058 0.006 0.4 
 

* calculated from the available reference data.  
a at temperature 31 °C 
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contribution of the pipe wall, DJ0/e, is within the range 2.6 x 

10-6 - 1.19 x 10-5 s2/m2 which is larger than k by 5.6 to 25 

times. Therefore, the effect of water compressibility can be 

skipped, without significant error, to achieve a simple 

representation for the dimensional parameter Y as, the ratio of 

the summation of the creep coefficients for different Kelvin 

elements to the reciprocal of instantaneous modulus of 

elasticity,  Ji/J0, see Table 1. Thus, Y represents the degree of 

viscoelasticity of the pipe material and has a magnitude ≤ 0.6 

for HDPE and PVC and increases to about 2 for MDPE and 

LDPE pipe. Accordingly, the dimensionless term Z can be 

simplified as (L/ a). (Ji / J0 i), with upper limits equal to 6.4 

and 1 for HDPE and PVC pipes, respectively, while it increases 

to hundreds for both MDPE and LDPE due to the very small 

retarded time associated with the first Kelvin element, used to 

represent their viscoelastic behaviours. An essential 

requirement to obtain accurate results from the MOC is to 

discretize the time to steps with maximum magnitude ≤ min/2, 

[18]. Thus, an expensive high number of nodes must be used to 

discretize both the MDPE and the LDPE pipes. 

The PVC has the minimum level of viscoelasticity within 

the studied four plastic types, while the LDPE has the 

maximum. Ratio of the steady friction head to the Joukowsky 

pressure head, R, is between 0.006 and 0.22, and velocities are 

varied between 0.15 to 2.36 m/s. 
 

A. Pressure Head at The Wave Front 

The attenuation of the instantaneous dimensionless pressure 

head h, (13), at the propagated wave front is shown in Fig. 3 

for R = 0.005, 0.05, 0.1, 0.5, 1 and Z = 0.5, 5, 1, 5, 10, 100, 

1000. The y-axis represents the change in H which is 

equivalent to -v =1-v, while the x-axis represents the 

dimensionless time T from the moment of the sudden closure of 

the valve or the ratio of the travelled distance to the total pipe 

length X.  

All propagated pressure waves are started with the 

Joukowsky pressure head, which is equal to 1 in the 

dimensionless form and decreases linearly, for Z ≤ 1 with an 

increasing rate as R increases from 0.005 to 1. As Z becomes 

greater than 1, an exponential decrease with a decreasing rate, 

in H, can be observed with a diminishing effect for variation 

of R, that becomes null for Z ≥ 100. For Z ≥ 10, the pressure 

wave head is completely absorbed within the pipe length due to 

the high viscoelasticity of the pipe wall. 

Existence of exact analytical solution provides an excellent 

opportunity for measuring accuracy of the numerical methods. 

This gives an idea about the degree of reliability for the 

numerical methods when assessing the validity of the 

approximate analytical solution derived to predict the pressure 

head at the valve, i.e. (18 a) and (18 b). 

The MOC, the most popular numerical method, is used here 

for analysing the water hammer problem and its results are 

compared with the exact analytical equation from (13). Figure 

4 shows the logarithmic changes in errors in the results of the 

MOC with increasing the number of discontinuities/nodes (ND) 

used to discretize the pipe. Two cases are studied for the HDPE 

and MDPE pipes as referenced in [22, 25], see Table 1. Two 

measuring error criteria which are the relative root mean square 

error (RRMSE) and the relative absolute maximum error 

(RAMAX), are used: 
 

𝑅𝑅𝑀𝑆𝐸 =
1

𝐺0

√∑
(𝐺𝑐,𝑚−𝐺𝑒𝑎,𝑚)

2

𝑁𝐷

𝑁𝐷
𝑚=1               (19) 

𝑅𝐴𝑀𝐴𝑋 =
𝑀𝑎𝑥.∑ |𝐺𝑐,𝑚−𝐺𝑒𝑎,𝑚|

𝑁𝐷
𝑚=1     

𝐺0
           (20) 

 

where, G represents the dependent variable H or V at the 

propagated wave front as it marches along the pipe for the first 

trip, and the subscripts c, ea, m, and 0 mean calculated, exact 

analytical, discontinuity number, and initial magnitude of the 

variable, respectively. Numerous numbers of criteria can be 

adopted to measure the error between the MOC results and the 

corresponding analytical ones. The RRMSE is a good criterion 

to measure the relative average deviation for the MOC results 

from the analytical ones; as the RRMSE decreases to zero, both 

results go to be identical. On the other hand, the RAMAX 

criterion that measures the relative maximum absolute error, 

provides the designer with a reasonable data for estimating the 

factor of safety of the pipe. 

According to Fig. 4, increasing ND from 50 to 5000 

improves the results of the HDPE case significantly with a 

recession in the measured error from 10% to 0.1%. 
 

 
Fig. 3 Dimensionless increase in the pressure head at the wave front during 

propagation from the valve to the tank for different values of Z 

(represented by lines) and R (represented by symbols, R = 0.005 +, 0.01 ◊, 

0.1 ◯, 0.5 ▯, 1 △) 
 

 

On the other hand, for the case of the MDPE even for dense 

pipe discretization with ND equal to 5000, a significant error 

can be noticed with a 1% for RRMSE and 10% for RAMAX. 

This behaviour is expected due to the very small retardation 

time associated with the first Kelvin element which causes a 
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noticeable error/oscillation at earlier time intervals. If the 

distorted results of the first few time steps are eliminated, the 

maximum RAMAX will be located at the last time step with a 

magnitude of the same order of the RRMSE, as shown in 

Table 2. 

The parameter Z decreases from 960 (MDPE, [25]) to 4.7 

(HDPE, [22]), with a logarithmic decrease in the magnitudes of 

the two measuring error criteria, see Fig. 4. As the viscoelastic 

characteristics of the pipe changed to PVC, the parameter Z 

decreases to 0.6, see Table 1, with negligible measuring errors 

for the two criteria. 

For the two previous cases, unexpectedly, an unequal 

relative degree of error is observed for the velocity and the 

pressure head. More accurate results can be achieved by the 

MOC for the pressure head at the wave front than the results of 

the velocity behind the wave. This behavior is due to the 

simplification assumptions suggested to represent both the 

friction and the retarded strain rate terms within the numerical 

skeleton for the MOC. 
 

B. Pressure Head at The Valve 

To check the effect of different assumptions, adopted to 

derive the proposed analytical equation for the pressure head at 

the valve, all literature cases presented in Table 1 are solved 

analytically with (18b) and numerically by the MOC. A relative 

fine discretization of the pipe is considered with ND equal to 

5000. The two error criteria, (19) and (20), are considered to 

measure the degree of accuracy for the analytical solution, 

Table 2. 
 

 
Fig. 4 Effect of increasing ND against two measuring error criteria 

(RRMSE and RAMAX) for two cases (HDPE and MDPE). 
 

For the four material types, the maximum RRMSE are 

varied between 1.09% and 0.00372%. On the other hand, the 

maximum RAMAX are located at the last time steps with 

2.04% for HDPE and 0.02% for PVC, while the RAMAX 

appears at the first time step for MDPE and LDPE pipes with a 

maximum value equal to 6.16% and decreases rapidly within 

the first few elapsed time steps to approach zero, then it starts 

to increase again with time to another maximum value, at the 

last time step, equal to 0.998%. Deceptive behaviors of the 

MOC for both MDPE and LDPE pipes at the initial time steps 

are expected; therefore, the maximum RAMAX can be 

considered as 0.998%.  

Three different cases are selected as presented in Table 2, 

which are associated with the worst degree of error, to 

investigate the pressure head at the valve using both the MOC 

and the proposed analytical equation. Both MDPE and LDPE 

pipes have nearly similar properties and are represented with 

one case [26,27]. These cases are considered under three 

conditions: 1) effect of both friction and viscoelasticity (R  0, 

Z  0), 2) effect of friction only (R  0, Z = 0), and 3) effect of 

viscoelasticity only (R = 0, Z  0). The analytical equation 

presented by Keramat and Haghighi [9] cannot be applied to 

frictional pipes without adopting a method to estimate the 

friction term in advance, thus the results of their analytical 

equation are presented in Figs. 5, 6, and 7 for comparison in 

case of frictionless pipes only. 
 

TABLE (2) 

RELATIVE ERRORS BETWEEN THE ANALYTICAL SOLUTION AND 

THE MOC FOR THE PRESSURE HEAD AT THE VALVE.  
 

Plastic 

types 
Ref. 

a 

m/s 
NDmin 

RAMAX 

x 102 

RRMSE 

x 102 

HDPE 

[3,20] 393 30 1.11 0.489 

[21]s 286 25 2.04 1.09 

[22] 393 58 0.857 0.441 

[23] 345 18 0.832 0.311 

[24] 360 15 0.0652 0.0302 

MDPES [25] 232 3605 
5.97* 

0.947 
0.65 

LDPE [26,27]s 234.6 3197 
6.16* 

0.998 
0.692 

PVC 
[28]s 440 20 0.0203 0.00916 

[29] 339 34 0.00928 0.00372 
* max. error is occurred at the first time step. 
s selected cases for further analysis. 
 

 
Fig. 5 Effect of friction, viscoelasticity, and both on the relative 

pressure head at the valve for the HDPE case [21]. 

 

Figures 5, 6, and 7 show the change in the relative pressure 

head, hv, at the valve for both the analytical solution, (18b), and 

the MOC results with ND equal to 5000. From the figures, 

several points can be observed as will be discussed below. 
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The analytical solution simulates the pressure head at the 

valve in a good way with a limited decrease in the solution 

accuracy as the dimensionless time T elapses from 0 to 2. This 

deterioration in accuracy is due to the assumption of the linear 

decrease for the velocity along the characteristic path C+ from 

the wave front to the valve. Maximum RAMAX of hv, for all 

the studied cases, is equal to 2.04% that can be accepted, 

whereas it is in the same range for the accuracy of the MOC 

results using a number of discontinuities equal to 200, Fig. 4. 

For the three studied cases, under the effect of either friction 

or viscoelasticity only, the pressure head at the valve is the same 

for both the analytical and the MOC results with a very limited 

divergence in the case of LDPE, (Fig. 6). Ignoring the 

viscoelastic effect and considering only the instantaneous 

elasticity, will overestimate hv significantly due to the 

accumulated backfill within the pipe with time. 

 

 
Fig. 6 Effect of friction, viscoelasticity, and both on the relative pressure 

head at the valve for the LDPE case [26,27]. 

 

 
Fig. 7 Effect of friction, viscoelasticity, and both on the relative 

pressure head at the valve for the PVC case [28]  
 

In the case of eliminating the friction effect, the pressure 

head at the valve, hv, will continuously decrease with an 

exponential rate to a constant head depending on the 

dimensionless term Y. For the three cases, the effect of 

viscoelasticity in reducing hv initially dominates the pressure 

excess due to the backfill. That dominance is waning as U 

increases or Y decreases. The analytical results produced by 

using Keramat and Haghighi analytical equation, [9], has very 

good matching with accurate MOC results, but with a longer 

dimensionless extension times for the first half period of the 

waves which are equal to 2.35, 3.122, 2.06, for the three cases 

studied, HDPE [21], LDPE [26,-27], and PVC [28] 

respectively. On the other hand, the exact dimensionless period 

produced using any available numerical method are 2. 

 

C. Analysis of The Frictional Integration Variable P 

Velocity distributions of flow along the positive 

characteristic line, C+, from the tank at T = 1 to the valve at T 

= 2, are shown in Fig. 8 for the three cases selected from Table 

2. Two different pipe lengths for each case are considered as 

follows: 1) first length, equal to L, as mentioned in Table 1, and 

2) second length equal to 10L. As shown in Fig. 8, the irregular 

change between the different distributions is clearly noticed. 

This is contradictory between those irregular changes and the 

linearity assumption for the change in the velocity, as 

considered in subsection II.C, is the main cause of the error in 

the analytical solution. Therefore, the coefficient P must be 

adapted to assure that the last term in (18 a) and (18 b) 

represents accurately the accumulated friction losses along C+ 

from the wave front to the valve. To achieve that goal, P is 

represented by a function of the different variables within the 

problem. A nonlinear deterministic optimization method, the 

Generalized Reduced Gradient (GRG) algorithm, is used to 

represent P as a function of these variables, by minimizing the 

RAMAX errors between the results of both the MOC and the 

analytical equation, (18a). 

 

𝑂𝑏𝑗𝑚𝑖𝑛 = 𝑀𝑎𝑥. ∑ ∑
|∆𝐻𝑣𝑖,𝑗+𝐹𝑅𝐼𝐶𝑖,𝑗/𝑃((𝐷/𝑒,𝐽0,𝐽/𝐽0,𝜏,𝑅)𝑖,𝑇𝑖,𝑗)|

∆𝐻0,𝑖

𝑁𝑗

𝑗=1

𝑁𝑖
𝑖=1    

 (21) 

where, Objmin means the objective function that must be 

minimized, Hvi,j is the difference between the MOC pressure 

head results at the valve for run i after elapsed time steps j, and 

the corresponding summation of the first two terms on the right 

hand side of  (18 a), FRICi,j  represents the last term in (18a), 

P() is the suggested function, H0,i is the Joukowsky pressure 

head for run i, Ni is the number of executed runs or 

combinations of data used to generate the necessary data 

essential to calibrate the P function, and Nj is the number of 

time steps at which the output data are collected. The GRG 

algorithm is selected due to the following advantages: 1) limited 

computational effort with respect to any stochastic optimization 

methods, 2) can handle any nonlinear problem, 3) it is free and 

available in the package “Solver”, which is a Microsoft Excel 

add-in program, and 4) as any deterministic optimization 

algorithm, it can catch the absolute lower minimum in the 

trapped valley. 

Table 3 introduces the values of the different variables, used 

to generate the analytical and MOC results, to calibrate any 

suggested function for P in the case of the HDPE and the PVC 

pipes only. To limit the calculation effort, the variables that 
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appeared in the water hammer problem for elastic pipe, which 

lead to the linear change of the velocity along C+, are considered 

fixed in the present analysis as:  = 1,  = 998 kg/m3, k = 

2.1E+9 Pa, D = 0.05 m, V0 = 1 m/s, and f = 0.02. Anyway, the 

ranges of variations in , , k, and f are limited, the flowing 

liquid is water with nearly constant values of  and k, while 

values of  and f are around 1 and 0.02, respectively. 

Total number of runs, Ni, from the different alternatives 

between the variable’s values, shown in Table 3, is 1680. Two 

sets of data are used to represent the variable R, R ≤ 1 and R > 

1, see Table 3. For all runs, ND is taken equal to 5000 and the 

output data are collected every 50-time steps with Nj = 200 rows 

of data for every run. The output data at any run i and time step 

j are (D/e, J0, J/J0, , R)i, Ti,j, and Hvi,j. 

 

 
Fig. 8 Relative velocity along C+ from the tank to the valve.  

 
TABLE (3) 

VALUES OF DIFFERENT VARIABLES USED TO CALIBRATE THE 

FUNCTION P 
 

D/e 10, 14 
J0 x 10-10 Pa-1 3, 6, 9, 12, 16 

J/J0 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1 

 (s) 0.05, 0.1, 0.15, 0.2 

R (≤ 1) 0.05, 0.1, 0.25, 0.5, 0.75, 1 

R (> 1) 1.1, 1.3, 1.5, 1.7, 1.9, 2 
Nk 1 

 
Accurate simulation of the problem for MDPE or LDPE 

pipes is unavailable because it requires a huge number of the 

time steps and number of nodes ND, to satisfy both the 

requirements of the minor retarded time at the first Kelvin 

element and the lengthy pipe corresponding to the 

dimensionless variable R. 

Various suggested functions for P are examined to minimize 

the objective function, (21). Every suggested function is 

optimized several times starting from different initial values, for 

the unknown decision variables, to enhance the probability of 

catching the most global minimum. As a rule of thumb, 

increasing the number of terms and associated number of 

decision variables improves the optimal solution, but with a 

diminishing rate. On the other hand, generating a function with 

lower number of terms and decision variables are more practical 

and easier in application. Therefore, variables that have a minor 

ability to improve the optimal solution is omitted to simplify the 

final form of the suggested function. The following two 

functions are created as: 

 

𝑃 =  6.29 −  3.54(∑ 𝐽/𝐽0)1.89    for R ≤ 1            (22a) 

𝑃 =  5.17 −  2.6(∑ 𝐽/𝐽0)0.73   for 1<R ≤2        (22b) 

 

Previous functions are applicable only for the HDPE and the 

PVC pipes. Equation (22a) is based on the values of the first set 

of data for R (Table 3) and is applicable only for R ≤ 1 with a 

lower expected error. Whereas (22b) is based on the second set 

of data for 1 <R ≤ 2 which represents a longer pipe but with 

lesser accuracy. Each of the functions is consisting of two terms 

and three decision variables and mainly dependent on the 

degree of the viscoelasticity for the pipe. By trials, P can be 

considered reasonably equal to 2 for the LDPE and the MDPE 

pipes. 

Comparison is made between the analytical and numerical 

results of the change in the pressure head at the valve hv(T), 

during the first pressure half-cycle taking the dimensionless 

variable R equal to one, Fig. 9. Most of the cases in Table 1 are 

considered and the pipe length of any case is adjusted to assure 

R = 1, as L = 2aDR/(fV0). The same curves, in Fig. 9, represent 

the magnitudes of the pressure head at the end of the first half 

cycle of the pressure, hv (2), for values of R within the range 0 

to 1. An additional case for the water hammer in elastic pipe is 

added for sake of comparison, i.e., the upper straight line in Fig. 

9. Table 4 presents the following results for every studied case 

with R = 1: 1) pipe length L, 2) NDmin = 1 + 2L/(amin), 3) hv(2), 

4) RAMAX error for the pressure head at the valve hv, and 5) 

RAMAX error for the propagated pressure head wave, h, 

along C+ from the valve to the tank using both NDmin and 5000, 

respectively. Equation (22b) is reapplied with R = 2 for all the 

cases in Table 1, and the calculated RAMAX errors for both hv 

and hv, with ND = 5000, are presented in the last two columns 

in Table 4. Values for the different parameters of the cases in 

Table 1, which used to test the suggested P functions, are varied 

from the corresponding parameter values used to calibrate the 

P functions, see Table 3. That discrepancy provides a good 

validation for the P functions and a reliable measuring of the 

expected errors for any other different pipe parameters. 
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Fig. 9 hv for the cases in Table 1. Straight and dotted lines represent 

analytical and MOC results, receptively. 

 
From Fig. 9, it can be observed the degree of convergence 

between both the analytical and the MOC results with a relative 

maximum absolute error in hv, for R ≤ 1 and P from (22a), equal 

to 4.02% and 7.08% for HDPE and PVC pipes, respectively, 

see Table 4. In the case of MDPE or LDPE pipes, the RAMAX 

error is at the first time steps, but with skipping these deceptive 

initial steps, the second considerable maximum is less than 

7.84%.  

For all the studied cases, the RAMAX error in h decreases 

with increasing the number of the discretized nodes from ND 

min to 5000. However, that error at ND min is higher than the 

RAMAX error in hv, with exception to the case [24], which 

means that the error expected from using the approximate 

analytical equation is always less than the error resulting from 

the use of the MOC with time intervals equal to min/2. Thus, 

the MOC results are superior to the analytical (18b) only when 

using fine discretization with time step significantly less than 

min/2. 

In the case of adopting 1 < R ≤ 2 and P from (22b), the 

RAMAX errors in hv are 10.87%, 11.39%, and 7.83% for 

HDPE, PVC, and both MDPE and LDPE pipes, respectively, 

see column 8 in Table 4. The increase in the hv error, between 

columns 6 and 8, is due to using the same ND = 5000 for the 

two different pipe lengths. The decrease in the pressure head, 

from the corresponding pressure of water hammer in case of 

elastic pipe, is dependent on the degree of viscoelasticity and 

the dimensionless coefficient R. Maximum variations in the 

relative pressure head between different pipe types are 0.12, 

0.01, and 0.05 for HDPE, PVC, and both MDPE and LDPE, 

respectively. The modified P functions produce a RAMAX 

error which is not always located at the last time step. In 

general, the analytical results underestimate the pressure head 

at the valve. 

 

IV. CONCLUSIONS AND RECOMMENDATIONS 

Exact analytical equation, (13), is derived to determine the 

increase in the pressure head at the wave front caused by the 

sudden closure of a valve at the end of a viscoelastic pipe. This 

equation is used to assess the accuracy of the MOC results with 

different discretization schemes. An approximate analytical 

equation, (18 a) or (18 b), are rederived, based on Keramat and 

Highlight [9], to calculate the pressure head at the valve during 

the first half wave pressure cycle. The GRG optimization 

method is adopted to represent accurately the friction effect at 

the valve by calibrating the integration constant P, of the 

friction term, as a function of the different variables of the 

problem, (22 a) and (22 b). Several points are concluded from 

the present study:  

 The equal relative absolute changes in the velocity and the 

pressure head, at the wave front during the first trip from 

the valve to the tank, are the same for different flow and 

pipe characteristics but have the same values of R and Z. 

Table (4) 

RAMAX ERROR IN HV AND H FOR R = 1 AND 2 
 

Plastic 

types 
Ref. R=1 R=2 

  
(1) 
L (m) 

(2) 
NDmin 

(3) 
hV(2) 

(4) 

RAMAX 

hv 

(5) 

RAMAX 

hNDmin 

(6) 

RAMAX 

hND=5000 

(7) 

RAMAX 

hv 

(8) 

RAMAX 

hND=5000 

HDPE 

[3,20] 2923 299 1.59 0.0296 0.078 0.005 0.0873 0.01 

[21] 673 159 1.57 0.0253 0.086 0.003 0.0804 0.006 

[22] 13323 1358 1.62 0.034 0.081 0.023 0.0864 0.046 

[23] 707 53 1.66 0.0304 0.099 0.001 0.1029 0.002 

[24] 5200 1606 1.69 0.0402 0.017 0.005 0.1087 0.011 

MDPES [25] 971 94054 1.15 
0.149* 

0.0784 
----- 
----- 

0.561 
0.561 

0.1516 
0.0783 

0.644 
0.644 

LDPE [26,27] 1427 105787 1.1 
0.162* 

0.050 

----- 

----- 

0.575 

0.575 

0.165 

0.0734 

0.611 

0.611 

PVC 
[28] 6876 627 1.87 0.0681 0.084 0.011 0.1124 0.022 

[29] 43506 5135 1.88 0.0708 0.077 0.079 0.1139 0.147 
* max. error is occurred at the first time step. 
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For any pipe type, as the pipe length increases and 

consequently Z approaches 10, the water hammer will be 

damped completely within the first pressure wave trip. 

Therefore, contrary to the elastic pipes [5], the maximum 

pressure head due to water hammer in viscoelastic pipes 

will be always involved in the first pressure wave cycle 

even for cross country pipes. 

 For time steps equal to min/2, that is recommended as an 

upper limit by Covas [18], a considerable percentage of 

error up to 10% can be found in the MOC results. Perfect 

matching is observed between the proposed analytical 

equation and the MOC results for frictionless pipes in the 

case of using HDPE or PVC pipes, while insignificant error 

is observed in the case of MDPE pipe. 

 For pipes with a minimum level of viscoelasticity as the 

PVC pipes, the decrease in the pressure head at the valve 

due to the retarded strain is overwhelming the expected 

increase due to the pipe backfill which leads to a decrease 

in the pressure head, but with a decreasing rate till zero. 

Hence, as the length of the pipe increases, the friction effect 

increases and the effect of the pipe backfill get over the 

viscoelasticity effect causing the pressure head to increase. 

 The derived analytical equation, in association to the 

generated P function for adjusting the accuracy of 

determining the friction, can be used to obtain a fast and 

accurate prediction for the pressure head at the valve for all 

pipe types, especially for the relatively shorter pipes with 

R ≤ 1. As the pipe length increases and R reaches 1, the 

RAMAX error increases to about 4.2% and 7.9% for the 

HDPE and other pipe types, respectively. These errors are 

comparable to the expected errors from using the MOC 

method with time steps equal to min/2. Thus, the MOC is 

preferable than the proposed analytical equation, (18 a) or 

(18 b), only in the case of using a high expensive number 

of nodes to simulate the pipe. 

 The corresponding RAMAX errors for lengthy pipes which 

produce 1 ≤ R ≤ 2 are studied. The maximum error for the 

pressure head at the valve increases to about 11%.  
 

The present analytical equation is devoted to a flowing 

water in viscoelastic pipes, while the updated function P is 

concerned with only two pipe types: HDPE, and PVC. In case 

of MDPE and LDPE the function P can be taken as constant 

equal to 2. A detailed investigation of the P function is 

recommended as a future work to eliminate the error in the 

friction term. 

 

APPENDIX A 

Integration of the third term of (17) with the assumption of 

linear change for the velocity from the wave front to the valve 

along C+ can be derived as: 
 

𝑓𝑐(𝑡𝑣)

2𝑔𝐷
∫ 𝑉2. 𝑑𝑡

𝑡𝑣

𝑡𝑤
 =

𝑓.𝑐(𝑡𝑣)

2𝑔𝐷
 ∫ 𝑉𝑤

2 (2 −
𝑡
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)

2
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𝑡𝑣≈2𝑡𝑤
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𝑎𝑉0
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      (A.1) 

 

APPENDIX B 

Integration of the first term of (17) can be simplified as: 

 

∫
𝑔

𝑐

𝑑𝐻

𝑑𝑡
𝑑𝑡

𝑡𝑣

𝑡𝑤
= ∫ [𝑔

𝑑

𝑑𝑡
(

𝐻

𝑐
) − 𝑔𝐻

𝑑

𝑑𝑡
(

1

𝑐
)] 𝑑𝑡

𝑡𝑣

𝑡𝑤
≈ 𝑔 (

𝐻𝑣|𝑡𝑣

𝑐(𝑡𝑣)
−

𝐻𝑤|𝑡𝑤

𝑐(𝑡𝑤)
) −

𝑔(𝐻𝑤+𝐻𝑣)

2
(

1

𝑐(𝑡𝑣)
−

1
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𝑐(𝑡𝑣)
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∗𝐻𝑤|𝑡𝑤

𝑐(𝑡𝑤)
)    (B.1) 

 
The hydraulic head along the positive characteristic curve 

C+ is considered a constant equal to the average magnitude (Hw 

+ Hv)/2. As both of c(tw) and c(tv) decrease to 𝑐(∞) 

exponentially with time, the difference between their 

reciprocals diminishes and can be neglected with insignificant 

effect. 
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Title Arabic: 

 اللدنةحل تحليلي محسن لمطرقة الماء في الأنابيب 
 

 

Abstract Arabic: 

لبعد في يتمثل التحدي في هذه الورقة في تحسين الحل التحليلي لمطرقة الماء أحادية ا

ي فبسبب الإغلاق المفاجئ للصمام الطرفي. تكمن أهمية الحل التحليلي  لدنخط أنابيب 

 تحليل.حسابي للخاصة في حالة عدم وجود برنامج  الضرورية،توفير معلومات التصميم 

رحلة  لتحديد رأس موجة الضغط على طول ةلا بعديدقيقة  جديدة تحليليةتم اشتقاق معادلة 

م عملية تم استخدا ذلك،في سرعة الموجة. بعد  اللدونة تأثيروتم دمج  الأولى،موجة الضغط 

ف دورة معادلة تحليلية تقريبية لرأس الضغط عند الصمام خلال نص استنتاجالتكامل لإعادة 

مقارنة أداء النتائج  تضمن أقصى ضغط تصميمي. تموالتي تت الأولى،موجة الضغط 

مشكلة. للالأبحاث السابقة تقريبًا لجميع  الخصائص،التحليلية مع النتائج العددية لطريقة 

في قليلاً  توالتي ساءللنتائج التحليلية للأنابيب غير الاحتكاكية  جيدتم الحصول على أداء و

 وجةطاقة محتكاك المستقر في الأنبوب إلى الا الطاقة المهدرة نتيجةزيادة نسبة  حاله

غير خطية لتحسين ثابت التكامل لمصطلح  تعظيمتم اعتماد خوارزمية  لذلك،  .ضغطال

 .مما عزز دقة النتائج التحليلية الاحتكاك،

 

 

 

 


