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ABSTRACT 
 

The main objective of this article is to examine the numerical 
efficiency of the gamma approximation technique , developed by 
Broemeling and Shaarawy (1988) , to estimate the error variance 
of the noise term of the second order moving average process. In 
order to achieve our main goal , six simulation studies are 
conducted with different variances and coefficients ; then 
proposed criteria are calculated. The inspection of the numerical 
results shows that the proposed approximation can efficiently 
estimate the noise variance  with very high precision for moderate 
and large time series lengths. In addition , the numerical results 
show that better results can be obtained if the error variance is 
small. 

 
Keywords : Moving average processes ; Error variance ; 

Likelihood function ; Jeffreys' prior ; Posterior density 
function ; Simulation . 

1. INTRODUCTION 
  

The literature on time series is vast and may be found in 
many areas other than statistics such as economics, business, 
physics, engineering and environmental studies. Most of the 
literature is non-Bayesian and the reader is referred to Box and 
Jenkins (1970), Chatfield (1980), Priestely (1981), Harvey (1993), 
Box et.al (2008), Wei (2005) and Liu (2009) for the non-Bayesian 
theory and methodology. 

 
Most of Bayesian contributions of time series focus on pure 

autoregressive processes and pay little attention to moving 
average processes, denoted by MA(q) , or mixed ARMA 
processes. The difficulty with MA(q)  processes is that the 
likelihood function is analytically intractable and statistical 
inferences should be done numerically. Zellner (1971) introduced 
the reader to the Bayesian analysis of pure autoregressive 
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processes. He used Jeffreys’ vague prior to develop the posterior 
distributions of the first and second orders autoregressive models. 
Newbold (1973) did a Bayesian analysis of transfer function 
processes of which the ARMA processes are special case. 
Macleod (1977) proposed replacing the determinant of the 
covariance matrix of ARMA processes by its asymptotic limit in 
order to approximate the conditional likelihood function. 
However, his approach does not avoid the problem of computing 
the inverse of the covariance matrix. Phadke and Kedem (1978) 
presented three different techniques to obtain the exact likelihood 
function for moving average processes. However, none of these 
techniques avoid the problem of computing the inverse of the 
covariance matrix. Zellner and Reynold (1978) showed that the 
statistical inferences about the coefficients can be approximately 
done using a non-central multivariate t distribution. Monahan 
(1983) made a very important contribution to time series analysis. 
Using a numerical integration technique, he implemented the 
identification, estimation and forecasting phases of ARMA 
processes. Lahif (1980) investigated the first autoregressive 
process in the same way Monahan did with mixed models. 
Shaarawy and Broemeling (1984) presented an approximate 
methodology to estimate the parameters of pure moving average 
processes. They showed that the posterior distribution of the 
precision parameter can be approximated by a gamma 
distribution. Broemeling and Shaarawy (1986,1988) did a 
comprehensive approximate technique to implement the 
identification, estimation, diagnostic checking and forecasting 
phases of ARMA  processes. The numerical efficiency of their 
estimation technique has been investigated by Shaarawy and El-
Shawadfy (1994) for the coefficients only. Kutbi(2010) examined 
the efficiency of their approximation for the precision parameter 
of the first order moving average process. However, the efficiency 
of their technique to estimate the error variance has not been 
investigated yet.  
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The essential objective of this paper is to study and 
investigate the behavior of the gamma approximation , proposed 
by Shaarawy and Broemeling(1984) , in estimating the variance 
parameter of the error term of the second order moving average 
processes. The performance of the gamma approximation is 
investigated through a large simulation study. Section 2 of this 
paper presents the second order moving average processes and 
shows how to use the gamma approximation to estimate the error 
variance. Section 3 is focused to conduct six simulation studies to 
investigate the numerical efficiency of the gamma approximation 
which will be denoted by the BS technique. Finally , Section 4 
presents the summary and conclusions of the research paper.  

 
 
 

2.  MOVING AVERAGE PROCESS OF THE SECOND ORDER 
 

The Bayesian analysis of time series is based on special 
parametric models such as regression models with autocorrelated 
errors , distributed lag  model , autoregressive models , and 
moving average models. A very important model is the second 
order moving average process , denoted by MA(2) , which is 
defined by : 

                       ε(t) (B)y(t)                                         (2.1) 
 
where y(t)  is the observation at time .... 2, , 1 , 0 , 1 , 2 ......,t    , 

)t(  is a sequence of independent normally distributed random 
variables with mean zero and unknown precision 0/1 2   . 
The polynomial operator  (B)  is given by : 
 

2
21 BB1(B)   

 
where 1  and 2  are real unknown constants , and the backshift 
operator B is such that : 
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1,2r     ,          )rtε(  )t(Br   

 
The MA(2)  process is always stationary and is invertible if 

the roots of the equation  0(B)  lie outside the unit circle. It can 
be shown that the MA(2)  process is invertible if 121   , 

112   and 12  , see Box and Jenkins(1970). The main 
problem with analyzing the MA(2) process is that the sum of 
squared errors is nonlinear function of the coefficients 1  and 2 . 

 
Suppose n observations are available , say 
  

)n(y , ..... , )2(y , )1(ySn   
  

 then the conditional likelihood function of the MA(2)  process is  
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(2.2)  

where 0 , R),(~  2
21      and   2,1t   ,   0)2t(  . 

Thus the likelihood is conditional on the first 2 errors being zero. 
The maximum likelihood estimators of the parameters 21    and   
is equivalent to minimizing the conditional sum of squared errors. 
However , the error of the MA(2)  model can be written as 
 

n, .... , 2 , 1t     ,      )2t(  )1t( )t(y)t( 21                  
                                                                                  (2.3) 

which can be computed recursively if one knew 
~
 . Since the sum 

of squared errors , 
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is a nonlinear function of ~  , one must use a grid search ( usually 

over the invertibility domain ) or employ a nonlinear regression 
algorithm in order to estimate ~  . The maximum likelihood 

estimate ~  my be used to calculate the estimated residuals , via 

equation (2.3) , with  2,1t   ,   0)2t(   , producing  
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If  these estimated errors are substituted in to (2.2) , one has an 
approximate conditional likelihood function : 
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                                                                                             (2.4)  
where n

2 S  0, , R ~  and  is the vector of  n  observations. 

The posterior analysis is based on combining the approximate 
conditional likelihood function (2.4) with a normal-gamma prior 
density where ),

~
(N~| 

~
 is the conditional prior density of ~  

given   , where 
~
  is 12  vector and     a  22  positive definite 

matrix. The marginal prior density of   is gamma with parameters 
a and b. Thus the joint posterior distribution of  ~   and   will also 

be normal gamma.  
 
Shaarawy and Broemeling(1984) have shown that the 

approximate marginal posterior distribution of   is gamma with 
parameters  
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2
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where  A  is the 22  matrix 
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and  C  is the scalar ,  
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Further more 
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Thus , one may estimate the error variance  12     by  
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with posterior variances given by  
 

)2()1(
 )S|(V)S|(V 2

2

n
1

n
2




   

 
The above posterior analysis is derived under the assumption 

that a normal – gamma describes prior information. Thus , if one 
is quite confident about the prior distribution of the parameter , 
one would specify such prior by the appropriate choice of  

~
  , P , 

a , and  b ,  however  , if  one knows very little , a priori , about the 
parameters ~  and   , one might employ Jeffrey's vague density : 

 
0   ,  R~     ,     ),~(

21    

 
which will produce a normal – gamma posterior density with 
parameters given above , by letting 

 
.0b    ,  1a  ,  )22(  0  ,  )12(  0

~
and   

  
3. AN EFFECTIVENESS STUDY 

 
This main objective of this section is to study the 

performance of the gamma approximation in estimating the 
variance of the error term of the moving average processes of the 
second order. The approximation , which has been developed by 
Broemeling and Shaarawy(1988) , is used with Jeffrey's prior 
density to conduct a simulation study to estimate the parameter 2  
of MA(2)  model with various parameter values. The parameters 
in some cases are chosen to be well inside the invertibilility 
domain while in some cases they are chosen to be near the 
boundaries. All computations are performed on a PC using the 
MATLAB computer package . 
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Here, our main concern is to study the numerical efficiency 

of the gamma approximation , proposed by Broemeling and 
Shaarawy(1988) for the precision parameter , in estimating the 
error variance 2  using some proposed criteria. The proposed 
criteria are the average (AVR) , the variance (VAR), the mean 
absolute deviation (MAD) and the mean squared error (MSE). 
Such efficiency will be examined with respect to the time series 
length  n  as well as the parameters of the selected model. 

 
Simulation I , as an illustration, begins with generating 500 

data sets , each of size 500 , from normal distribution with zero 
mean and variance  5.02  . These data sets are then used to 
generate 500 realizations , each of size 200 , from MA(2) process 
with 6.0   5.0 21 and  . Note that the first 300 observations 
are ignored to remove the initialization effect. The second step of 
simulation I is to carry out all computations required to estimate 
the variance parameter 2  using each of the 500 realizations and 
to find the frequency distribution of the posterior mean of 2 . 
Such computations are done for a specific time series length n 
using the first n observations of each generated realization. This 
second step is repeated for each chosen sample size. The sample 
size n is taken to be 20 , 30 , 50 , 100 , 150 and 200 . The 
frequency distribution of the error variance is reported in table 1. 
The average (AVR) , the variance (VAR), the mean absolute 
deviation (MAD) and the mean squared error (MSE) are 
computed for the posterior mean and reported in table 2. 
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Table (1) 
  

Frequency Distributions of The Posterior Expectation For 
Simulation  I  where : 

 5.02    ,   6.0   ,   5.0 21   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inspecting the numerical results of table 1 , one may observe 
that the values of the posterior mean of the error variance 2  
tends to fall in the interval (0.4,0.6) with a midpoint 0.5 which the 
true value of our parameter. This becomes more clear as n gets 
bigger. This means that the posterior mean tends to converge to 

200 150 100 50 30 n = 20 Intervals 
1  1  1  1  1  1  (-0.6,-0.5]  
0  0  0  0  0  0  (-0.5,-0.4]  
0  0  0  0  0  0  (-0.4,-0.3]  
0  0  0  0  0  0  (-0.3,-0.2]  
0  0  0  0  0  0  (-0.2,-0.1]  
0  0  0  0  0  2  (-0.1,0.0]  
0  0  0  0  0  6  (0.0,0.1] 
0  0  0  0  0  15  (0.1,0.2] 
0  0  0  13  33  48  (0.2,0.3]  
9  25  43  73  106  105  (0.3,0.4]  

255  220  221  183  157  106  (0.4,0.5]  
224  234  196  153  104  104  (0.5,0.6]  
11  21  38  62  59  49  (0.6,0.7]  
1  0  2  11  27  29  (0.7,0.8]  
0  0  0  3  12  21  (0.8,0.9]  
0  0  0  2  2  13  (0.9,1.0]  
0  0  0  0  0  1  (1.0,1.1]  
0  0  0  0  0  0  (1.1,1.2]  
0  0  0  0  0  0  (1.2,1.3]  
0  0  0  0  0  0  (1.3,1.4]  
0  0  0  0  0  0 (1.4,1.5]  
0  0  0  0  0  0  (1.5,1.6] 
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the true parameter value 5.02  . It might be important to notice 
that the percentages of the values of the posterior expectations 
which fall in the interval (0.4,0.6) are 42%, 52.2%, 67.2%, 83.4%, 
90.8%, and 95.8%  for 150 ,100 ,50 ,30 ,20n   and 200. Thus one 
may conclude that the performance of the BS approximation is 
very good with moderate and large sample size. 

 
Table 2 gives the numerical behavior of the proposed criteria 

AVR, VAR, MAD and MSE for the BS technique. The table 
shows an increasing trend in the efficiency of the BS technique in 
estimating the variance of the second order moving average 
process. The AVR converges to the true parameter 0.5. The VAR, 
MAD and MSE decrease as the sample size increases. The VAR 
decrease from  0.036  to  0.003  as  n  increases from 20 to 200. 
The MAD decreases from 0.15 to 0.04 when n increases from 20 
to 200. Finally, the MSE decreases from 0.04 to 0.003 as n 
increases from 20 to 200. 
 

Table (2)  
The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation  I  Where  5.02    ,  6.0   ,   5.0 21   
 

 
The numerical results of simulations II and III where 

0.12   and 2.0 respectively, with 6.0   5.0 21 and  , are 
explained in a similar way. The results are given by tables 3-6. 

MSE MAD VAR AVR n  
0.037610  0.150930  0.035699 0.480136  20  
0.019253  0.110658  0.020590 0.488125  30  
0.011538  0.084643  0.011523 0.497729  50  
0.005374  0.059293  0.005354 0.498959  100  
0.003345 0.046717 0.003499 0.500302 150  
0.002527 0.040323 0.002581 0.499137 200  
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The results of the simulations IV , V and VI where 
0.2 , 0.1 , 5.02  , respectively, with 3.0   5.0 21 and  , are 

reported in tables 7-12. It might be important to mention that the 
numerical results get better when the true variance gets small . 

Table (3) 
Frequency Distributions of The Posterior Expectation For 

Simulation II where : 
 0.12    ,  6.0   ,   5.0 21   

Intervals n = 20 30 50 100 150 200 
(-0.3,-0.2]  1  0  0  0  0  0  
(-0.2,-0.1]  0  0  0  0  0  0  
(-0.1,0.0]  2  0  0  0  0  0  
(0.0,0.1] 0  0  0  0  0  0  
(0.1,0.2] 4  0  0  0  0  0  
(0.2,0.3]  5  2  0  0  0  0  
(0.3,0.4]  11  0  0  0  0  0  
(0.4,0.5]  14  9  1  0  0  0  
(0.5,0.6]  33  18  9  0  0  0  
(0.6,0.7]  51  51  18  5  1  1  
(0.7,0.8]  52  51  51  28  21  15  
(0.8,0.9]  52  63  78  92  81  74  
(0.9,1.0]  53  76  100  146  149  175  
(1.0,1.1]  50  85  91  104  151  159  
(1.1,1.2]  48  62  76  82  68  59  
(1.2,1.3]  36  26  39  34  25  17  
(1.3,1.4]  31  23  25  5  4  0  
(1.4,1.5]  19 24  9  4  0  0  
(1.5,1.6] 16  4  3  0  0  0  
(1.6,1.7]  8 5  0  0  0  0  
(1.7,1.8]  8  1  0  0  0  0  
(1.8,1.9]  1  0  0  0  0  0  
(1.9,2.0]  3  0  0  0  0  0  
(2.0,2.1] 0  0  0  0  0  0  
(2.1,2.2] 0  0  0  0  0  0  
(2.2,2.3] 2  0  0  0  0  0  



 - 50 - 

 
 

Table (4)   
 

The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation  II  Where  0.12   ,   6.0   ,   5.0 21   
 

 
Table (5) 

Frequency Distributions of The Posterior Expectation For 
Simulation III where  : 

0.22   ,  6.0   ,   5.0 21   
Intervals n = 20 30 50 100 150 200 
(….,0.5] 12  2  0  0  0  0  
(0.1,0.2] 1  0  0  0  0  0  
(0.2,0.3]  0  0  0  0  0  0  
(0.3,0.4]  2  0  0  0  0  0  
(0.4,0.5]  1  1  0  0  0  0  
(0.5,0.6]  3  0  0  0  0  0  
(0.6,0.7]  0  0  0  0  0  0  
(0.7,0.8]  5  3  0  0  0  0  
(0.8,0.9]  9  1  0  0  0  0  
(0.9,1.0]  14  3  0  0  0  0  
(1.0,1.1]  11  6  1  0  0  0  
(1.1,1.2]  17  12  4  0  0  0  
(1.2,1.3]  18  21  8  1  0  0  

MSE MAD VAR AVR n  
0.131695  0.290907  0.141606 0.965174  20  
0.066750  0.205158  0.081442 0.975636  30  
0.038065  0.157016  0.046067 0.999221  50  
0.020403  0.114107  0.021456 0.999372  100  
0.014100 0.094821 0.013935 0.998108 150  
0.011014 0.082762 0.010284 0.995855 200  
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Intervals n = 20 30 50 100 150 200 
(1.3,1.4]  23  22  11  3  0  0  
(1.4,1.5]  26 16  20  10  6  3  
(1.5,1.6] 30  38  38  23  6  4  
(1.6,1.7]  27 36  37  42  28  23  
(1.7,1.8]  36  47  41  49  65  48  
(1.8,1.9]  21  39  54  57  76  75  
(1.9,2.0]  29  42  41  75  83  92  
(2.0,2.1] 21  33  41  72  69  93  
(2.1,2.2]  32  20  51  43  61  70  
(2.2,2.3]  16  21  35  46  35  35  
(2.3,2.4]  19  15  26  27  27  37  
(2.4,2.5]  18  28  27  20  30  14  
(2.5,2.6] 17  27  19  11  11  4  
(2.6,2.7]  12  10  9  10  0  1  
(2.7,2.8]  12  9  9  3  2  0  
(2.8,2.9]  10  10  9  4  0  1  
(2.9,3.0]  11  7  7  1  1  0  
(3.0,3.1] 8  7  4  2  0  0  
(3.1,3.2] 8  3  1  0  0  0  
(3.2,3.3] 11  7  3  0  0  0  
(3.3,3.4] 4  4  3  1  0  0  
(3.4,3.5] 5  3  0  0  0  0  
(3.5,3.6] 3  2  1  0  0  0  
(3.6,3.7] 0  1  0  0  0  0  
(3.7,3.8] 3  1  0  0  0  0  
(3.8,3.9] 3  2  0  0  0  0  
(3.9,4.0] 2  1  0  0  0  0  

 



 - 52 - 

Table (6)  
 

The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation III Where  0.22    ,  6.0   ,   5.0 21   
 

  
Table (7) 

Frequency Distributions of The Posterior Expectation For 
Simulation IV where : 

 5.02   ,  3.0   ,   5.0 21   
Intervals n = 20 30 50 100 150 200 
(-0.5,-0.4]  0  0  0  0  0  0  
(-0.4,-0.3]  0  0  0  0  0  0  
(-0.3,-0.2]  0  0  0  0  0  0  
(-0.2,-0.1]  0  0  0  0  0  0  
(-0.1,0.0]  1  0  0  0  0  0  
(0.0,0.1] 2  0  0  0  0  0  
(0.1,0.2] 7  2  1  0  0  0  
(0.2,0.3]  41  21  7  0  0  0  
(0.3,0.4]  97  100  64  43  20  11  
(0.4,0.5]  101  132  174  196  226  255  
(0.5,0.6]  106  111  142  213  231  219  
(0.6,0.7]  65  76  81  47  23  15  
(0.7,0.8]  36  35  28  1  0  0  
(0.8,0.9]  22  17  3  0  0  0  
(0.9,1.0]  11  6  0  0  0  0  

MSE MAD VAR AVR n  
0.646269  0.619673  0.621265 2.003304  20  
0.353876  0.460663  0.350515 2.006890  30  
0.186406  0.341605  0.190740 2.026310  50  
0.094410  0.238347  0.087327 2.013410  100  
0.061293 0.199388 0.056666 2.011745 150  
0.045172 0.168944 0.042139 2.015842 200  
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Intervals n = 20 30 50 100 150 200 
(1.0,1.1]  8  0  0  0  0  0  
(1.1,1.2]  2  0  0  0  0  0  
(1.2,1.3]  0   0  0  0  0  
(1.3,1.4]  1   0  0  0  0  
(1.4,1.5]  0  0  0  0  0  
(1.5,1.6] 0   0  0  0  0  

 
 
 

Table (8)  
 

The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation  IV Where  5.02    ,   3.0   ,   5.0 21   
 

 
  
  
  
 
 

MSE MAD VAR AVR n  
0.037986  0.150451  0.040869 0.518531  20  
0.022114  0.118065  0.022705 0.511705  30  
0.012010  0.086086  0.012148 0.511319  50  
0.005460  0.059908  0.005421 0.502032  100  
0.003428 0.046722 0.003520 0.501793 150  
0.002613 0.040651 0.002605 0.501406 200  
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Table (9) 
 

 
Frequency Distributions of The Posterior Expectation For 

Simulation V where : 
0.12    ,  3.0   ,   5.0 21   

Intervals n = 20 30 50 100 150 200 
(-…., 0.1]  7  1  0  0  0  0  
(0.1,0.2] 0  0  0  0  0  0  
(0.2,0.3]  2  0  0  0  0  0  
(0.3,0.4]  6  1  1  0  0  0  
(0.4,0.5]  15  5  0  0  0  0  
(0.5,0.6]  39  25  4  0  0  0  
(0.6,0.7]  41  38  21  6  2  1  
(0.7,0.8]  52  68  63  26  13  5  
(0.8,0.9]  64  75  80  86  78  71  
(0.9,1.0]  53  59  95  142  171  167  
(1.0,1.1]  48  62  86  120  136  176  
(1.1,1.2]  41  41  66  71  62  62  
(1.2,1.3]  23  42  40  31  30  14  
(1.3,1.4]  34  33  25  14  6  4  
(1.4,1.5]  16 22  11  4  2  0  
(1.5,1.6] 17  14  5  0  0  0  
(1.6,1.7]  19 9  2  0  0  0  
(1.7,1.8]  10  4  1  0  0  0  
(1.8,1.9]  9  1  0  0  0  0  
(1.9,2.0]  4  0  0  0  0  0  
(2.0,2.1] 0  0  0  0  0  0  
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Table (10)   
 

The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation V Where  0.12   ,   3.0   ,   5.0 21   
 

 
 

Table (11) 
  

Frequency Distributions of The Posterior Expectation For 
Simulation VI where : 

 0.22   ,   3.0   ,   5.0 21   
Intervals n = 20 30 50 100 150 200 
(…,0.8] 72  38  10  0  0  0  
(0.8,0.9]  7  5  0  0  0  0  
(0.9,1.0]  10  3  1  0  0  0  
(1.0,1.1]  8  3  2  0  0  0  
(1.1,1.2]  16  13  4  0  0  0  
(1.2,1.3]  16  14  11  4  0  0  
(1.3,1.4]  28  20  15  3  1  0  
(1.4,1.5]  25 25  14  10  1  0  
(1.5,1.6] 29  21  29  11  10  7  
(1.6,1.7]  25 31  24  30  24  14  
(1.7,1.8]  26  32  50  53  39  48  
(1.8,1.9]  26  32  45  60  72  87  
(1.9,2.0]  24  31  42  65  96  82  

MSE MAD VAR AVR n  
0.146966  0.303468  0.159007 1.022794  20  
0.084700  0.236927  0.086446 0.997940  30  
0.043754  0.167032  0.046405 1.000185  50  
0.021420  0.113722  0.021713 1.004963  100  
0.015147 0.096896 0.014202 1.007261 150  
0.010826 0.081227 0.010451 1.004057 200  
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Intervals n = 20 30 50 100 150 200 
(2.0,2.1] 26  33  55  67  80  96  
(2.1,2.2]  26  25  33  59  69  78  
(2.2,2.3]  38  32  32  52  47  48  
(2.3,2.4]  20  33  32  37  32  24  
(2.4,2.5]  12  28  33  18  15  10  
(2.5,2.6] 20  20  26  14  11  6  
(2.6,2.7]  16  20  16  10  3  0  
(2.7,2.8]  7  14  10  3  0  0  
(2.8,2.9]  10  13  12  4  0  0  
(2.9,3.0]  13  14  4  0  0  0  
(3.0,3.1] 0  0  0  0  0  0  

 
 

Table (12) 
 

 
The Behavior of  The Average , Variance , The Mean Absolute 
Deviation and Mean square Error of The Bayesian estimates of 

Simulation VI Where  0.22   ,  3.0   ,   5.0 21   
 

 
 

MSE MAD VAR AVR n  
0.602487  0.601162  0.657345 2.081899  20  
0.374648  0.484457  0.377462 2.085906  30  
0.195576  0.348940  0.195835 2.052676  50  
0.084605  0.231458  0.088432 2.028975  100  
0.050832 0.178608 0.057171 2.023514 150  
0.039469 0.160334 0.042008 2.014076 200  
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Inspection of the numerical results of the tables supports the 
adequacy of the gamma approximation, developed by Broemeling 
and Shaarawy(1988) , in estimating the variance parameter of the 
error term of the second order moving average processes. 

 
 
 

4. SUMMARY AND CONCLUSIONS 
 

The main objective of this paper is to examine the 
performance of the gamma approximation , proposed by 
Broemeling and Shaarawy (1988) , to estimate the error variance 
of the second order moving average processes . In order to achieve 
the main objective , six simulation studies have been conducted 
with different variance values and the frequency distributions have 
been examined . In addition , the mean , variance , the mean 
absolute deviation and the mean square error have been 
calculated. The numerical results show that the gamma 
approximation can efficiently estimate the variance parameter 
with high precision for moderate and large sample size. 
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