EFFECT OF DIFFERENT TYPES AND RATES OF COMPOSTED SEWAGE SLUDGE ON YIELD AND COMPOSITION OF TWO STRAWBERRY CULTIVARS Zayed, A. and S.S. Mabrouk

Soil and Water Sci. Dept., Fac. of Agric. Suez Canal Univ.

ABSTRACT

A field experiment was carried out during 2000/2001-growth season at the Experimental Farm of the Faculty of Agriculture, Suez Canal University. The aim of the present work is to evaluate two strawberry (*Fragaria x aananssa*) cultivars (Camarosa and Chandler) yields response and compositions to varying rates (0, 40 and 60 m³ ha⁻¹) of different composted sewage sludge, plant residues and cement kiln dust (5:5:0, 5:5:0.4, 5:5:0.8 and 5:5:1.6 v/v).

Fresh and dry weights, NPK contents and uptakes of shoot and fruit of strawberry were significantly increased as result of applying different compost mixtures to the soil as compared with untreated soil. Also, Fe, Mn, Zn, Cu and Ni contents of shoot and fruit of strawberry were significantly increased (but they were still in safe concentrations, often do not build-up to phytotoxic levels) as result of applying different compost mixtures to the soil as compared with increasing compost application rates. There are different responses for the two strawberry cultivars in yield, metal contents and uptakes as result of applying of different compost mixtures and rates. Generally, although fresh weights of shoot, fruit, and total yield and dry weights of shoot and total yield of Chandler cultivar were more significantly higher in the compost untreated soil, they more responded to the application of the compost to the soil in Camarosa cultivar.

Keywords: strawberry cultivars, yield, sewage sludge, cement kiln dust, plant residues, compost, sandy soil, heavy metals

INTRODUCTION

Most of the soils used for horticultural production in Suez Canal region are coarse-textured. These soils are characterized by low organic matter and low cation exchange capacities resulting in limited nutrient and water holding capacity (Wittneben, 1986). Large and increasing volumes of composted agricultural/municipal/other organics are being generated which have the potential to improve the quality of these soils for horticultural production. Large volumes of compostable materials are produced from sewage sludge, generated especially from wastewater treatment plants, cement kiln dust as by-bass from cement industry factories, and agricultural farm wastes (Zayed et al., 2001). Treated sewage sludge is a potentially valuable resource for essential macro- and micro-nutrients, and may also serve as a good natural soil conditioner due to its content of organic matter. Newly reclaimed desert lands are very poor in their physical, chemical, biological properties and fertility, which may be improved by the addition of sewage sludge (Rabie et al., 1997).

Zayed, A. and S.S. Mabrouk

All users of composted municipal wastes require knowledge of its value in order to determine its nutrient availability, and its influence on heavy metal uptake and the nutrient content of crops. Since composted municipal wastes are a relatively new soil amendment, there are relatively few studies, which provide a compost user with the necessary information to determine its effectiveness (Warman, 1998).

Albregts and Howard, (1979) found that heat-dried sewage sludge and a 1:1 combination of sludge and NH₄NO₃ consistently produced strawberry yields above those with Osmocote ([N-P₂O₅-K₂0] 16-8-12) treatments over two seasons. In both seasons 100% relative yields resulted from plants with the sludge treatment compared to 98 and 87% relative yields with the NH₄NO₃/sludge treatment, and 96 and 85% relative yields with the Osmocote treatment.

Also, Albregts and Howard (1984) found that plants fertilized with sludge and sludge/urea-formaldehyde 1:1 (UFA) treatments yielded 30 to 60% more strawberries compared to UFA- and organiform-fertilized (leather tankage bonded with methylene urea) subplots.

The objective of the present work is to study the effect of different sewage sludge, cement kiln dust and plant residues composts with different application rates on yield and composition of two strawberry cultivars grown on a sandy soil.

MATERIALS AND METHODS

A field experiment was carried out during 2000/2001-growth season at the Experimental Farm of the Faculty of Agriculture, Suez Canal University. The aim of the present work is to evaluate two strawberry (*Fragaria x aananssa*) cultivars (Camarosa and Chandler) yields response and compositions to varying rates of different composted sewage sludge, cement kiln dust and plant residues. Strawberry plants were grown on a sandy soil (93.8% sand, 3.5 silt, 2.7% clay; organic matter 0.07%, CaCO₃ 3.15%, EC 1.2 dSm⁻¹ and pH 7.52) treated with 4 composted sewage sludge, cement kiln dust and plant residues at different rates (0, 40 and 60 m³ha⁻¹). Table (1) indicated volume ratios of the components and some characteristics of the composts.

		EC	Organic	C/N	N P	К	Fe	Mn	Cu	Zn	Ni
*Compost	ph	(dSm ⁻¹)	matter %	ratio	%			r)	ng kg	¹)	
1	7.19	3.97	48.08	20.74	1.344 0.127	1.212	141.15	94.43	32.73	56.65	7.74
2	7.20	4.77	44.28	20.52	1.260 0.147	1.413	147.26	98.85	37.93	59.28	8.32
3	7.48	5.20	42.90	25.75	0.966 0.160	1.521	151.50	101.35	52.23	60.65	8.49
4	7.49	6.73	40.56	26.49	0.8880.165	1.622	158.14	106.75	54.60	63.58	9.50

Table (1): Some chemical characteristics of the composts used.

	Volum	e ratios of compost comp	onents
*Compost	Sewage sludge	Farm wastes	Cement kiln dust
1	5	5	0
2	5	5	0.4
3	5	5	0.8
4	5	5	1.6

۲۳۸۲

Soil was treated with the different composts 7 days before transplanting. The strawberry was transplanted on September 25th, in furrows 5 m in length, 50 cm apart and 25 cm spacing within the furrows.

Total yield was that accumulated throughout the harvesting season which was determined by the end of May 2001. Samples of shoot and fruit were harvested from each treatment in April 15, 2001 for the different analyses. Plant samples were oven dried at 70 °C, ground, digested and analyzed for N, P, K, Fe, Mn, Zn, Cu and Ni according to Chapman and Pratt (1961). Soil and composted sewage sludge were prepared and analyzed according to Page *et al.* (1982). Split-split plot design with three replicates was used and Plabstat version 2D computer program was used for statistical analysis.

RESULTS AND DISCUSSION

Data obtained on the effect of different compost mixtures and application rates on fresh and dry weights of shoot and fruit of both Chandler and Camarosa strawberry cultivars are presented in Table (2). Fresh and dry weights of shoots, fruits, and total yield of strawberry were significantly increased as result of applying different compost mixtures to the soil as compared with untreated soil. Increasing cement kiln dust (CKD) volume ratio from 0 to 1.6 in different compost mixtures significantly decreased fresh and dry weights of strawberry shoots, fruits and total. Several workers obtained similar results on the effect of sewage sludge or its compost on plant dry weight. Amending soil with sludge or composted waste has resulted in increasing yield of some vegetable crops including strawberry (Albergts and Howard, 1979), tomato and cabbage (Sterrett *et al.*, 1983a), carrot (Harrison, 1986), cucumber (Harrison and Staub, 1986), cranberry (Bugbee and Frink, 1989), and pepper (Roe *et al.*, 1997).

With regard to the effect of the compost application rate, fresh and dry weights of shoots, fruits, and total yield were significantly increased with increasing the compost application rate to the soil. Rabie *et al.* (1997) found that shoot and root dry weights of sorghum were significantly increased by increasing sewage sludge application rate to the sandy soil up to 5%. Dahdoh and Hassan (1997) reported a significant increase of broad bean yield when sewage sludge applied up to 2% in calcareous soil. Generally, although fresh weights of shoot, fruit, and total yield and dry weights of shoot and total yield of Chandler cultivar were more significantly higher in the compost untreated soil, they more responded to the application of the compost to the soil in Camarosa cultivar. The increase means in fresh weight of shoot, fruit and total yield were 2.0, 2.6, and 2.3 times for Chandler and 2.1, 2.9 and 2.5 times for Camarosa grown on compost treated soil as compared with the untreated soil.

4

Cai	marosa str									
		Fr	esh weig			Dry weigh	nt			
*Treatments	Rate		_	kg						
	m³ ha⁻¹	Shoot	Fruit	Total	Shoot	Fruit	Total			
		Chan	dler culti	ivar						
Contro	bl	3000	3120	6120	1125	430	1555			
1	40	7750	9380	17130	2600	1080	3680			
	60	8065	9770	17835	2695	1340	4035			
Mean		7908	9575	17483	2648	1210	3858			
2	40	6000	7435	13435	2030	1070	3100			
_	60	6875	9375	16250	2535	1260	3795			
Mean		6438	8405	14843	2283	1165	3448			
3	40	4765	7025	11790	1615	880	2495			
Ũ	60	5065	8340	13405	1870	1130	3000			
Mean		4915	7683	12598	1743	1005	2748			
4	40	3940	5990	9930	1365	760	2125			
	60	4315	6305	10620	1620	1105	2725			
Mean		4128	6148	10275	1493	933	2425			
Wear		_	rosa cult		1100	000	2120			
Contro	h	2940	3035	5975	1080	455	1535			
Contro	//	2040	0000	0070	1000	400	1000			
1	40	7915	10125	18040	2770	1235	4005			
•	60	8590	10385	18975	2840	1530	4370			
Mean	00	8253	10255	18508	2805	1383	4188			
2	40	7190	10075	17265	2595	1090	3685			
2	60	8375	10370	18745	2685	1425	4110			
Mean	00	7783	10223	18005	2640	1258	3898			
3	40	3815	7115	10000	1490	875	2365			
0	60	8065	9580	17645	2355	1410	3765			
Mean	00	5940	9348	14288	1923	1143	3065			
4	40	3090	5225	8315	1140	785	1925			
7	40 60	3165	5570	8735	1245	1380	2625			
Mean	00	3128	5398	8525	1193	1083	2025			
LSD _{0.05} for		5120	0090	0323	1190	1005	2215			
Treatments		221	66	193	47	61	56			
Rate		741	1001	1741	219	268	485			
Cultiva	r	1562	1339	225	53	122	175			
Cultiva	u	1002	1009	220	55	122	175			
		Volume	ratios of	compost	compon	onte				
*Treatments	Sewage s			n wastes		ement kil	n dust			
1	<u>5</u>		i un	5	0	0				
2	5			5	0.4					
2	5			5		0.4				

Table (2): Effect of different compost mixtures and rates on fresh and dry weights of shoot, fruit and total yield of Chandler and Camarosa strawberry cultivars.

Results of NPK contents for shoot and fruit are presented in Table (3) and computed uptakes of NPK for shoot, fruit and total yield for both Chandler and Camarosa strawberry cultivars as affected by different compost mixtures and their application rates are shown in Table (4). Shoot N content was significantly increased as result of applying different compost mixtures to

5

5

0.8

1.6

5

۷۳۸٤

the soil as compared with untreated soil. Also, increasing the compost application rate from 40 to 60 m³ ha⁻¹ shoot N content was significantly increased. Increasing cement kiln dust volume ratio from 0 to 1.6 in different compost mixtures significantly decreased N shoot content in both strawberry cultivars. This may be due to the low compost N content by increasing cement kiln dust and decreasing Sewage sludge and plant residues volume ratios in compost mixtures (Table 2). Generally, the increase in Camarosa shoot N content was significantly responded as compared with those in Chandler.

There are no significant differences in Fruit N content between the two strawberry cultivars as affecting by the application of the different compost mixtures. But significant differences as result of compost application rates were found. Since increasing the rate of application from 40 to 60 m³ ha⁻¹ increased fruit N content of strawberry. Mean values of fruit N content were 1.32 and 1.56% for Chandler and 1.30 and 1.49% for Camarosa at 40 and 60 m³ ha⁻¹, respectively. The same trend of shoot, fruit and total N uptakes was found as previously mentioned for shoot N content as result of different compost treatments, their application rates and strawberry cultivar (Table 4).

Addition of the different compost mixtures to the soil resulted in increasing P and K contents in strawberry shoot and fruit. In opposite of N content, increasing CKD volume ratio P and K contents in shoot and fruit were significantly increased. This may be due to the high compost P and K contents by increasing CKD and decreasing Sewage sludge and plant residues volume ratios in compost mixtures (Table 2). Increasing compost application rate was significantly increased P and K contents in shoot and K content in fruit of strawberry plant. There is no significant effect for the compost application rate on fruit P content. Shoot K content was significantly higher in Camarosa than in Chandler while fruit P content was significantly higher in Chandler than in Camarosa. There are no differences in shoot P and fruit K contents as result of strawberry cultivar effect.

Generally, Shoot, Fruit and total P and K uptakes were increased as result of applying different compost mixtures to the soil as compared with untreated soil. Also, increasing compost application rate, Shoot, Fruit and total P and K uptakes were increased. With exception of fruit P uptake, there are significant differences in fruit K, shoot and total PK contents as result of treating the soil with composts consisting of different volume ratios of sewage sludge, cement kiln dust and plant residues. This means that, although PK contents in the different strawberry tissues increased by increasing CKD volume ratio in the compost, their uptakes decreased in the same manner. This refers to the increase in strawberry dry matter yield by decreasing CKD volume ratio, consequently strawberry PK uptakes increased. There are no significant differences between cultivars in shoot, fruit, total P and fruit K uptakes. Mean values of shoot and total K uptake in Camarosa were significantly higher than in Chandler.

cultivar	JItivars.											
	Rate		Shoot			Fruit						
*Treatments	M³ ha⁻¹				6							
		Ν	P	K	Ν	Р	K					
Chandler cultiva												
Contro) I	1.79	0.29	1.25	1.26	0.14	1.03					
1	40	1.96	0.35	1.30	1.34	0.15	1.05					
	60	2.35	0.36	1.53	1.71	0.16	1.23					
Mean		2.16	0.36	1.42	1.53	0.16	1.14					
2	40	1.85	0.35	1.34	1.32	0.16	1.06					
	60	2.30	0.38	1.57	1.64	0.17	1.32					
Mean		2.08	0.37	1.46	1.50	0.17	1.19					
3	40	1.82	0.36	1.38	1.32	0.17	1.08					
	60	2.18	0.39	1.61	1.54	0.18	1.37					
Mean		2.00	0.38	1.50	1.43	0.18	1.23					
4	40	1.80	0.38	1.48	1.30	0.18	1.12					
	60	2.13	0.40	1.65	1.40	0.19	1.39					
Mean		1.97	0.39	1.57	1.35	0.19	1.23					
			rosa cult				_					
Contro	l	1.96	0.30	1.38	1.29	0.12	1.01					
1	40	2.18	0.32	1.42	1.32	0.13	1.03					
I	-	-			-							
Maaa	60	2.25	0.35	1.55	1.57	0.14	1.14					
Mean	40	2.22	0.34	1.49	1.45 1.30	0.14	1.09					
2	40	2.16				0.14	1.05 1.17					
	60	2.30										
Mean		2.23				1.39 0.15						
3	40	2.10			1.30	0.14	1.14					
	60	2.24	0.38	1.61	1.46	0.16	1.16					
Mean		2.17	0.37	1.56	1.38	0.15	1.15					
4	40	2.02	0.35	1.55	1.29	0.16	1.19					
	60	2.24	0.40	1.77	1.43	0.17	1.25					
Mean		2.13	0.38	1.66	1.36	0.17	1.22					
LSD _{0.05} for												
Treatments		0.09	0.02	0.07	Ns	0.05	0.09					
Rate		0.36	0.03	0.11	0.07	Ns	0.13					
Cultiva	ar	0.16	Ns	0.24	Ns	0.11	Ns					
Cultive	u			compost of			113					
*Treatments	Sewage s			m wastes			In dust					
1	<u> </u>	laage	i ai	5	s Cement kiln dust 0							
2	5			5	0.4							
2 3	5											
3	5 5			5 5		0.8						
4	5			5		1.6						

 Table (3): Effect of different compost mixtures and rates on shoot and fruit NPK contents of Chandler and Camarosa strawberry cultivars.

cultivars.										
			Ν			Р			κ	
*Treatments	Rate					kg ha ⁻¹				
	m³ ha⁻¹	Shoot	Fruit	Total	Shoot	Fruit	Total	Shoot	Fruit	Total
Schandler cultivar										
Control		20.14	5.42	25.56	3.26	0.60	3.86	14.06	4.43	18.49
									_	
1	40		14.47			0.16	9.26		11.34	
	60		22.91	86.24		2.14	11.84	-		57.71
Mean		57.15		75.84		1.15	10.55		13.91	51.42
2	40		14.12	51.68	7.11	1.71	8.82	27.20	11.34	38.54
	60		20.66	78.97		2.14	11.77			56.43
Mean		47.94		65.33	8.37	1.93	10.30	33.50	13.99	47.49
3	40	29.39		41.01	5.81	1.50	7.31	22.29	9.50	31.79
	60		17.40	58.17	7.29	2.03	9.32	30.11		45.59
Mean		35.08		49.59		1.77	8.32	26.20		38.69
4	40	24.57	9.88	34.45	5.19	1.37	6.56	20.20	8.51	28.71
	60		15.47			2.10	8.58	26.73		42.09
Mean			12.68			1.74	7.57	23.47	11.94	35.40
			amaros							
Control		21.18	5.87	27.05	3.24	0.55	3.79	14.90	4.80	19.50
1	40	60.20	16.30	76.69	8.86	1.61	10.47	39.33	40 70	52.05
I	40 60		24.02	76.69 87.92	0.00 9.94	2.14	12.08		7.44	52.05 51.46
Mean	00		24.02	82.31	9.94 9.40	1.88	12.00			51.76
2	40		14.17	70.22	9.40 8.56	1.53	10.09			50.12
2	40 60		21.09	82.85	9.67	2.28	11.95		16.67	58.82
Mean	00	58.91		76.54	9.07	1.91	11.02			54.47
3	40		11.38	42.67	5.22	1.23	6.45	22.35	9.98	32.33
5	40 60	52.75		73.34	8.95	2.26	11.21	37.92	16.36	54.28
Mean	00	42.02		58.01	7.09	1.75	8.83	30.14	13.17	43.31
4	40		10.13	33.16	3.99	1.26	5.25	17.67	9.34	27.01
7	40 60	27.89		47.62		2.35	7.33	22.04		39.29
Mean	00	25.46		40.39	4.49	1.81	6.29	19.86	-	33.15
moun		20.10	1 1.00	10.00	1.10	1.01	0.20	10.00	10.00	00.10
LSD _{0.05} for										
Treatments		5.73	1.73	6.48	1.11	Ns	1.11	2.12	1.11	1.72
Rate			5.63			0.39	2.74	7.63	7.01	14.08
Cultiva	r	2.60	6.83	9.43	Ns	Ns	Ns	7.65	Ns	15.33
Cultiva	1	2.00	0.03	3.43	110	113	113	1.00	113	10.00
*Treatments		olume		os of	comp	ost c	ompo	nents	5	
	Sewage s	ludge	•	Farn	n was	tes	Ce	ment	kiln (dust

Table (4): Effect of different compost mixtures and rates on shoot, fruit and total NPK uptakes of Chandler and Camarosa strawberry cultivars.

*Treatments	Volume ra	tios of compost co	omponents
_	Sewage sludge	Farm wastes	Cement kiln dust
1	5	5	0
2	5	5	0.4
3	5	5	0.8
4	5	5	1.6

Increasing plant NPK contents and uptakes by applying sewage sludge or its compost to the soil were reported by several workers (Albergts and Howard, 1979; Sterrett et al., 1983b; Harrison, 1986; Harrison and Staub, 1986; Bugbee and Frink, 1989).

Zayed, A. and S.S. Mabrouk

Data obtained on the effect of different compost mixtures and their application rates on Fe, Mn, Zn, Cu and Ni contents in strawberry plant are presented in Tables (5). With the exception of shoot and fruit Ni contents, there are significant increases in metal contents in both strawberry shoot and fruit in compost-treated soil as compared with untreated soil. Often increasing cement kiln dust volume ratio in the compost, metal contents of plant tissues were increased. Also, Fe, Mn, Zn, Cu and Ni contents in both shoot and fruit increasing compost application rate to the soil.

Comoroo	e otrouchou	—,				00111	01110	0.	onan	aioi	una
Camaros	a strawbei	Ty CL	iitiva				1				
	_			Shoot			ļ		Fruit		
*Treatments	Rate						kg⁻¹				
	m³ ha⁻¹	Fe	Mn	Zn	Cu	Ni	Fe	Mn	Zn	Cu	Ni
Chandler cultiv	/ar										
Contro	I	79.8	42.5	38.3	7.8	0.21	49.4	26.2	23.6	3.8	0.14
			_	_	-		_				
1	40	95.0				0.25				4.5	0.15
	60	123.5		58.5	8.8	0.33	67.5	35.6		5.9	0.18
Mean		109.3		52.1	8.5	0.30	60.4	32.2		4.7	0.17
2	40	108.3		51.5	8.2	0.29	55.1	29.4		5.8	0.16
	60	131.1		62.1	9.1	0.35	70.3	37.6		6.4	0.19
Mean		119.7		56.8	8.7	0.32	62.7	33.5		6.1	0.18
3	40	112.1		53.7	8.4	0.30	58.9	31.1		6.1	0.18
	60	136.8		64.8	9.7	0.36	76.1	40.1		6.5	0.20
Mean		124.5		59.3	9.05	0.33	67.5	35.6		6.3	0.19
4	40	121.6	61.3	62.1	9.1	0.32	67.5	35.6	30.2	7.5	0.20
	60	157.7		74.8	10.3		85.5	45.8		8.4	0.23
Mean		139.7	72.4	68.5	9.7	0.37	76.5	40.7	34.0	8.0	0.22
Camarosa cultiva			_	_			_				
Contro	I	119.7	63.8	56.7	7.7	0.31	39.9	21.7	19.1	5.1	0.11
_			_	_			_				
1	40		70.3	59.9	8.2	0.33				5.2	0.12
	60	148.2		70.7	8.8	0.39	59.9	30.7		6.5	0.15
Mean		137.4		65.3	8.5	0.36	56.6	27.8		5.9	0.14
2	40	133.4		69.8	8.4	0.38	51.3	28.9	25.1	5.5	0.14
	60	152.0		72.0	9.1	0.40	60.8	31.9		7.0	0.16
Mean		142.7		70.9	8.8	0.39	56.1	30.4		6.3	0.15
3	40	146.3		70.7	8.4	0.40	55.1	29.4		5.8	0.14
	60	188.1	99.8	89.8	9.1	0.51	62.1	32.7	28.8	7.1	0.16
Mean		167.2		80.3	8.8	0.46	58.6	31.1		6.5	0.15
4	40	151.1		72.5	8.8	0.49	57.0	30.7		6.5	0.15
	60		106.3	83.4	9.7	0.53	64.6	34.3		8.2	0.17
Mean		174.7	93.2	78.0	9.3	0.51	60.8	32.5	28.6	7.4	0.16
LSD _{0.05} for											
Treatments	8.6	4.2	9.1	N	s 0.	05 7	.2 2	2.9	1.9	0.8	Ns
Rate	6.5	7.6	8.2					3.5		1.6	0.02
Cultivar	41.0					17 24			-	-	0.05
Guiuvai	-1.0					npost				0.0	0.00
*Treatments Sewage		anhul	lume			astes	comp		ement	kiln c	luet
1	5 Sewage S	auge		-	<u>ann v</u> 5					0	1431
2	5	5						0.4			
2 3	5 F	5 5		5				0.4			
3	5			5 5				1.6			
4	3				5					.0	

Table (5). Effect of different compost mixtures and rates on shoot, fruit and total Fe, Mn, Zn, Cu and Ni contents of Chandler and Camarosa strawberry cultivars.

۷۳۸۸

Zayed, A. and S.S. Mabrouk

6cont

٧٣٩.

Generally, there are significant differences in metal contents between the two strawberry cultivars. Higher shoot metal content was found in Camarosa while higher fruit metal content was observed in Chandler. Shoot, fruit and total metal uptakes were usually dry matter yield and metal content dependent (Tables 2, 5 and 6). This means that, the increase in both dry matter yield and metal content associated with the increase in metal uptake.

Although there are significant differences in shoot metal uptake, fruit metal uptake not significantly affected by the compost type. Increasing compost application rate to the soil resulted in significant increases in shoot, fruit and total Fe, Mn, Zn, Cu and Ni uptakes. There are no significant differences between the two strawberry cultivars in fruit Fe, Zn and shoot Cu uptakes. Shoot and total Fe, Mn, Zn, Ni and fruit and total Cu uptakes were higher in Camarosa while fruit Mn and Ni uptakes were higher in Chandler. Generally, the levels of determined elements are much less than the recorded toxic limits for plant as given by Cottenie *et al.* (1976).

In waste-amended soils, heavy metal concentrations often do not buildup to phytotoxic levels (Sterrett *et al.*, 1983a). In addition, it has been observed for cucumber, tomato, muskmelon and cabbage that amending the growing media with sludge containing low concentrations of metals resulted in very low concentrations of these metals in the edible portions of the plants (Ozores-Hampton *et al.* 1994; Falahi-Ardakani *et al.*, 1988; Sterrett *et al.*, 1983b).

REFERENCES

- Albregts, E. E. and C. M. Howard (1979). Effect of bed height and N fertilizer sources on fruiting strawberries. Soil Crop Sci. Soc. Fla. Proc. 38:76-78.
- Albregts, E. E., and C. M. Howard (1984). Effect of three slow-release fertilizers on fruiting strawberries. Soil Crop Sci. Soc. Fla. Proc. 43:10-11.
- Bugbee, G.J. and C.R. Frink, (1989). Composted waste as a peat substitute in peat-lite media. Hort. Sci., 24:625-627.
- Chapman, H.D. and P.F. Pratt (1961). "Methods of Analysis for Soil, Plants and Waters". Barkeley, CA; University of California, Agricultural Publication.
- Cottenie A.; A. Dhaese and R. Camerlynck (1976). Plant quality response to uptke of polluting elements. Qualitas Plantarum, Pl. eds. Hum. Nutr. 26 (1/3): 293-319.
- Dahdoh, M.S.A. and F.A. Hassan (1997). Combined effect of sewage sludge and saline water irrigation on growth and element composition of broad bean. Egypt. J. Soil Sci., 37(2):189-204.
- Falahi-Ardakani a.; K.A. Correy and F.R. Gouin (1988). Influence of pH on cadmium and zinc concentrations of cucumber grown in sewage sludge. Hort. Sci., 23:1015-1017.

- Harrison, H.C. (1986). Carrot response to sludge application and bed type. J. Amer. Soc. Hort. Sci. 111: 212-215.
- Harrison, H.C. and J.E. Staub (1986). Effects of sludge, bed, and genotype on cucumber growth and elemental concentrations in fruit and peel. . J. Amer. Soc. Hort. Sci. 111: 205-211.
- Ozores-Hampton, M.; B. Schaffer and H.H. Bryan (1994). Nutrient concentrations, growth, and yield of tomato and squash in municipal solid-waste-amended soil. HortScience, 29:785-788.
- Page, A.L.; R.H. Miller and D.R. Keeney (1982). "Methods of Soil Analysis". Part 2: Chemical and Microbiological Analysis. Am. Soc., Madison, Wisconsin, USA.
- Rabie, M.H.; N.Y. Negm, Mona, M Eleiwa and M.F. Abdel-Sabour (1997). Influence of two sewage sludge on faba bean and sorghum plants growth and elements uptake. Egypt. J. Soil Sci., 37(4):425-435.
- Roe, N.E., P.J. Stoffella, and D.A. Graetz. (1997). Compost from various municipal waste feedstocks affects vegetable crops II. Growth, yields, and fruit quality. J. Amer. Soc. Hort, Sci.,122: 433-437.
- Sterrett, S.B.; R.L. Chaney, C.W. Reynolds, F.D. Schales and L.W. Douglass (1983a). Transplant quality and metal concentrations in vegetable transplants grown in media containing sewage sludge compost. Hort. Sci., 17:920-922.
- Sterrett, S.B.; C.W. Reynolds, F.D. Schales, R.L. Chaney, and L.W. Douglass (1983b). Transplant quality and heavy-metal accumulation of tomato muskmelon and cabbage grown in media containing sewage sludge compost. J. Amer. Soc. Hort. Sci., 108:36-41.
- Warman, P.R. (1998). Results of the long-term vegetable crops production trials: conventional vs compost-amended soils. Acta Horticulturae, 469:333-341.
- Wittneben, U. (1986). Soils of the Okanagan and Similkameen Valleys. Ministry of the Environment, Technical Report 18; British Columbia Soil Survey, Report 52, Victoria, BC 229pp.
- Zayed, A.; S. Mabrouk and M. Abdou (2001). Chemical properties of different composts consisting of sewage sludge, cement kiln dust and plant residues. Plant Nutrition-Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research (Developments in Plant and Soil Sciences, Vol. 92), XIV International Plant Nutrition Colloquium, Hannover, pp. 990-991.

تأثير أنواع ومعدلات مختلفة من مكمورة حمأة المجارى على إنتاجية وتركيب صنفين من الفراولة

عبد المنعم زايد - صالح سليمان مبروك

قسم الأراضى والمياه – كلية الزراعة - جامعة قناة السويس

أجريت تجربة حقلية خلال موسم ٢٠٠٠ /٢٠٠١ في المزرعة التجريبية لجامعة قناة السويس في محاولة لدراسة تأثير أنواع ومعدلات مختلفة من مكمورة حمأة المجارى على إنتاجية وتركيب صنغين من الفراولة (شاندلر – كماروزا). حيث كانت أنواع المكمورات على النحو التالي:

1- حمأة مجارى + مخلفات نباتية + تراب الأسمنت (٥: ٥: صفر حجما)

2- حمأة مجارى + مخلفات نباتية + تراب الأسمنت (٥: ٥: ٤,٠ حجما)

3- حمأة مجارى + مخلفات نباتية + تراب الأسمنت (٥: ٥: ٨, ٠ حجما)

4- حمأة مجارى + مخلفات نباتية + تراب الأسمنت (٥: ٥: ١,٦ حجما)

وقد أضيفت تلك الأنواع بمعدلات صفر ، ٤٠ ، ٦٠ م٣/هكتار

أشارت النتائج الي:

 زيادة الوزن الطازج والجاف لكل من المجموع الخضرى والثمار المحصول الكلى بإضافة الأنواع. المختلفة للمكمورة وزيادة معدل إضافتها بالمقارنة بالأرض غير المعاملة.

- زاد محتوى وامتصاص النتروجين والفوسفور والبوتاسيوم لكل من المجموع الخضرى والثمار بإضافة -2 الأنواع المختلفة للمكمورة وزيادة معدل إضافتها بالمقارنة بالأرض غير المعاملة.
- 3- زاد محتوى وامتصاص الحديد والمنجنيز والزنك والنحاس والنيكل لكل من المجموع الخضرى والثمار بإضافة الأنواع المختلفة للمكمورة وزيادة معدل إضافتها بالمقارنة بالأرض غير المعاملة ، ولكن محتوى ـ تلُّك العناصر ظهر بمستويات أمنة وفي الحدود المسموح بها. كانت استجابة صنفي الفراولة للتسميد بالأنواع المختلفة من المكمورة مختلفة من حيث الوزن الطازج
- -4 والجاف لكل من المجموع الخضري والثمار والمحصول الكلي وكذلك محتوياتها من العناصر المدروسةً.
- على الرغم أن الأوزان الطازجة للمجموع الخضري ومحصول الثمار كانت أعلى لصنف شاندلر في -5 الأرض الغير معاملة بمكمورة المخلفات إلا أن استجابة صنف الكاماروزا لإضافة المكمورة كانت أعلى.

V797

Table (6). Effe	ect of dif	ferent compost mix	ctures and rates or	n shoot, fruit and to	otal Fe, Mn, Zn, Cu	and Ni uptakes of				
Table (6). Effect of different compost mixtures and rates on shoot, fruit and total Fe, Mn, Zn, Cu and Ni uptakes of Chandler and Camarosa strawberry cultivars.										
		Fo	Mn	Zn	Cu	Ni				

*Transformer	Dete		Fe			Mn			Zn			Cu			Ni	
*Treatments	Rate M ³ ha ⁻¹	Shoot	Fruit	Total	Shoot	Fruit	Total	Shoot	g ha⁻¹ Fruit	Total	Shoot	Fruit	Total	Shoot	Fruit	Total
Chandler cultivar			_			_	_						_			
Control		89.73	21.24	111.0	47.8	11.27	59.1	142.1	10.15	53.1	8.78	1.63	10.41	0.236	0.060	0.296
1	40	247.0	57.46	304.5	131.8	31.10	162.9	118.6	27.32	145.9	21.06	4.86	25.92	0.650	0.162	0.812
	60	332.8	90.45	423.3	174.1	47.70	221.8	157.7	37.52	195.2	23.72	7.91	31.63	0.889	0.241	1.132
Mean		289.9	73.96	363.9	153.0	39.40	192.4	138.1	32.42	170.5	22.39	6.39	28.78	0.770	0.202	0.972
2	40	219.9	58.96	278.8	116.1	31.46	147.6	104.6	28.36	132.9	16.65	6.21	22.86	0.589	0.171	0.760
	60	332.3	88.58	420.9	176.7	47.38	224.1	157.4	40.45	197.9	23.07	8.06	31.13	0.887	0.239	1.126
Mean		276.1	73.77	349.9	146.4	39.42	185.8	131.0	34.41	165.4	19.86	7.14	27.00	0.738	0.205	0.943
3	40	181.0	51.83	232.9	96.4	27.37	123.8	86.7	24.64	111.4		5.37	18.94	0.485	0.158	0.643
-	60	255.8	85.99	341.8	133.7	45.31	179.0	121.2	40.79	162.0		7.35	25.49	0.673	0.226	0.899
Mean		218.4	68.91	287.3	115.1	36.34	151.4	104.0	32.72	136.7	15.86	6.36	22.22	0.579	0.192	0.771
4	40	166.0	51.30	217.3	83.7	27.06	110.7	84.8	22.95	107.7		5.70	18.12	0.437	0.152	-
-	60	255.5	94.48	350.0	135.1	50.61	185.7	121.2	41.77	163.0		9.28			0.254	
Mean		210.7	72.89	283.6		38.84	148.2		32.36		14.56	7.49				
	V	olume r							02.00					01110	0.200	0.0.0
*Treatment			ige slu					arm w	astes				Ceme	ent kiln	dust	
S		come	igo olu	igo			•	unn w	40100				Conne		aaot	
1			5					5						0		
2			5					5						0.4		
2			-					-								
3			5					5						0.8		
4			5					5						1.6		

			Fe			Mn			Zn			Cu			Ni	
*Treatments	Rate				•				g ha⁻¹							
	M³ ha⁻¹	Shoo	ot Fruit	Total	Shoot	Fruit	Total	Shoot	Fruit	Total	Shoot	Fruit	Total	Shoot	Fruit	Total
Camarosa cultiva	r															
Contro	I	129.3	3 18.16	147.4	68.9	9.87	178.8	61.2	8.69	69.9	8.32	2.32	10.64	0.335	0.050	0.385
1	40	350.		416.8	194.7	30.63	225.4	165.9	27.29	193.2	22.71	6.42	29.13	0.914	0.148	1.112
	60	420.9	9 91.04	511.9	222.9	46.97	269.9	200.8	41.46	242.3	24.99	9.95	34.94	1.108	0.230	1.338
Mean		385.8	3 78.56	464.3	208.8	38.80	247.6	183.4	34.38	217.7	23.85	8.19	32.04	1.011	0.189	1.225
2	40	346.	2 55.92	402.1	201.6	31.50	233.1	181.1	27.36	208.5	21.80	5.10	26.90	0.986	0.153	1.139
	60	408.	1 86.64	494.8	215.1	45.46	260.5	193.3	40.76	234.1	24.43	9.98	34.41	1.074	0.228	1.302
Mean		377.	2 71.28	448.4	208.4	38.48	246.8	187.2	34.06	221.3	23.12	7.54	30.67	1.030	0.191	1.221
3	40	218.	48.21	266.2	117.0	25.73	142.7	105.3	19.95	125.3	12.52	5.08	17.60	0.596	0.123	0.719
	60	443.0	87.56	530.5	235.0	46.11	281.1	211.5	40.61	252.1	21.43	10.01	31.44	1.201	0.226	1.427
Mean		330.	5 67.89	398.4	176.0	35.92	211.9	158.4	30.28	188.7	16.98	7.55	24.52	0.899	0.175	1.073
4	40	172.3	3 44.75	217.0	91.3	24.10	115.4	82.7	20.80	103.5	10.03	5.10	15.13	0.559	0.118	0.677
	60	246.9	9 89.15	336.0	132.3	47.33	179.7	103.8	42.23	146.1	12.08	11.32	23.40	0.660	0.235	0.895
Mean		209.	66.95	276.5	111.8	35.72	147.5	93.2	31.52	124.8	11.06	8.21	19.27	0.610	0.177	0.786
LSD _{0.05} for																
Treatments	11.19	Ns	16.26	7.53	Ns	7.23	27.55	5 Ns	28.3	33 2.4	40 N	ls 1	1.69	0.13	Ns	0.14
Rate	50.08	23.17	69.70	47.24	22.22	47.24	29.54			94 3.				0.32	0.08	0.39
Cultivar	93.14	Ns	128.30	5.44	1.39	5.44	23.33	3 Ns	13.3	33 N	ls 3.	07 5	5.01	0.14	0.06	0.20

Table (6). Continued.

J. Agric. Sci. Mansoura Univ., 26 (11), November, 2001.