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INTRODUCTION  

 

Reconstruction of genome-scale metabolic models (GEMs) plays a key role in 

understanding how cells use nutrients to build their biomass compositions [1]. The Flux 

balance analysis (FBA) method converts GEMs into mathematical models to predict the 

flux distributions maximizing the growth rates [2]. The enzyme turnover (kcat) parameter 

can reduce the search space in flux spaces to predict the metabolic shift in E. coli and 

yeast at high growth rates [3]. Including other parameters, such as membrane space can 

increase the power of predictions of FBA [3]. The modeler spends a lot of time and effort 

to find the appropriate parameters in databases (i.e., Brenda and BioNumbers) and 

literature (PubMed database) [3-5]. Text mining tools can accelerate the process of 
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Genome-Scale Metabolic Models (GEMs) contain the known chemical 

reactions in the studied cell or organism. GEMs can be extended to include 

more biological processes, such as protein translation and secretion. 

Therefore, GEMs should be integrated with kinetic parameters to couple the 

metabolic fluxes with the new biological processes. Searching for these 

kinetics parameters takes a long time. Now millions of scientific papers are 

available online in the PubMed database. This tremendous amount of 

current information with text mining approaches creates new opportunities 

for finding kinetic information that improves GEMs predictions. This paper 

introduces GEMminer that uses text mining approaches to find this kinetic 

information based on the user-defined queries and filter keywords. We have 

validated the accuracy of GEMminer with a manually curated list of GEM 

papers. Additionally, we have demonstrated that GEMminer can be used to 

search for kinetic parameters in the protein secretory machinery in yeast, 

even though there is no available database containing such parameters. 

These results show that the proposed GEMminer toolbox is a good search 

tool in PubMed with user-defined queries and filters. 
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finding these parameters. Many text mining tools have been proposed that extract 

important information from PubMed [6, 7]. According to a survey on annotation tools, 

which was carried out on the thirty most important tools, it was found that there is no yet 

a single tool that can achieve all the desired results in all cases of annotating biomedical 

literature [8].  

The PubMed database contains about 28 million abstracts and 6.5 million full 

papers [9]. PubMed adopted new AI and natural language processing approaches to 

extract information that matches the user query. Many programming languages can 

communicate with PubMed using E-utilities [9]. Therefore, many text-mining tools have 

been developed to assist in the biocuration process, reconstruction of mathematical 

models, and biomarker identification. For example, Wei et al. [10] developed PubTator  

which is a web-based text mining tool for assisting biocuration. For each PubMed paper, 

PubTator can annotate five biomedical concepts: gene, chemical, mutation, species, and 

disease. Subramani et al. [11]  developed HPIminer for reconstructing a human protein 

interaction network. Todorov et al. [12] developed INDRA that can assemble information 

about causal mechanisms into a standard format that can be used to build several 

predictive models. Chen et al. [13] developed a text mining tool that can identify 

proteomics biomarker identification in kidney diseases. However, these methods are 

designed for a specific information. For example, Turina et al. [14] developed 

ThermoScan which can identify PubMed papers and report thermodynamic information 

on protein stability. Systems biologists use BRENDA [5] and BioNumbers [15] databases 

to get the parameters for GEMs. However, these databases are limited to the information 

in them, and therefore the user cannot obtain new information related to the next 

generation of GEMs, such as protein secretory machinery in  yeast [16]. 

In this paper, we developed GEMminer, a tool that uses text mining to find the 

kinetic information for gene names in published genome-scale metabolic models. 

GEMminer can facilitate the modelling process by taking the query and filter files as 

input to extract parameter values from the PubMed database. Firstly, the user inputs a 

query in an Excel sheet, a text file containing filter keywords, and a path specifying 

where the user wants to store the output. GEMminer searches in PubMed with a list of 

IDs and then divides the results into sentences and paragraphs. For each sentence, 

GEMminer searches for parameters and then focuses on the most relevant literature that 

has important parameters according to the filter file. Finally, GEMminer generates an 

HTML page, and the user can navigate the results by important sentences or important 

paragraphs. For each sentence or paragraph, the researcher can access the paper ID, the 

result itself, and the relevant keyword(s). Thus, GEMminer can be used to improve model 

prediction and update the published models with the newly collected information. 

 

MATERIALS AND METHODS  

 

The proposed system is called GEMminer which stands for Genome-Scale Metabolic 

model text miner (Figure 1). GEMminer takes a list of user-defined queries and a list of 

filter words. GEMminer then searches the PubMed database based on these queries and 

retrieves potential articles matching them. Finally, GEMminer finds relevant sentences 

and paragraphs using the filter keywords and displays them in HTML format. Figure 1 



 GEMminer: Text Mining Tool for Genome-Scale Metabolic Models  

 

360 

shows the main structure of GEMminer with three main processes: input, analysis, and 

output. The description of each process is shown in the following subsections. 

 

1. Input process 

In this process, the user gives the system two files: query and filter files. For each 

query in the file, we convert the query into a URL which is sent to PubMed to retrieve 

abstracts.  

1.1 Step 1 (retrieving list of IDs) 

Figure 1.  GEMminer structure and steps 
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GEMminer formulates URL and sends it to PubMed as 

[baseURL]/[eutilities]/[dbParam]/[termParam]/[retmax]. The description of these 

parameters is given in Table 1. For example, if we want to know which paper IDs in 

PubMed have information about the genome scale metabolic, we send the next URL to 

PubMed: 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=PubMed&term=genome scale 

metabolic&retmax=100000.  

PubMed decoded the parameter in this URL and then returned PubMed IDs that 

match the query as an XML file. Therefore, GEMminer parsed again the returned XML 

file using regular expression '\w+\d+\w' to extract IDs. 

Table 1. Description of e-search URL parameters 

URL Name Example 

baseURL Constant base URL 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/' 

Eutilities e-utilities server 'esearch.fcgi?' 

dbParam Database Parameter 'db=PubMed'; 

termParam Term Parameter 'term= Genome scale metabolic'; 

Retmax maximum number of 

returned articles 

100000 

 

1.2 Step 2 (Retrieving Abstracts) 

For each extracted paper ID from Step 1, GEMminer uses the e-fetch server in e-

utilities to retrieve abstracts corresponding to the requested paper ID. Firstly, GEMMiner 

formulates the URL and sends it to PubMed as [baseURL]/[ eutilities]/[dbParam]/[ID]  

the description of these parameters is given in Table 2. For example, 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=PubMed&id=23300594 

After using the e-fetch server, PubMed returns all abstracts that match the query as 

an XML file. In this step, there can be many attempts to connect to the PubMed database, 

so this can lead to disconnection. To solve this technical problem, we decide on the 

“step_number” represents the number of concurrent calls followed by sleep before 

repeating the process. This reduces the probability of broken connections. According to 

our experiments, we found that the connection disconnected after 1000 calls. We then 

extracted abstracts using a regular expression, because the returned XML file contained 

unstructured data for abstract information. Each line in the XML file was parsed file with 

the regular expression 'abstract "\.[\s]*" pmid \d+'. GEMminer then extracted the 

abstract paragraph(s) from XML content. 

Table 2. Description of e-fetch URL Parameters 

URL section Name Example 

baseURL Constant base URL 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/' 

Eutilities e-utilities server 'efetch.fcgi?'; 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/
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dbParam Database Parameter 'db=PubMed'; 

ID Article ID in PubMed '23300594' 

 

2. Analysis process 

GEMMiner identifies potential articles based on all sentences in the abstract or the 

full text if available that match any keyword or regular expression in the filter file.  

2.1 Step 3 (Categorizing and Organizing) 

GEMMiner collects abstracts and IDs from previous steps as a table for each ID 

with its corresponding abstract. From step 3, we get an object containing ID numbers and 

abstracts.  

2.2 Step 4 (Segmenting abstracts into sentences) 

  GEMminer segments each extracted abstract into sentences using the regular 

expression '\.[\s]*[A-Z]'. This expression splits abstract into statements. 

 

2.3 Step 5 (Finding Potential Sentences) 

GEMminer scans each sentence in all abstracts to find the potential sentences that 

match the filter file. For example, if the query file contains one sentence which is 

'genome scale metabolic', and the filter file contains the word model. It selects all the 

sentences having information about models. Filter words are determined by experts and 

searched for in all sentences generated in the previous step.  

2.4 Step 6-7 (Finding potential paragraphs in full text articles) 

PubMed has about 6.5 million available full-text papers that can be downloaded. 

GEMminer can extract the available paper using the PMCID number that exists in the 

abstract XML file (From Step 4). Additionally, GEMminer can download these papers 

using e-fetch. GEMminer then segments the downloaded paper into paragraphs and finds 

the relevant paragraphs within the returned XML files using the filter words.  

3. Output Process 

In this process, GEMminer displays the results in an HTML file divided into two 

sections with a responsive sidebar (Figure 2). The HTML format displays the results 

clearly and is easy to navigate and search through. GEMminer can store these results in a 

path selected by the user. GEMminer uses HTML, CSS, and JavaScript to design the 

sidebar and interactive elements for organizing the data. The user can select the query 

from the left frame and access the potential sentences and paragraphs in the right frame. 



Shaban et al. 

 

 

363 

The user can also get more details about these sentences/paragraphs by simply opening 

the PubMed abstract in a new tab in the browser from the provided interface. 

 

 

 

 

4. GE

Mmi

ner 

code 

avail

abilit

y 

GEMminer tool is available for everyone who wants to use it as we have made its 

code available on GitHub at the following link 

https://github.com/zainab9291/GEMminer. The user can use GEMminer by calling only 

one function finalInfoWeb as: 

finalInfoWeb(que

ryFile, filterFile, 

path) 

Where queryFile is an Excel file containing user-defined queries, filterFile is a text 

file containing user-defined filter files, and the path is the folder path where GEMminer 

stores the generated HTML files. 

 

RESULTS AND DISCUSSION 

 

In this section, we validate the proposed system in a series of experiments designed to 

show the effectiveness of the proposed approach. 

1. Validating GEMminer with known PubMed ID 

A Genome-scale metabolic model can be represented as an Excel sheet with 

reactions, metabolites, and genes. Each GEM paper may report the reaction, metabolite, 

and gene numbers. Monk et al. [17] collected manually published GEMs until the year of 

2012. They reported 110 GEMs, where each GEM is associated with a PubMed ID. In 

our first experiment, we used this list to validate that if we know the published IDs, 

GEMminer can decide that this paper is a GEM model. First, we searched in abstracts or 

articles for models, reactions, and metabolites. To customize GEMminer to this task, we 

Figure 2. GEMminer interface 
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used the filters defined in Table 3. In this validation experiment we did not use a query 

but directly used the IDs in the Monk list.  

We used these PubMed IDs in Monk’s dataset and compared our result with the 

Monk list (Table 4). The manually curated results contained 115 papers, but they 

represented 110 unique PubMed IDs. Our filters could mark 97 of them as GEM models 

leading to an accuracy of 97/110 (about 88%). The remaining articles, (13), may exist but 

with no full text in PubMed. These experiments validated the use of the regular 

expressions in Table 3 for the given task and show that it has a false-negative rate of 

11.8%. 

Table 3. Regular expression used in filter results of paper IDs  

Target Regular expression 

Model i\w+\d+ 

Reaction ((\d+)|(\d+)\,(\d+)) reaction 

Metabolite ((\d+)|(\d+)\,(\d+)) (metabolites|\w+ metabolites)) 

 

Table 4. Accuracy of GEMminer results we found 75 models, 81 reactions and 80 metabolites 

Filter Result 

Model 75/110 

Reactions 81/110 

Metabolite 80/110 

Total (at least one of the three) 97/110 

2. Validating GEMminer with a user-defined query 

 First, we searched for the query “Genome-Scale metabolic”. We used an 

extra filter for data “until 2012”, as the same date for the Monk’s dataset. The number of 

returned IDs from a general query was 24,683. Our system was able to reduce it to 558 

PubMed IDs. We found 86 out of 110 PubMed IDs are shared with the manual curation 

list so GEMminer was able to achieve a success rate of up to 80% (Figure 3). 
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GEMminer was not able to retrieve 24 PubMed IDs because 18 of them did not 

use the term Genome scale metabolic which was changed to another term such as 

metabolic network, genome-based predictions and in silico so they did not appear in the 

general query. Additionally, six of them appeared in the query but did not match any of 

our keyword filters. GEMminer reported 467 articles as GEMs but they were not related 

to the reconstructed models because these articles considered as application of GEMs. 

Finally, GEMminer was able to extract six new GEM names that were not reported in this 

list (Table 5). In conclusion, our system was able to achieve a success rate of 80 %. This 

suggests that it can help in facilitating the reconstruction of genome-scale metabolic 

models (GEMs). We believe that the accuracy can be increased when the user chooses a 

suitable query statement. Additionally, GEMminer found six new models. Therefore, we 

believe that the GEMminer can be used as an assistance tool that assists systems 

biologists to find the reverent information quickly. 

Table 5. The new six models that GEMminer able to find them 

Sentence PubMed ID 

We addressed the complexity of cyanobacterial ETC by developing a genome-scale 

model for the diazotrophic cyanobacterium, Cyanothece sp. 
22529767 

Furthermore, the relationships among cotton species or between cotton and 

other model plant systems were analyzed. 
21829504 

The human heart-specific model provides valuable information for the studies of cardiac 

activity and development of CVD 
22057009 

These essentiality data, the library and the Nmb_iTM560 model are powerful and widely 

applicable resources for the study of meningococcal metabolism and physiology. 
22208880 

The developed model forms a basis for rational analysis and design of Scheffersomyces 

stipitis metabolic network for the production of fuels and chemicals from lignocellulosic 

biomass 

22356827 

In addition, in silico simulations with the iCG238 model have enabled a set of carbon and 

nitrogen sources to be defined, which would also support a viable phenotype in terms of 

biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic 

acid cycle. 

22376077 

Figure 3. GEMminer results it has 86 papers shared with Monk et al. and has six new papers 
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3. GEMminer with protein secretory machinery in yeast 

In this section, we applied our GEMminer to extract the kinetic parameters in the 

protein secretory network in yeast. To the best of our knowledge, this kinetic information 

is not reported in any systems biology databases, such as BioNumbers and BRENDA 

databases. Therefore, this example validates the ability to use GEMminer in a real 

application. The yeast secretory machinery pathway describes how proteins can be 

transmitted from the cytoplasm to the cell membrane and extracellular (Figure 4). The 

secretory machinery pathway starts on the surface of Endoplasmic reticulum (ER), where 

there are ribosomes that decode mRNA to protein molecules. These proteins are 

transported from one compartment to the other compartment as a vesicle, each 

compartment has a unique mechanism to bud and fuse a new cargo or vesicle. These 

vesicles can be transmitted directly across the ER membrane. After that, it is moved from 

the ER to the Golgi compartment and finally from the Golgi compartment back to the ER.  

3.1 Preparing GEMminer 

Our developed toolbox GEMminer can be run in personal computers. To use 

GEMminer we first should prepare two files: Query and filter files. The query file 

contains two columns the first column is the process name, and the second column is the 

gene name. Table 6 shows the used queries, and Table 7 shows the filter keywords we 

used. The Filter file contains all keywords that the user wants to highlight in returned 

abstracts. 

Table 6. Queries used in GEMminer for secretory machinery 

Process Name Gene Name 

Budding on ER and COPII Sar1 Sec23 Sec24 Sec13 Sec31 Sec12 COPII 

Tethering on Golgi Ypt1 Sed5 Sec22 Bos1 Uso1 Hrr25 Bet1 TRAPPI AND Golgi 

Budding on Golgi and COPI Arf1 Ret2 Ret3 Sec26 Sec21 Gea1 Gea2 Ret1 Sec27 COPI 

Tethering on ER Sec22 Sec20 Ufe1 Use1 Tip20 Sec39 Dsl1 

 

Table 7. Filter keyword used in GEMminer 

Filter 

Km|km, Kinetics|kinetics, Kcat|kcat, Vmax|vmax, (ATP)|ATP, 

vesicle|Vesicles, dissociation\skd, kd|KD, turnover|Turnover, 

structure|Structure, copy|copies, ((\d+)|(\d+)\.(\d+))\s(s) 
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Figure 4. Secretory machinery stages in yeast. We divided this machine into four stages. This figure was adopted from 

Feizi et al. [18], Barlowe et al. [19], and Mei et al. [20] 

3.2 Stage 1: budding from ER  

In this stage, the buds on surfaces of ER membrane are activated by the protein Sar1. 

These buds will form the cargo (COPII) that transfers the proteins from ER to Golgi 

compartment. Figure 5 shows the main statements that were extracted by GEMminer. 

First, GEMminer reported the article PubMed: 17604721 that explained the structure of 

COPII. GEMminer can find the number of Sar1 in COPII as 30-48 copies, the area 

covered by Sar, and COPII diameter as 40 nm. Furthermore, GEMminer reported article 

PubMed: 15665868 which measured the reaction time for Sar1-GTP as 200 seconds. This 

rate is low, so the cell should make a lot of Sar1p. We found that yeast has a high number 

of Sar1 copies per cell. Furthermore, GEMminer reported also PubMed: 11389436 that 

measured the assembly and disassembly rate of Sec23/Sec24 and Sec13/Sec31 as 10 sec. 
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Figure 5. Stage 1 budding from ER, GEMminer found four potential papers. 

3.3 Stage 2: tethering on Golgi 

The secreted vesicles From ER to Golgi needs the TRAPPI complex that guides 

COPII to the Golgi surface (Figure 6). GEMminer reported the article PubMed: 1198998 

that estimated the copy numbers of proteins Bet1, Bos1, Sec22, Sfpt1, Gos1, Ykt6, and 

Vti1 per one copy of COPII as 360, 510, 537, 600, 580, 220, and 280, respectively [21]. 

Furthermore, our GEMminer reported the article PubMed: 17336899 explained the 

function of TRAPPI complex that guides COPII to bind with the Golgi membrane [22]. 

GEMminer reported the PubMed article 11419942 that explains the role of TRAPPI 

complex in Ypt1 activation and the rate of this reaction is 0.01 per second. Finally, 

GEMminer found two articles PubMed ID: 2132587 and 2174157 that describe the role 

of protein Hrr25 in COPII docking on the Golgi surface. 
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Figure 6. Stage 2 Tethering on Golgi, GEMminer found four potential papers 

3.4 Stage 3: budding from TGN-network to plasma membrane 

The protein Vps1 is required for the fission of secreted vesicles from TGN-network to 

the plasma membrane (Figure 7). VPs1 is considered as a scissor in TGN-network. Our 

GEMminer reported PubMed ID: 7862158 described the function of the protein Vps1. 

Additionally, Our GEMminer reported PubMed ID: 15550248 explained the working 

mechanism of VPS1 on TGN-network and the vacuole fission and fusion processes.  

Figure 7. Stage 3 budding from Golgi to plasma membrane, GEMminer found two potential papers 
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3.5 Stage 4: plasma membrane fusion 

The secreted vesicles from the trans-Golgi Network (TGN) bind with the exocyst 

complex to assist it in binding in the plasma membrane (Figure 8). Our GEMminer 

reported the paper PubMed ID 16826234 that discussed the requirement of exocyst 

complex in vesicle fusion through the plasma membrane, and the paper PubMed ID 

28112172 that discussed the mechanism of use exocyst complex in vesicle fusion in the 

plasma membrane. Additionally, our GEMminer reported the Paper PubMed ID 

15583031 that estimates the assembly rate of the exocyst complex as 57 seconds. 

Furthermore, our GEMminer reported the PubMed ID 10048921 that described the role 

of the proteins Sso1, Sso2, and Sec9 in the assembly of the exocyst complex. During 

using GEMminer for exocyst complex, GEMminer reported some kinetics values that can 

be used in yeast growth in lactate. GEMminer reported the paper PubMed ID 11964174 

that measured the abundance of the lactate transporter as 1674 molecule/cell and the 

catalytic rate is 123 per second. We think that this information is important because yeast 

grows slowly in lactate. Therefore, the yeast growth rate is limited by making the Jen1 

transporter and not caused by the low transporting rate of Jen1. 

 

Figure 8. Stage 4 Plasma membrane fusion, GEMminer found 14 potential papers 
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CONCLUSION 

 

            In this paper, we have developed a text mining toolbox that assists system 

biologists to extract kinetic parameter values needed to improve GEM predictions by 

reducing the search space. In traditional methods, system biologists may spend a long 

time in searching manually for kinetics parameters, and biological functions in 

BioNumbers, and BRENDA databases to extract these parameters. However, these 

databases are limited, and the user cannot go beyond them. This paper developed 

GEMminer toolbox that can retrieve kinetic parameters from PubMed database directly. 

What distinguishes GEMminer from other biological text mining tools is that the user can 

search for any parameters with any query and filter the user's needs. The results are 

organized in a simple, structured, and user-friendly format.   

            GEMminer was validated with a manual-curated list of 113 GEMs and was able 

to retrieve 86 of them shared with this list and identified six new GEMs (that were 

already available at the time the list was compiled). Additionally, GEMminer has been 

validated in a real application for extracting useful kinetics parameters in a protein 

secretory network in yeast. The validation results suggest that our GEMminer toolbox can 

be used as an assistance tool for the curation of GEMs and a search tool in PubMed with 

user-defined queries and filters. 
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