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ARTICLE INFO ABSTRACT 
 In this paper, we propose a classification by principal component regression (CbPCR) 

strategy, which depends on performing regression of each data class in terms of its principal 

components. This CbPCR formulation leads to a novel formulation of the Linear Regression 

Classification (LRC) problem that keeps the key information of the data classes while 

providing more compact closed-form solutions. We also extend this strategy to the 4D 

hypercomplex domains to take into account the color information of the image. Our 

experiments on two color face recognition benchmark databases prove the efficacy of the 

proposed strategy. 
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INTRODUCTION   

 

 

Linear regression is one of the simplest and widely used machine learning algorithms that has 

received a lot of attention in many fields, such as pattern recognition, facial recognition, pose 

estimation, information security, and image/video processing. Linear regression is a mathematical test 

for evaluating and modeling the relationships between dependent and independent variables.  

In 2010, Naseem et al [1] proposed a Linear Regression Classification (LRC) algorithm that 

represents each class's training images independently in a linear regression relationship. The algorithm 

depends on applying the least squares method to find the regression coefficient then decides the class 

label with the smallest reconstruction error. To enhance its performance, Huang and Yang [2] and Yani 

et al. [3] proposed to apply principal component analysis (PCA) [4] first to extract the vital information 

from images and reduce the feature vector dimensions. Then, the original data are transformed into a 

low-dimensional subspace. Finally, LRC is performed on the projected data.  

The previous methods [1]–[3]works in principle on grayscale, single-channel images. They can work 

on color images after converting them to grayscale images, thus giving away to the important color 

information. Some methods (e.g., [5]) apply LRC to every color channel separately, then select the class 

having the smallest total prediction error over all color channels. Unlike all those methods, several 

https://aunj.journals.ekb.eg/
https://link.springer.com/article/10.1007/s13319-015-0050-y#auth-Khaled_F_-Hussain
mailto:aliaa_t@aun.edu.eg


Moumen T. El-Melegy et al. 

 

269 

studies [6]–[12], have suggested the use of 4D hypercomplex numbers to represent color images. This 

depends on treating the color components of each image pixel as one entity thus considering the 

correlation between color components. Out of those studies, two have addressed the LRC problem. Zou 

et al. [9] proposes a quaternion LRC (QLRC) method that extends the classical LRC algorithm to 

quaternion space. QLRC relies on converting the quaternion quantities to real ones to circumvent using 

quaternion derivatives. In our recent paper [12], we develop closed-form solutions of QLRC from the 

principles of quaternion calculus. In addition, we propose new solutions based on reduced biquaternions 

(RBs), which represent another hypercomplex space with 3 imaginary components and one real. In 

addition to having commutative algebra—in contrast to quaternions—RBs may be represented using the 

 so-called e1-e2 form [13] that can lead to more efficient and faster computation. 

In this paper, we extend LRC by proposing a novel strategy for classification by performing 

regression of data in terms of its principal components. This leads to a novel formulation of the LRC 

problem, for which we derive a new closed-form solution. This Classification by Principal Component 

Regression (CbPCR) formulation keeps the key information of the data classes and removes superfluous 

and correlated details while providing more compact solution. We show in real experiments on public 

face recognition benchmark databases that our strategy outperforms the original LRC method [1] and its 

more recent variants [2, 3]. Another contribution of this paper is that we extend our proposed CbPCR 

formulation to both the quaternion and RB domains to process color images. To that end, we exploit an 

efficient algorithm we derive in [8] for  computing the principal components (eigenvectors) of an RB 

matrix by casting it into an  x + y selection problem [14, 15]. In our experimental results on public 

benchmark databases for color face recognition, we demonstrate the better performances of the new 

quaternion and RB-based CbPCR algorithms over existing and competing ones [5, 9, 12]. 

1. HYPERCOMPLEX DOMAINS  

We first review here the basic fundamentals of the 4D hypercomplex domains of quaternions and 

RBs. We denote scalars and vectors using italic and bold lowercase letters, respectively, while matrices 

are indicated by bold uppercase letters. The number of dots on top of a symbol indicates its intended 

domain: real ( ), complex ( ), quaternion ( ), or reduced biquaternion ( ). Symbols without any dots 

on top indicate real or complex quantities, where the intended domain is disambiguated by examining 

the context. A quaternion is represented by a symbol with one dot above, while an RB quantity has two 

dots on top. 

1.1 Quaternions  

A quaternion number consists of one real and three imaginary parts:  ̇                 (a 

quaternion number with no real part is called a pure quaternion). The three imaginary parts satisfy: 

                      
                   

(1) 

The quaternion conjugate is  ̅̇                  and the quaternion norm is | ̇|  √ ̇ ̅̇. The 

Hermitian (conjugate transpose) satisfies ( ̇ ̇)
 
   ̇  ̇ , see [16] for more details. 

Due to the noncommutativity of quaternion multiplication, a quaternion matrix has left and right 

eigenvalues that may be different [13, 17]. Any quaternion matrix  ̇        can be defined as: 

 ̇        , where           and          , with           and    being the real and 

the three imaginary parts of the quaternion matrix  ̇. The eigenvalues (and eigenvectors) can be 

calculated from the equivalent complex matrix [18]: 

 ( ̇)    [
    
   ̅̅̅̅   ̅̅̅̅

]        , (2) 

where the mapping  (  ) transforms a quaternion matrix into an equivalent complex matrix. Thus, 

there are    eigenvalues (eigenvectors) for any     quaternion matrix. 
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1.2 Reduced Biquaternions 

A reduced biquaternion number also has one real and three imaginary parts:  ̈             

   , were 

                       
                . 

(3) 

In contrast to quaternions, multiplication on the RB domain is commutative. There are two special 

numbers e1 and e2 [13] such that any RB number can be represented as:  

 ̈           , where    (   )  ⁄ ,    (   )  ⁄  and    (     )   (     ),    

(     )   (     ). 

Expressing many operations in terms of the e1-e2 forms reduces their complexity. For example, direct 

RB multiplication requires 16 real multiplications while applying the e1-e2 form requires only 8. The 

RB norm and Hermitian can be defined in a similar way as quaternion numbers. The RB conjugate [19] 

is defined as: 

 ̅̈                    . (4) 

There are other definitions of conjugate [19]–[22] while (4) is the only definition satisfying  ̅̈   ̅    
 ̅   . 

For any     RB matrix there are    eigenvalues and eigenvectors (see [8, 13] for proof). The 

computation of    eigenvalues and their corresponding eigenvectors would increase the computational 

cost required to find these eigenvalues. The time complexity of finding the t largest eigenvalues will be 

 (   ). We derive a more efficient algorithm for this purpose in [8] based on the well-known computer 

science problem x + y selection [14, 15] with time complexity of  (          ). 

For an     RB matrix  ̈, the Frobenius norm | ̈|  
 

√ 
| ( ̈)| [12] where  (  ) maps any RB 

matrix to its complex equivalent matrix: 

 ( ̈)    [
   
   

]        , (5) 

where    and     
    and are defined as    (     )   (     ),    (     )   (   

  ). 

2. PROPOSED METHODS 

In this section, we review LRC [1] and derive the CbPCR for grayscale images and then for color 

images using the theory of quaternions and RBs. 

2.1 Linear Regression Classification (LRC) 

Suppose there are L classes in the training set where the l-th class consists of nl samples. Each     

grayscale image X is represented as a 1D vector        .    ,  
    

       
 -         is a matrix 

that represents samples from the l-th class. The goal is to infer the correct label of any new image 

      . LRC [1] seeks to represent   as a linear combination of the training images of each class by 

setting up the following real-valued linear regression problem: 

   
    

  
|      |

                (6) 

for which a closed-form solution is found via 

 ̂   (  
   )

    
    (7) 

Then, the predicted vector  ̂  is given by: 

 ̂     ̂                (8) 

The test sample y is eventually assigned to the class with the minimal distance 

   
 
|   ̂ |                (9) 
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2.2 Classification by Principal Component Regression (CbPCR) 

The idea in our proposed methods stems from that an image (column) in    can be represented as [4]  

 ̃ 
     ∑  

   
 

 

   

  (10) 

where    is the mean vector of the l-th class, and     
     represents the t largest principal 

components of the class scatter matrix  ̅  ̅ 
  with  ̅  ,(  

    ) (  
    )   (   

    )-  

      . That is, an image can be represented as a linear combination of the Eigen-components of the 

class-specific scatter matrix. The real weights *  
 +   
  represent the projections of the g-th image along 

these components.  Huang and Yang [2] and Yani et al. [3] apply the standard LRC on these weights. 

Nevertheless, we setup our CbPCR model as 

   
    

 
|         |

                (11) 

Forcing the gradient of the objective function (11) with respect to    to vanish, the closed form is found 

as: 

 ̂   (  
   )

    
 (    ). (12) 

Since    is orthonormal, 

 ̂     
 (    ). (13) 

The response vector  ̂  is predicted as: 

 ̂     ̂                   (14) 

The distance between y and the predicted response vector  ̂  is computed as: 

  ( )  |   ̂ |                (15) 

The test image y is decided to belong to the class minimizing (15).  

In order to reduce the computation burden of finding the largest principal components of the class 

scatter matrix, we follow the common practice [4] of finding first the eigenvectors     
     of the 

matrix  ̅ 
  ̅ , and then the target eigenvectors are computed as: 

    ̅               . (16) 

The complete CbPCR procedure is presented in Algorithm 1:. 

Algorithm 1:  
Input: dataset consists of L classes, each containing nl samples. 

Output: The label of a new image       . 

1. Represent each image in the training set as a 1D vector           
2. For each class l do  

a. Represent samples from the l-th class as a matrix     
     . 

b. Calculate the class scatter matrix  ̅  ̅ 
 , with  ̅  represents the difference between the 

mean vector    of the l-th class and column of   . 
c. Calculate eigenvectors from the class scatter matrix. 

d. Calculate the closed form solution (13). 

e. Calculate the reconstructed query color image  ̂  from (14). 

f. Compute the distance   ( ) between y and the predicted response vector  ̂  from (15). 

3. The test image y is decided to belong to the class with the minimum distance d.  

2.3 Quaternion-based CbPCR  

Q-CbPCR is based on the algebra and calculus of quaternion matrices [23] to identify the class to 

which a new color image belongs. Each     training color image is portrayed as a 1D pure 

quaternion vector  ̇      . The columns of matrix  ̇   
      represent samples from the l-th class 

where each column represents the difference between the training image and the class mean  ̇ . Our 

goal is to infer the correct label of a query color image  ̇       from the training data matrices and 

their labels. The test image  ̇ is represented by setting up the following quaternion regression problem: 
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 ̇   

 
| ̇   ̇   ̇  ̇ |

 
               (17) 

where  ̇  encompasses the key eigenvectors of the quaternion scatter matrix  ̇  ̇ 
  corresponding to the 

  largest eigenvalues in terms of the quaternion norm as computed by a QPCA technique [6]. 

Proposition 1: The closed-form solution of (17) is  ̂̇    ̇ 
 ( ̇   ̇ ). 

Proof: See Appendix A.  

The reconstructed query color image  ̇  is computed by: 

 ̂̇    ̇  ̂̇   ̇ . (18) 

Eventually,  ̇ is given the label of the class with the minimal quaternion norm 

   
 
| ̇   ̂̇ |                (19) 

The proposed quaternion-based representation is depicted in Figure 1, where a color face image is 

represented as a linear combination of the mean image and the best t eigenvectors of its class. 

 

Figure 1: Quaternion-based color representation: Column (a) shows original color image. Column (b) gives the 

closed-form solution of (17) with   =3. Column (c) depicts the real parts of the principal components in  ̇  as 

grayscale images. Column (d) depicts the imaginary parts of the principal components as color images. First row 

depicts the real (zero) and imaginary parts of the mean of the training images. Column (e) represents the 

reconstructed image from (18). 

2.4 Reduced Biquaternion-based CbPCR 

Analogously, RB-CbPCR relies on color image representation using RBs in place of quaternions. Our 

goal here is to find the correct label of a query color image  ̈       from the given training data 

matrices  ̈   
      and their true labels. The proposed RB-CbPCR model is set up as: 

   
 ̈   

 
| ̈   ̈   ̈  ̈ |

 
               (20) 

where  ̈  is the mean of the l-th class, and  ̈  represents the eigenvectors of the RB scatter matrix  ̈  ̈ 
  

corresponding to the t largest eigenvalues in terms of the RB norm as obtained via our efficient RB-

based PCA algorithm [8]. By Lemma 2 in [12], it can be proved that (20) is equivalent to: 

   | ( ̈)   ( ̈ )   ( ̈ ) ( ̈ )|
 
, (21) 

where a closed-form solution is derived in Proposition 2. 

Proposition 2: The closed-form solution of (20) is  ̂̈   ̈ 
 ( ̈   ̈ ). 

Proof: See Appendix B. 

The class-specific reconstructed test image is  
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 ̂̈    ̈  ̂̈   ̈ . (22) 

The test image  ̈ is finally labeled to the class with the minimal RB norm 

   
 
| ̈   ̂̈ |               (23) 

3. EXPERIMENTS 

In this section, the proposed methods are evaluated on two color face recognition benchmark 

databases: the GATech database [24] and the FERET database [25]. We compare the proposed CbPCR, 

Q-CbPCR, and RB-CbPCR methods with LRC [1], the quaternion-based QLRC method [9, 12], the 

RB-based RBLRC method [12], IPCRC [2, 3], and the CLRC method [5]. Note that LRC, IPCRC and 

CbPCR work on grayscale images, while the other methods operate on color images.  

All experiments are carried out on a pc with an Intel i7 CPU at 2.5GHz with 8GB RAM using 

MATLAB 2015. Quaternion computations are done using the quaternion MATLAB toolbox [26], while 

RB computations are carried out using our own MATLAB toolbox. 

 
(a) GATech database.  

(b) FERET database. 

Figure 2:  Sample images from GATech and FERET databases. 

3.1 Experiments on GATech database 

The GATech database [24] consists of 50 (but only 38 are available to us) subjects with 15 images per 

subject taken in two or three sessions. It experiences several variations in facial expression, pose, 

illumination, and scale; see Figure 2(a). Following [27], we use 10 images from each subject  for 

training and the remaining 5 for testing. 

We study two factors on the recognition performance: the image size and the number of principal 

components  . Figure 3 graphs the rank-1 recognition accuracy by all methods versus the image size 

ranging from 5% to 100% (size 54×39 pixels) in steps of 5%. We fix  =7 per class in our proposed 

methods and use 266 principal components from the whole training data in the IPCRC method. 

Expectedly, the performances of the grayscale-based methods are generally worse than those of color-

based ones. CbPCR achieves 3% and 4.7% improvement over LRC and IPCRC, respectively. IPCRC is 

the worst among the three and achieves a peak accuracy of 84.2% compared with respective peak 

accuracies of 88.9% and 85.8% by CbPCR and LRC.  

The color methods offer better performances than the grayscale-based methods except for CLRC 

which has worse accuracy than CbPCR and a close-performance to LRC with a peak accuracy of 

85.8%. The new grayscale-based CbPCR method has a better performance than QLRC and RBLRC till 

image size 50% then has almost the same performance afterwards. The new Q-CbPCR and RB-CbPCR 

have a close-performance that is better than all other methods. Both have a peak accuracy of 88.95% 

yielding about 2.28% improvement over QLRC and RBLRC.  

Figure 4 shows the rank-1 recognition accuracy of all methods against     to 9 fixing the image 

size at 54×39 pixels. We take the number of principal components in IPCRC as the number of classes 
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(38) times  . The accuracies of CLRC, LRC, QLRC, and RBLRC are not dependent on  . IPCRC is the 

worst overall. As more principal components are used, the proposed CbPCR, Q-CbPCR, and RB-

CbPCR offer higher accuracies. For    , CbPCR and RB-CbPCR have similar performance, while Q-

CbPCR tops both methods. Afterwards, the performances of Q-CbPCR and RB-CbPCR are better than 

that of CbPCR. Q-CbPCR tends to offer a slightly better accuracy than RB-CbPCR, where the former 

has a peak accuracy of 88.95% versus 87.37% for the latter. CbPCR has 86.84% peak accuracy. 

Finally, we study the recognition time (in seconds) by taking the average of running each algorithm 

10 times on image size      . We use   7 in our proposed methods and 266 principal components 

in IPCRC. As shown in Table 1, CLRC is the slowest while the grayscale-based LRC and IPCRC are 

the fastest due to their simpler computation. RB-CbPCR is around 1.8x faster than Q-CbPCR. This is 

due to the faster computations of RB operations taking advantage of the e1-e2 form and to the faster 

computation of the RB principal components by our efficient RB-based PCA algorithm [8]. 

 
Figure 3: Rank-1 recognition accuracy on the GATech database by all methods for various image sizes. 

(Better viewed in color) 

 

 
Figure 4: Rank-1 recognition accuracy on the GATech database by all methods against number of 

principal components. (Better viewed in color). 
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Table 1: Average recognition CPU time (in seconds) over 10 runs of different methods on the GATech 

database 

LRC CLRC CbPCR QLRC Q-CbPCR RBLRC 
RB-

CbPCR 
IPCRC 

0.018 2.860 0.105 1.631 2.011 1.182 1.121 0.083 

3.2 Experiments on FERET database 

The FERET database [25] contains more than 14,000 face images having pose and light variations. In 

this study, we consider a subset consisting of 115 subjects with 4 images from each subject captured in 

3 poses, see Figure 2(b). Two faces are captured at 0° while the other two faces are captured at 15° and 

−15°. We choose one frontal image and one with the head rotated 15° for training, while testing is 

performed on the other 2 images. 

Figure 5 shows the rank-1 recognition accuracy for various image sizes varying from 5% to 100% 

(48×32 pixels) in steps of 5%. In our proposed methods we use    , while we select 115 principal 

components in IPCRC. Expectedly, the grayscale-based methods have lower accuracy. IPCRC and LRC 

are close to each other with respective peak accuracies of 79.6% and 80.9%. CbPCR achieves 1.79% 

and 1.18% improvements over LRC and IPCRC, respectively. QLRC and RBLRC exhibit nearly the 

same performance with a top accuracy of 81.74%. CLRC performs better than QLRC and RBLRC with 

a peak of 82.1%. Both Q-CbPCR and RB-CbPCR offer the best overall accuracy of 82.61% at 20% 

image size. Q-CbPCR shows a slightly better performance than RB-CbPCR for larger image sizes.     

Moreover, we assess the average recognition time (in seconds) by running each algorithm 10 times on 

image size 48 × 32 using   1 in our proposed methods and 115 principal components in IPCRC. As 

shown in Table 2, LRC and IPCRC are the fastest while CLRC is the slowest. Q-CbPCR and RB-

CbPCR take less time than QLRC and RBLRC. Moreover, RB-CbPCR is about 1.5x faster than Q-

CbPCR. 

 
Figure 5: Rank-1 recognition accuracy on the FERET database by all methods for various image sizes. 

(Better viewed in color) 

 
Table 2: Average recognition CPU time (in seconds) over 10 runs of different methods on the FERET 

database 

LRC CLRC CbPCR QLRC Q-CbPCR RBLRC 
RB-

CbPCR 
IPCRC 

0.038 2.642 0.145 1.910 1.782 1.494 1.224 0.06 

4. CONCLUSION 

We have proposed a novel formulation of LRC based on principal component regression. This 
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formulation keeps the key information of the data classes while providing more compact closed-form 

solutions. We have also extended it to the quaternion and RB domains to take into account the color 

information. The specific contributions of this paper are: 

 We have proposed a CbPCR strategy that depends on performing regression of each data class in 

terms of its principal components.  

 We have extended this CbPCR strategy to the hypercomplex domains of quaternions and RBs to 

consider color images. 

 We have developed CbPCR closed-form solutions from the principles of real, quaternion and 

RB domains. 

 Experiments on two color face recognition benchmark databases have showed that the proposed 

Q-CbPCR and RB-CbPCR have the highest overall accuracy among eight different methods 

including very recent ones [5, 9, 12]. Moreover, RB-CbPCR is about 1.8x faster than Q-CbPCR. 

The grayscale-based CbPCR algorithm has even outperformed some color-based algorithms in 

the literature in addition to the original grayscale LRC method [1] and its more recent variants 

[2, 3]. 

The main limitation of the proposed methodology is its reliance on the assumption of linear 

relationship between each class's training images and an unknown, test image if it belongs to the same 

class. This assumption may not hold in all practical cases. Getting around this problem is the focus of 

our future research.  

APPENDIX A: PROOF OF PROPOSITION 1 

The gradient of (17) with respect to  ̇  is: 

 

  ̇ 
| ̇   ̇   ̇  ̇ |

 
 
 

  ̇ 
  (( ̇   ̇   ̇  ̇ )

 
( ̇   ̇   ̇  ̇ )) 

 
 

  ̇ 
  (( ̇   ̇ )

 ( ̇   ̇ )   ̇ 
  ̇ 

 ( ̇   ̇ )  ( ̇   ̇ )
  ̇  ̇   ̇ 

  ̇ 
  ̇  ̇ ) 

According to quaternion derivatives [23]: 

 

  ̇ 
| ̇   ̇   ̇  ̇ |

 
  

 

 
. ̇ 

 ( ̇   ̇ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/  

 

 
. ̇ 

  ̇  ̇ 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ / 

Nulling the gradient with respect to  ̇  at the target solution  ̂̇  leads to: 

 ̇ 
 ( ̇   ̇ )   ̇ 

  ̇  ̂̇  

 ̂̇  ( ̇ 
  ̇ )

  
 ̇ 
 ( ̇   ̇ ) 

Since  ̇  is orthonormal 

  ̂̇   ̇ 
 ( ̇   ̇ )   ■ 

APPENDIX B: PROOF OF PROPOSITION 2 

For notation brevity, let’s first drop the class specific index l. Assume  ̈           ,  ̈       

    ,  ̈           , and  ̈           . By Lemma 1 and Lemma 2 in [12], 

|( ̈   ̈)   ̈ ̈|
 
 
 

 
| ( ̈   ̈)   ( ̈) ( ̈)|

 
  

According to the properties of calculus on complex domain, 

 

   
| ( ̈   ̈)   ( ̈) ( ̈)|

 

 
 

   
  (. ( ̈   ̈)   ( ̈) ( ̈)/

 

. ( ̈   ̈)   ( ̈) ( ̈)/) 

  (  
        

 (     )) 

Similarly, 
 

   
| ( ̈   ̈)   ( ̈) ( ̈)|

 
  (  

        
 (     )) 
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The solution  ̂  is found by setting the gradient of the objective function with respect to   to zero 

 ̂   (  
   )

    
 (     ) 

Similarly, the solution  ̂ is: 

 ̂   (  
   )

    
 (     ). 

According to (5), 

 ( ̂̈)  *
(  

   )
    

 (     )  

 (  
   )

    
 (     )

+  

which is simplified to 

 *
  
    

   
   

+

  

*
  
  

   
 + [

(     )  

 (     )
], 

  ̂̈  ( ̈  ̈)
  
 ̈ ( ̈   ̈) 

Since  ̈ is orthonormal 

  ̂̈   ̈ ( ̈   ̈)                  ■ 
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