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Abstract 

 

The exponentiated Weibull (EW) distribution was 
introduced by Mudholkar and Srivastava (1993). This distribution 
is involving additional parameter to the Weibull distribution.  In 
this paper, we mainly estimate the three parameters of the 
exponentiated Weibull distribution using different methods of 
estimation such as: maximum likelihood method, method of 
moments, percentile estimation and least squares method. A 
comparison is performed based on variances, relative absolute 
biases, relative absolute estimate of risks and total deviation. The 
moment estimators are found to be appropriate than other 
methods. In addition, the sampling distributions of the moment 
estimators are obtained. A simulation study and concluding 
remarks are introduced. 

Key Words: Exponentiated Weibull distribution, Maximum 
likelihood estimators, Moment estimators, Percentile estimators, 
Least squares estimators, Total deviation, Sampling distribution. 
 
1     Introduction 

One of the most interesting distributions, called the 
exponentiated Weibull (EW) distribution was introduced by 
Mudholkar and Srivastava (1993). This distribution is involving 
one additional parameter to the Weibull distribution. It has 
different types of parameters (scale, shape and location). 
Extensions of the Weibull family were introduced by Weibull in 
1939 [see Lawless (2003)]. The EW distribution is an important 
life testing model; it is more flexible because it has many types of 
failure rate behaviors. The failure rate function of the EW 
distribution may be decreasing, constant, increasing or bathtub. 



 - 62 - 

The EW distribution can be used for modeling lifetime data 
from reliability, various extreme value data, survival and 
population studies. The applications of the exponentiated Weibull 
distribution in reliability and survival studies were illustrated by 
Mudholkar et al. (1995). Its properties have been studied in more 
detail by Mudholkar and Hutson (1996) and Nassar and Eissa 
(2003). These studies presented useful applications of the 
distribution in the modeling of flood data and in reliability.  

Assume that the random variable T follows an EW 
distribution. The cumulative distribution function (cdf), is given 
by 

                          ,  (1)                           
where ( ,α) > 0 denote the shape parameters and  > 0 is a scale 
parameter. 

The rest of the paper is organized as follows: In Section (2), 
some properties of the EW distribution are discussed. In Section 
(3), the different methods of estimation such as maximum 
likelihood estimation, moment estimation, percentile estimation 
and least squares estimation are obtained. Comparisons among 
estimators are investigated through Monte Carlo simulations in 
Section (4). In addition, the sampling distributions of the moments 
estimators are discussed in Section (5). The last section, Section 
(6) includes some conclusion remarks. 
 
2     Some Statistical Properties of the Exponentiaed  Weibull   
Distribution 
 If T is a random variable follows an EW distribution. The 
probability density function (pdf) is given by 
         (2) 

The EW distribution is unimodal for fixed α and λ, and it 
becomes more and more symmetric as  increases. There are 
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several well known distributions which can be obtained as a 
special case from EW distribution such as: Weibull , 
Exponential distribution ,  Exponentiated exponential 
distribution , Rayleigh distribution  and Burr 
type X distribution . 

1- Reliability Function 
        The reliability function is given by 
                                      

                    (3) 
 

2- Failure Rate Function 
The failure rate (FR) function is given by 
                          

                 
(4) 

 

 
 
One of the interesting properties of the EW distribution is 

that it can has different types of failure rate shapes. As it can be 
observed in Figure (1), when  the FR function remains 
constant during the life time; if α ≥ 1 and  the FR function 



 - 64 - 

is monotone increasing; FR function is monotone decreasing for  
 and ; if  and  we get the bathtub-shaped 

failure rate (BFR) function; upside-down  bathtub-shaped failure 
rate (UBFRF) if  and . 

3- Mean Residual Life Function 
The mean residual life (MRL) is defined as 

     (5) 

For positive integer values of , we can write (5) in the form 
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Figure (2) illustrates the shape of some mean residual life 
functions for EW where  are the shape parameters and  is 
a scale parameter. When  the mean residual function 
remains constant during the life time; if α ≥ 1 and  the mean 
residual function is monotone decreasing; mean residual function 
is monotone increasing for   and ; if  and  
we get the BFR function; UBMRL if  and . 

4- Moments 
For positive integer values of , the  non-central moment of the 
EW distribution is given by  
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Special cases: 
 

(i) The mean of the EW distribution is obtained by substituting  
in (7), then the mean of EW distribution is given 

by  
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(ii) The second non-central moment of the EW distribution is 
given by 
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        (9) 
(iii) The third non-central moment is given by 
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We can find the variance of  EW distribution                                                                             
                        22 )]([)()( TETEtV            (11)                     
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5- Quantile 
The quantile  function of EW distribution (inverse cdf) can be 
shown as 

          (12) 
 

3     Estimation of the Parameters 
 

In this section, we estimate the three parameters of EW 
distribution using different methods of estimation such as: 
maximum likelihood estimator (MLE), moment estimators (ME), 
percentile estimators (PCE) and least squares estimator (LSE). 
 
 
3.1     Maximum Likelihood Estimators 
 
Suppose that  are the  lifetimes observed arising from  
 ;t  in (2), where, ),,(   , the likelihood function  );( tL  is 

given by 
  (13)

                                       It is usually easer to maximize the natural logarithm of the 
likelihood function of both sides, so the natural logarithm of the 
likelihood function can be written as 

            
 

 
                                                           (14) 
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 The maximum likelihood estimates,   ˆ,ˆ,ˆˆ   are obtained by 
taking the first derivative of the natural logarithm of the likelihood 

function with respect to  and,  and equating to zero as follows 

          (15)                                             

 

                                            (16)                                   

and 

 (17)                      

From (15) we can get the MLE of  as a function of ̂  and ̂ : 

                                               (18) 

After some simplification, we have 

                          (19) 

                               
and 

          (20)             
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The system of the two non-linear equations (19) and (20) can be 

solved with respect to  and 흀. Then we can use (18) together with  

 and  to obtain the MLE of . 

   
 

3.2     Moment Estimators 
 

If  follows EW distribution with parameters ( , then 
the first three non-central moments from the population of the EW 
are given in (8), (9) and (10) . 
Similarly, the first three non-central moments from the random 
sample  are 

   ,      and    
Therefore, equating the first three population moments with the 
corresponding sample moments, we have. 

            (21) 
               

  (22)
                    

                         (23)                                                              
Then, the ME's of  and  , say  and , respectively, can be 
obtained by solving the three non-linear Equations (21), (22) and 
(23) numerically. 
 
3.3     Percentile Estimators 

If the data comes from a distribution function which has a 
closed form, then it is quite natural to estimate the unknown 
parameters by fitting a straight line to the theoretical points 
obtained from the distribution function and the sample percentile 
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points. This method was originally explored by Kao in 1958, 1959 
and it has been used quite successfully for Weibull distribution 
and for the generalized exponential distribution [see, Gupta and 
Kundu (2000)] and for the exponentiated Pareto distribution [see, 
Shawky and Abu-Zinadah (2009)]. 

In case of an EW distribution, it is possible to use the same 
concept to obtain the estimators of and based on the 
percentiles, since 
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Let denotes the  order statistic, i.e. . If  
denotes some estimate of , then the percentile estimate of 

and  can be obtained by minimizing 

                                       (25) 
with respect to and . It is possible to use several estimators of 

  as estimators of . We mainly consider  is the most 
used estimator as it is an unbiased estimator of , i.e., 

. [See Castillo et al. (2005)]. 
To find the PCE, the first derivative of Q1 with respect to 

and  is obtained then equating to zero: 
                    

           (26) 

                  

       (27) 

and 
                   

            (28)          
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Then, the PCE's of  and 흀, say  and , respectively, 

can be obtained by solving the non-linear Equations (26), (27) and 
(28) numerically. 
 
3.4     Least Squares Estimators 

Suppose  is a random sample of size  from a 
distribution function with cdf  and  denotes the 
order statistics of the observed sample. It is well known that 

  
The least squares estimators (LSE's) can be obtained by 
minimizing 
                                               (29)                                    
with respect to the unknown parameters. Therefore, in case of EW 
distribution the least squares estimators of and , say 

and  , respectively, can be obtained by minimizing 

                                                 (30)                          
with respect to  and  as follows: 

   (31) 

                      (32)         
and 

 

                     (33) 
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Then, the LSE's of  the unknown parameters, say and 
 , respectively, can be obtained by solving the three non-linear 

Equations (31), (32) and (33) numerically. 
 
 
4     Simulation Study 

It is very difficult to compare the theoretical performance of 
the different estimators described in the previous section; 
therefore, extensive Monte Carlo simulations are performed to 
compare the performance of the different methods of estimation 
using Mathcad (2001) software. 

This section consists of two subsections. Subsection (4.1) 
compares the performance of the different estimators proposed in 
the present study. Subsection (4.2) selects the appropriate method 
of estimation by using total deviation method. 

 
4.1     Comparative Study 

The behavior of the different methods of estimation 
proposed for different sample sizes and different shape parameters 
is compared, mainly with respect to their relative absolute bias 
and relative absolute estimated risks (ER’s). We consider different 
sample sizes from small to large.  In all our computations we 
consider different values of the shape parameters  and  when 

We repeat each computation over N=1000 replications for 
different cases. 

The algorithm for obtaining the different estimates by the 
different methods can be described in the following steps:  
Step (1):  Generate N=1000 random samples from the EW 
distribution. This can be achieved by firstly generating random 
samples from the uniform distribution. Then the uniform random 
numbers can be transformed to EW random numbers by using the 
following transformation 
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Step (2):  We consider the estimation of the parameters, can be 
obtained by solving the non-linear equations in Section (3).  
Step (3):  The previous steps are repeated 1000 times. The 
average of estimates are computed by averaging the estimate of 
the parameters , as follows 

,      j=1, 2, 3 
where  denote the average of the estimates of  . 
The variance of the estimates is obtained as follows 

,      j=1,2,3 
The bias of the estimates are obtained by 

 
 

We can obtain the relative absolute bias as 
,      j=1,2,3 

The estimated mean squared errors or shortly the estimated risks 
(ER’s) is computed as 

 
Then, we can obtain the relative absolute estimated risks by using 

,      j=1,2,3 

Step (4): The results of the estimates of the parameters  and 
their variances (Var.`s), relative absolute bias and relative absolute 
ER. are illustrated in Tables (1) to (4) in Appendix A.  
From these tables the following conclusions can be noticed on the 
performance of the methods of estimation: 
 The variances and the relative absolute estimated risks are 

decreasing as the sample size increases for different shape 
parameters  for all  methods. 

 The variances and RER of MLE`s are less than the variances 
and RER of other estimators. 
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 The relative bias of ME`s is less than the relative bias of 
other methods. 

 
 
4.2    Selecting the appropriate method of estimation 
The criterion of selecting the appropriate method of estimation is 
the total deviation (TD) and the appropriate one which gives the 
minimum TD. 

To compare, we calculate the TD for each method as 
follows: 
 

                               (34) 

where  and  are the parameters of the distribution,  and  
are the estimates of these parameters by using any method. [See  
Al-Fawzan (2000)]. 

Table (5) shows the results when  for different 
values of the shape parameter . Table (6) displays the results 
when  and different values of the shape parameter  
We can choose the appropriate method which yields the minimum 
TD.  Notice, that the maximum TD is 4.260 from PCE, and the 
minimum TD is 0.276 from ME for all methods. [See Table (5) 
and (6) in Appendix B]. 
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5     Sampling Distribution 
 

In this section, the sampling distributions of ME (the 
appropriate method of estimating the parameters) are derived 
using Pearson’s systems. The Pearson’s system contains seven 
basic types of distribution together in a single parametric 
framework. The selection approach is based on a certain quantity, 

, which is a function of the first four non-central central 
moments, that is: 

      (35) 

where   and  denote the skewness and kurtosis measures 
respectively. So for different values of k, there exist different 
types of Pearson curves. If , we fit Type    Pearson curve, 
while Type II is fitted if  and . If  and  

 , we obtain Type   We get Type  If 
. When , Type  is obtained.  If , get Type 

. Finally, If  and  Type  is obtained. [See Elderton 
and Johnson (1969)]. 

The sampling distributions of the ME for each value of the 
parameter and for different sample sizes are displayed in Tables 
(7) to (10). [See  Appendix C]. 

As a result of computer simulation; three sampling distributions 
were fitted to the ME which are Pearson Type I, IV and VI 
distributions 
 
6     Conclusion 

The EW distribution is flexible in modeling various types of 
failure data with possibly increasing, constant, decreasing or 
bathtub shaped FR function. Also the mean residual life function 
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has various types with possibly increasing, constant, decreasing or 
upside-down bathtub shaped MRL function. 

In this paper, a three-parameter EW distribution is 
discussed and its main properties and the  non-central moments 
are derived. Four different methods of estimation are discussed 
and a comparison is made according to different criteria. The 
sampling distributions of the estimates of the appropriate method 
of estimation are derived.  

The simulation study indicates that:  the variances and 
relative absolute estimate of the unknown parameters for most of 
the methods decrease as the sample sizes increase. The variances 
and RER of MLE`s are less than the variances and RER of other 
estimators. The relative bias of ME`s is less than the relative bias 
of other methods. 

It is found that using the total deviation that the method of 
estimate which gives the appropriate estimates is the ME. In 
addition, the sampling distributions of ME are obtained, it is found 
that most of the sampling distributions for different values of 
parameters under different sample sizes follow Pearson’s Type I 
,IV and VI distributions. 
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APPENDIX A 

 

 Results of Estimating the Parameters 

Table (1) 

 Mean of estimates, with their variance, relative absolute bias and relative absolute  

 estimated risk. Population parameter values:  

 

 

 

 

 

   
n= 10 

 Var. Rbias RER 

 

Var. Rbias RER  Var. Rbias RER 
MLE 1.051 0.178 1.101 0.962 1.373 0.196 0.313 0.294 0.68 0.024 0.320 0.127 
ME 1.138 0.395 1.276 1.604 1.601 0.182 0.199 0.171 0.691 0.035 0.309 0.131 
PCE 0.633 0.593 0.266 1.222 1.779 24.796 1.889 19.537 3.103 82.205 2.103 86.629 
LSE 0.804 4.355 0.608 8.896 0.109 30.076 0.946 16.826 0.787 2.949 0.213 2.995 

   
 

n= 20 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 1.024 0.081 1.048 0.712 1.308 0.089 0.346 0.284 0.675 0.011 0.325 0.117 
ME 1.081 0.236 1.162 1.148 1.512 0.091 0.244 0.165 0.692 0.021 0.308 0.116 
PCE 0.604 0.519 0.208 1.059 1.862 18.093 0.068 19.093 2.856 50.778 1.856 54.222 
LSE 0.767 3.500 0.534 7.142 1.249 15.990 0.375 8.277 0.793 2.475 0.207 0.042 

    
n= 30 

 
Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 1.015 0.050 1.030 0.630 1.283 0.057 0.358 0.285 0.673 0.0072 0.327 0.114 
ME 1.051 0.150 1.102 0.908 1.474 0.058 0.263 0.167 0.693 0.014 0.307 0.109 
PCE 0.600 0.510 0.200 1.040 1.870 12.007 0.065 6.011 2.549 30.948 1.549 33.347 
LSE 0.684 2.080 0.368 4.227 1.586 10.777 0.207 5.474 0.826 2.300 0.174 2.330 

    
n= 50 

 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 
MLE 1.008 0.026 1.015 0.567 1.265 0.030 0.368 0.285 0.670 0.0038 0.330 0.113 
ME 1.030 0.089 1.06 0.74 1.452 0.034 0.274 0.167 0.695 0.0084 0.305 0.102 
PCE 0.559 0.436 0.118 0.878 1.986 6.882 0.007 3.441 2.351 12.074 1.351 13.899 
LSE 0.608 1.887 0.216 3.797 1.660 4.537 0.170 2.326 0.830 2.009 0.170 2.037 
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Table (2) 

 Mean of estimates, with their variance, relative absolute bias and relative absolute 

estimated risk. Population parameter values:   

 

  
 

n= 10 

 Var. Rbias RER 

 

Var. Rbias RER  Var. Rbias RER 

MLE 0.968 0.073 0.355 0.238 2.337 0.403 0.169 0.258 1.305 0.083 0.305 0.176 
ME 1.813 1.778 0.209 1.251 2.49 0.801 0.245 0.52 1.037 0.078 0.037 0.079 
PCE 2.121 20.083 0.414 13.645 1.416 0.157 0.292 0.249 0.711 0.178 0.290 0.262 
LSE 2.944 10.339 0.962 8.282 1.445 4.342 0.277 2.325 1.508 682.407 0.508 682.666 

   
 

n= 20 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 0.987 0.039 0.342 0.202 2.252 0.181 0.126 0.122 1.281 0.038 0.281 0.117 
ME 1.942 1.939 0.295 1.423 2.291 0.565 0.145 0.325 1.005 0.075 0.005 0.075 
PCE 2.365 2.386 0.576 2.089 1.382 0.154 0.309 0.267 1.008 0.128 0.008 0.128 
LSE 2.332 6.761 0.554 4.968 1.698 4.643 0.151 2.367 1.400 50.157 0.400 50.317 

   
 

n= 30 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 0.993 0.025 0.338 0.188 2.211 0.098 0.106 0.071 1.275 0.025 0.275 0.101 
ME 1.927 1.922 0.285 1.403 2.225 0.442 0.113 0.247 1.004 0.070 0.004 0.07 
PCE 2.036 2.310 0.357 1.731 1.489 0.144 0.255 0.202 1.009 0.107 0.009 0.107 
LSE 2.133 4.318 0.422 3.145 1.715 4.557 0.142 2.319 1.388 20.531 0.388 20.681 

   
 

n= 50 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 0.995 0.014 0.337 0.179 2.188 0.06 0.094 0.048 1.269 0.014 0.269 0.087 
ME 1.909 1.901 0.273 1.379 2.195 0.375 0.098 0.207 1.006 0.068 0.003 0.068 
PCE 2.002 2.239 0.334 1.660 1.490 0.099 0.255 0.179 1.005 0.100 0.005 0.100 
LSE 2.125 4.005 0.416 2.930 1.750 4.128 0.125 2.095 1.326 10.882 0.326 10.988 
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Table (3) 

 

Mean of estimates, with their variance, relative absolute bias and relative absolute 

estimated risk. Population parameter values:  

 

   
n= 10 

 Var. Rbias RER 

 

Var. Rbias RER  Var. Rbias RER 

MLE 0.936 0.045 0.532 0.589 2.292 0.349 0.146 0.217 1.53 0.103 0.530 0.384 
ME 2.182 2.149 0.091 1.091 2.670 1.123 0.335 0.786 1.083 0.085 0.083 0.092 
PCE 1.468 7.12 0.266 3.701 2.680 6.971 0.340 3.717 0.369 0.089 0.631 0.487 
LSE 2.701 17.164 0.350 8.828 2.291 8.459 0.145 4.272 0.551 0.50 0.449 0.702 

   
 
n= 20 

 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 
MLE 0.972 0.025 0.514 0.541 2.207 0.149 0.104 0.096 1.493 0.046 0.493 0.290 
ME 2.146 2.125 0.073 1.073 2.522 0.796 0.261 0.534 1.081 0.083 0.081 0.089 
PCE 1.181 4.352 0.409 2.511 2.237 4.04 0.118 4.096 0.340 0.066 0.660 0.501 
LSE 2.609 16.266 0.304 8.319 2.233 8.206 0.116 4.130 0.501 0.402 0.499 0.651 

    
n= 30 

 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 
MLE 0.982 0.017 0.509 0.526 2.173 0.086 0.086 0.058 1.484 0.030 0.484 0.265 
ME 2.266 2.195 0.132 1.133 2.391 0.640 0.195 0.396 1.056 0.081 0.056 0.085 
PCE 1.168 0.974 0.416 1.666 2.119 2.424 0.059 1.219 0.309 0.050 0.691 0.527 
LSE 2.398 1.388 0.199 0.773 2.088 1.353 0.044 0.680 0.751 0.048 0.249 0.110 

    
n= 50 

 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 
MLE 0.989 0.009 0.505 0.515 2.15 0.052 0.075 0.037 1.476 0.017 0.476 0.244 
ME 2.170 2.141 0.085 1.085 2.386 0.550 0.193 0.350 1.071 0.077 0.071 0.082 
PCE 1.506 0.777 0.247 0.510 2.080 1.997 0.04 1.001 0.508 0.060 0.492 0.302 
LSE 2.229 1.003 0.114 0.527 2.100 1.109 0.050 0.559 0.888 0.050 0.112 0.062 
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Table (4) 

 

Mean of estimates, with their variance, relative absolute bias and relative absolute 

estimated risk. Population parameter values: parameters   

 

  
 

n= 10 

 Var. Rbias RER 

 

Var. Rbias RER  Var. Rbias RER 

MLE 0.925 0.043 0.537 0.599 1.721 0.196 0.148 0.164 1.778 0.253 0.778 0.858 
ME 1.642 1.514 0.179 0.821 2.226 0.624 0.484 0.767 1.259 0.129 0.259 0.196 
PCE 0.038 0.040 0.981 1.945 2.303 2.593 0.535 2.158 0.107 0.116 0.893 0.913 
LSE 1.598 13.209 0.201 6.685 2.072 43.423 0.381 29.167 0.682 3.591 0.318 3.692 

   
 
n= 20 

 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 
MLE 0.967 0.025 0.517 0.546 1.657 0.084 0.104 0.072 1.714 0.110 0.714 0.620 
ME 1.768 1.714 0.116 0.884 2.014 0.397 0.343 0.441 1.218 0.120 0.218 0.168 
PCE 0.608 0.129 0.696 1.034 2.108 0.527 0.405 0.598 0.051 0.0005 0.949 0.901 
LSE 1.653 9.740 0.173 4.930 1.995 38.510 0.330 25.836 0.693 3.l50 0.307 3.244 

   
 

n= 30 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 0.979 0.017 0.511 0.530 1.630 0.048 0.087 0.044 1.698 0.071 0.698 0.558 
ME 1.885 1.872 0.058 0.942 1.912 0.328 0.274 0.331 1.183 0.122 0.183 0.155 
PCE 0.625 0.137 0.687 1.013 2.177 0.965 0.451 0.949 0.048 0.0004 0.952 0.908 
LSE 1.678 5.998 0.161 3.050 1.827 25.776 0.216 17.255 0.699 2.555 0.303 2.644 

   
 

n= 50 
 Var. Rbias RER  Var. Rbias RER  Var. Rbias RER 

MLE 0.987 0.009 0.506 0.517 1.613 0.029 0.076 0.028 1.684 0.039 0.684 0.507 
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ME 1.927 1.922 0.036 0.963 1.859 0.282 0.240 0.274 1.171 0.123 0.171 0.152 
PCE 0.809 0.071 0.595 0.744 1.965 0.088 0.310 0.202 0.032 0.0001 0.968 0.937 
LSE 1.712 2.104 0.144 1.095 1.774 10.002 0.183 6.716 0.722 1.555 0.278 1.632 

 

 

 

 
 

 

 

APPENDIX B    

Total Deviation Method 

                                                         Table (5)  

Comparison between different methods of estimation with different  

(  

MLE MME PCE LSE  
 

 
 

 

흀 

 
Size 

TD TD TD TD 

 
Best 

10 1.735 1.784 4.260 1.767 MLE 

20 1.719 1.714 2.133 1.116 LSE 

30 1.715 1.672 1.814 0.749 LSE 

0.5 2 1 

50 1.713 1.639 1.476 0.556 LSE 

10 0.829 0.491 0.995 1.748 ME 

20 0.748 0.445 0.893 1.105 ME 

30 0.719 0.401 0.621 0.952 ME 

1.5 2 1 

50 0.700 0.377 0.594 0.867 ME 



 - 82 - 

10 1.208 0.509 1.237 0.945 ME 

20 1.110 0.415 1.188 0.920 ME 

30 1.079 0.385 1.166 0.492 ME 

2 2 1 

50 1.056 0.349 0.779 0.276 LSE 

 

 

 

 

 

 

 

 

Table (6)  

Comparison between different methods of estimation with different  

(  

MLE MME PCE LSE  
 

 
 

 

흀 

 
Size 

TD TD TD TD 

 
Best 

10 1.463 0.922 2.409 0.901 LSE 

20 1.335 0.677 2.051 0.810 ME 

30 1.295 0.515 2.091 0.680 ME 

1.5 2 1 

50 1.266 0.447 1.873 0.605 ME 

10 1.208 0.509 1.237 0.945 ME 

20 1.110 0.415 1.188 0.920 ME 

2 2 1 

30 1.079 0.385 1.166 0.492 ME 



 - 83 - 

50 1.056 0.349 0.779 0.276 LSE 

 
 

 

 

 

 

 

 

 

 

 
 

 

APPENDIX C 

 Sampling Distribution of ME 

Table (7)  

Sampling distribution of the ME of the parameters 

    

Sample 
size n 

Parameters Skewness Kurtosis Person’s 
Coefficient 

Type 

 4.334 19.787 
 

0.414 
 

IV 

 1.007 5.366 
 

0.559 
 

IV 

 
10 
 

 0.073 3.193 0.335 IV 

 5.837 35.065 
 

0.369 IV 

 0.434 4.017 0.493 IV 
 

 
20 

 -0.386 4.433 -0.070 I 
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 7.473 56.841 0.383 
 

IV 

 0.167 3.896 0.102 
 

IV 

 
30 

 -0.683 5.585 -0.072 I 

 9.849 98.01 
 

0.432 
 

IV 

 -0.091 4.201 
 

-0.026 
 

I 

 
50 

 -0.999 7.788 -0.068 I 

        

 

 

 

 

 

Table (8)  

Sampling distribution of the ME of the parameters 

  

Sample 
size n 

Parameters Skewness Kurtosis Person’s 
Coefficient 

Type 

 1.030 2.062 -0.258 
 

I 

 0.832 4.867 0.612 
 

IV 

 
10 
 

 -0.486 
 

2.348 -2.102 
 

I 

 0.802 1.642 
 

-0.203 
 

I 

 0.258 2.682 -0.148 
 

I 

 
20 

 -0.590 2.003 1.673 VI 
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 0.974 1.950 -0.244 
 

I 

 -0.045 2.149 0.022 
 

IV 

 
30 

 -0.631 1.912 
 

1.415 VI 

 0.857 1.735 -0.216 
 

I 

 -0.352 1.932 
 

0.226 IV 

 
50 

 -0.74 1.863 8.531 
 

VI 

 

 

 

 

 

 

Table (9)  

Sampling distribution of the ME of the parameters 

  

Sample 
size n 

Parameters Skewness Kurtosis Pearson’s 
Coefficient 

Type 

 0.438 1.192 -0.113 
 

I 

 0.968 4.928 0.949 
 

IV 

 
10 
 

 -0.218 
 

1.951 0.109 IV 

 0.486 1.236 -0.125 
 

I 

 0.402 2.642 -0.178 
 

I 

 
20 

 -0.369 
 

1.659 0.164 IV 

  0.316 1.100 -0.081 I 
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 0.192 1.898 -0.059 

 
I 

30 

 -0.251 1.427 
 

0.079 
 

IV 

 0.832 1.692 -0.210 
 

I 

 -0.313 1.974 
 

0.197 
 

IV 

 
50 

 -0.736 1.824 3.138 
 

VI 

 

 

 

 

 

 

 

 

Table (10)  

Sampling distribution of the ME of the parameters 

  

Sample 
size n 

Parameters Skewness Kurtosis Pearson’s 
Coefficient 

Type 

 1.395 2.945 -0.378 
 

I 

 0.814 4.824 0.613 
 

IV 

 
10 
 

 -0.539 
 

2.693 -0.352 I 

 1.118 2.250 -0.281 
 

I 

 0.283 2.938 -0.235 
 

I 

 
20 

 -0.753 
 

2.405 -0.433 I 

 
30 

 0.899 1.808 -0.225 
 

I 
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 2.18 

 
I 

 -0.65 1.965 
 

3.440 
 

VI 

 0.827 1.683 -0.208 
 

I 

 -0.243 1.889 0.117 IV 

 
50 

 -0.691 1.788 1.228 VI 

 

 


