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Abstract — Fog computing is a new computing paradigm 

that has been proposed to extend cloud computing 

services to the edges of cloud computing networks. 

Minimizing the total completion time of an application 

without violating user-defined deadline is one of the 

most important problems that are related to task 

scheduling in fog environments. In this paper, we have 

proposed a new algorithm called Deadline Aware 

Resource Allocation (DARA) algorithm. The main 

contribution of this algorithm is to enhance the 

performance of fog environment by allocating resources 

in an efficient manner under deadline constraint. The 

algorithm is compared with Dynamic Resource 

Allocation Method (DRAM) algorithm. Simulation 

results proved that our proposed algorithm provides 

better performance in terms of makespan, total cost, 

and resource utilization. 

Keywords — Cloud computing, Fog computing, Task 

scheduling, Resource allocation 

1. INTRODUCTION 

Cloud computing is a powerful technology that 

provide many on-demand services to users over the 

internet. It introduces a lot of features like scalability, 

flexibility, and performance cost efficiency. Cloud 

computing is based on virtualization technology [1]. 

The most important drawback of cloud computing is 

that cloud data centers are geographically far away 

from end users. This drawback added some 

limitations on using cloud computing for time 

sensitive applications that require low latency. To 

address the limitations of cloud computing, fog 

computing has been proposed [2-4]. 

1.1 Fog computing  

Fog computing is a new distributed computing 

paradigm that was first introduced by Computer 

Information Systems Corporation “Cisco” in 2012[5]. 

It acts as an intermediate layer between cloud data 

centers and end users [6]. Like cloud computing, fog 

computing is also based on virtualization. Fog 

computing extends cloud services like data, storage, 

networking, and computing services closer to end 

users as shown in Figure 1 [7-9]. So, fog is best 

suited for real time applications [10]. Fog helps to 

overcome the limitation of cloud by providing real-

time and low latency services. So, fog computing 

doesn’t replace cloud computing, but they 

complement each other [11-14].  

1.2 Task Scheduling and Resource Allocation In 

Fog Environment  

Fog computing environment consists of a set of 

heterogeneous resources with different capabilities. 

So, task scheduling is an important issue to specify 

which resource best fit to which task. The main 

objective of task scheduling in fog computing is to 

map tasks to the available resources and determine 

the order of execution of these tasks in order to 

minimize the total execution time (makespan). Task 

scheduling is classified into two classes according to 

the dependencies between tasks: (1) dependent task 

scheduling, (2) independent task scheduling. In 

dependent task scheduling, there are dependency 

relationship and communication between tasks [15]. 

On the other side, there are no dependency 

relationship and communication between tasks in 

independent task scheduling [16], [17]. Effective 

scheduling techniques are required to optimize and 

enhance the overall performance of computing 

systems.  

In fog computing, there are limited physical 

resources in terms of storage, memory and processors 
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that are required to serve many user tasks or requests 

[18]. 

 

Figure 1. Hierarchal architecture of fog computing 

[10]. 

Consequently, efficient resource allocation is 

required to achieve highest system throughput and 

maximum profit. Resource allocation is defined as a 

systematic approach to allocate available resources to 

the clients over the internet [2].  

The main contribution of this paper is to assign tasks 

of customers to the available resources of fog 

computing environments in a prioritized fashion to 

minimize the completion time, minimize total cost, 

and maximize resource utilization based on deadline 

constraint. 

This paper is organized as follow: Related work is 

presented in Section 2. Problem definition is 

illustrated in Section 3. Our proposed algorithm is 

descriped in Section 4. Experimental results are 

presented and discussed in Section 5. Finally, both 

conclusion & future work are presented in Section 6. 

 

2. RELATED WORK 

Task scheduling and resource allocation are 

important issues in fog computing. Efficient task 

scheduling and resource allocation algorithm will 

help to increase the overall performance of the 

system. Recently, much research has discussed these 

issues. In [2], they proposed a three-layered 

architecture, and designed an efficient algorithm 

called efficient resource allocation (ERA) for 

resource provisioning in fog computing. The 

architecture is based on a system model where a fog 

layer is used between the end-user clients and the 

cloud datacenter.  In [19], the authors proposed a 

priority-based task scheduling algorithm in fog 

computing. Their algorithm enhanced the ERA 

algorithm with priority scheme to reduce both the 

average response time and the total cost. In [20] the 

authors proposed an algorithm for load balancing in 

cloud environment called dynamic resource 

allocation method (DRAM). DRAM tends to 

minimize the load-balance variance, which is relevant 

to the resource utilization of each computing node, 

and the average resource utilization. In [21], they 

proposed a scheduling algorithm called Cost-

Makespan aware Scheduling (CMaS) heuristic to 

achieve the balance between the performance of 

application execution and the mandatory cost for the 

use of cloud resources. Additionally, an efficient task 

reassignment strategy is also proposed to refine the 

output schedules of the CMaS algorithm to satisfy the 

user-defined deadline constraints. In [22] it is 

proposed that a new fog computing architecture, 

which is divided into three layers. Then, a systematic 

two-level resource scheduling model is presented. 

Finally, a novel resource scheduling scheme was 

proposed using an improved non-dominated sorting 

genetic algorithm II (NSGA-II) with the aim to 

reduce the service latency and improve the overall 

stability of task execution. In [23], they proposed a 

model to effectively schedule the user tasks on the 

fog computing resources by combining the VM 

allocation and VM selection methods in the perfect 

arrangement. Various methods associated with VM 

allocation and VM selection are evaluated and 

combined in a suitable combination to discover the 

best task scheduling combination for the effective 

and optimized user data processing. In [24] the 

authors aimed to provide an easy and concise view of 

the High-Performance Computing (HPC) algorithms. 

Firstly, they presented the classification of scheduling 

algorithms based on multiple factors like fairness, 

waiting time, throughput, overhead, etc. Secondly, 

the forecasting has been done on HPC applications to 

predict the growth rate for 2020 and beyond. The 

authors in [25] proposed a task scheduling strategy 

based on a hybrid heuristic (HH) algorithm that 

mainly solves the problem of terminal devices with 

limited computing resources and high energy 

consumption and makes the scheme feasible for real-

time and efficient processing tasks of terminal 
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devices. HH algorithm combines the advantages of 

improved particle swarm optimization (IPSO) and 

improved ant colony optimization (IACO) to search 

for the optimal solution for task scheduling problem 

in smart production lines with fog computing. In 

[26], it is proposed a multi-cloud to multi-fog 

architecture and design two kinds of service models 

by employing containers to reduce the service delay 

improve the resource utilization of fog nodes and. 

Based on these models they presented a task 

scheduling algorithm for energy balancing which 

uses a dynamic threshold strategy to schedule 

requests in real time. In [27], they proposed a new 

orchestration of Consumer to Fog to Cloud (C2F2C) 

based framework for efficiently managing the 

resources in residential buildings. It consists of three 

layers. Cloud layer which deals with on-demand 

delivery of the consumer’s demands. Fog layer that is 

responsible for Resource management. Consumer 

layer which is based on the residential users and their 

electricity demands from the six regions of the world. 

These regions are categorized on the bases of the 

continents. In [28], the authors used a framework, 

including three parallel algorithms, namely, 

offloading, buffering, and resource allocation, to 

improve resource allocation balance, throughput, and 

task completion ratio. They considered a fog queuing 

system with limited infrastructure resources to 

accommodate real-time tasks with heterogeneities in 

task types and execution deadlines. In [29] 

highlighted key features of iFogSim along with 

providing instructions to install it and simulate a Fog 

environment. Also, they demonstrated how to 

implement custom application placement in iFogSim 

simulated Fog environment along with an IoT-

enabled smart healthcare case study. in [30], it is 

designed novel resource allocation algorithms for the 

Social Internet of Things (SFIoT) system. They adopt 

the basic concept of two game models: voting and 

bargaining games to formulate the interaction among 

mobile devices and FC operator. Bicooperative 

voting game (BVG) approach is responsible for 

control decisions for the resource allocation method, 

and Nash bargaining solution (NBS) is responsible 

for distributing the computation resource to different 

application tasks. The author in [31] investigated the 

computation resource allocation and task assignment 

problem in VFC from a contract matching integration 

perspective. A contract-based incentive mechanism 

was proposed to motivate vehicles to share their 

resources, and a pricing-based stable matching 

algorithm was developed to address the task 

assignment problem. In [32] it is considered the 

resource allocation and task scheduling problem 

under fog system to minimize total tardiness of the 

tasks and meet the hard deadlines. A deadline-aware 

estimation of distributed algorithm (dEDA) with a 

repair procedure and local search is adopted to 

determine the task processing order and computing 

node allocation. In [33], the authors proposed an 

efficient centralized secure architecture for healthcare 

system deployed in Cloud environment. Fog 

Computing environment was used to run the 

framework. First, health data is collected from 

sensors and sent to the near edge devices. Finally, 

devices transfer the data to the cloud for seamless 

access by healthcare professionals. The main focus of 

this work is the security as Authentication and 

Authorization of all the devices. The proposed 

system uses asynchronous communication between 

the applications and data servers deployed in the 

cloud environment. In [34] they investigated the 

research challenges in Fog Computing. It promoted a 

lot of research in the area of Fog Computing 

application. 

All previous studies concluded that resource 

provisioning and allocation is the most important 

issue in fog computing that can affects the processing 

time of tasks because improper resource allocation 

can lead to degrading the performance of the system. 

However, the previous studies rarely considered QoS 

parameter such as task deadline which is essential 

for real time tasks. This paper differs from previous 

studies in its contribution which is minimizing the 

completion time and maximizing resource utilization 

simultaneously under the deadline constraint to 

satisfy the demands of the user and improve QoS.    

 

3. PROBLEM DEFINITION 

3.1 Fog Computing Architecture 

Fog computing adds an extra fog layer between cloud 

and end devices (end users). As shown in Figure 2, 

the system model consists of three layers: cloud 

layer, fog layer and client layer. Cloud layer (top 

layer) consists of a set of cloud data centers. Client 

layer (bottom layer) consists of end devices, which 

send requests to the upper layers for application 
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execution. Fog layer (middle layer) consists of a set 

of fog nodes or fog servers. Each fog node consists of 

several virtual machines (VMs). Each VM contains 

various physical resources including CPU, memory, 

storage, and bandwidth. Our proposed algorithm is 

implemented at the fog layer. In the fog layer, there is 

a fog device called fog broker that acts as a resource 

manager and task scheduler. Fog broker is 

responsible for receiving requests or tasks from users, 

managing the available resources, and generating the 

most suitable schedule to specify which task will be 

executed on which resource.  

3.2 Problem Statement 

In fog computing, scheduling means assigning the 

available resources to user requests or tasks in a 

specified order to satisfy user requirements and 

quality of service (QoS) needed. One of the most 

important parameters of QoS is deadline. In our 

problem, we focused on allocating resources to tasks 

considering user-defined deadline constraints. 

 

Figure 2. Fog computing architecture [36]. 

Fog layer consists of S number of fog servers denoted 

as S1, S2, …, Ss. Each fog server consists of M 

number of VMs denoted as p1, p2, …, pm. Each VM 

has its own resources and its own speed (denoted by 

spi. spi is measured by the number of millions of 

instructions per second (MIPS). Let N = {T1, T2, …, 

Tn} represents the number of independent tasks to be 

executed in fog. The problem can be stated as 

follows: a set of N independent tasks will be executed 

on M virtual machines considering the deadline 

constraint d. We aim to minimize the completion 

time of the task, minimize the total cost of resource 

usage as well as maximize the resource utilization 

under deadline constraint defined by the user for each 

task. 

4. PROPOSED ALGORITHM 

Each task has different properties such as deadline, 

length, and execution time. In task scheduling, 

deadline is considered one of the most important 

parameters for task execution, which affects QoS of 

the system. The focus of DRAM [20] algorithm was 

on minimizing the load balance variance and 

maximizing resource utilization without considering 

the effectiveness of the makespan and deadline 

parameters. DARA algorithm aims to maximize 

resource utilization and makespan taking into 

consideration deadline. Users submit tasks with 

deadline constraint for each task to the fog broker. 

Then, the broker will assign these tasks to the 

available resources according to the proposed 

algorithm.  

 The execution time of a task can be calculated by 

Equation 1[35]. 

ET = 
𝑟

𝑠𝑝𝑖
    (1) 

Where spi is the VM’s speed, r is the task’s length. 

On each VM, EET (Expected Execution Time) of the 

task is calculated by using Eq. 1 and compared with 

the deadline constraint. The VM which meet the 

deadline constraint will be labeled as a valid VM. 

Otherwise, it is labeled invalid VM as illustrated in 

Eq. 2. 

 

𝑉𝑀`𝑠 𝑠𝑡𝑎𝑡𝑒 = {
𝑉𝑎𝑙𝑖𝑑        𝑖𝑓 𝐸𝐸𝑇 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
𝐼𝑛𝑣𝑎𝑙𝑖𝑑                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2) 

Then, the task will be assigned to one of the valid 

VMs, which provides the least and enough 

requirements based on the task type. For example: In 

case of memory task, the task will be assigned to a 

valid VM that has the least and enough memory for 

executing the task. In case of storage task, the task 

will be assigned to a valid VM that introduce the 

least and enough storage for the task. The same 

approach is applied for other types of tasks.  

Finally, a factor called deadline is violated (DIV) will 

be used to express whether the task can be executed 

before its deadline or not. DIV is a binary factor 

which has two values 1, 0. DIV(T) = 1, if the 

deadline of a task T is violated. In this case, the task 
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will be migrated to another fog server. DIV(T) = 0, if 

the deadline of task T is achieved the task will be 

assigned to a specific VM and removed from the 

tasks ready queue.  

4.1 Steps of Proposed Algorithm 

 

5. SIMULATION AND EXPERIMENTAL 

RESULTS 

5.1 Simulation Environment 

A simulation environment that simulates fog 

environment has been built to evaluate the 

performance of DARA algorithm. Visual C# .NET 

4.0 is used to build the simulator on machine with: 

Intel(R) Core(TM) i3 CPU M 350 @2.27GHz, RAM 

of 8.00 GB, and the operating system is window 10, 

64-bit. 

 

Each fog node has different processing capabilities. 

We assumed that each fog node consists of two 

virtual machines. Each VM has its own processing 

power that is measured by MIPS (Millions of 

Instructions per Second) along with memory, 

capacity, and bandwidth. The characteristics of fog 

nodes are shown in Table 1. Each task has different 

attributes which are shown in Table 2. 

 

Six data sets have been used in our experiment with 

variable size from 500 tasks to 3000 tasks. Each task 

in data sets was generated randomly in the range 

mentioned in Table 2. The experiment covered two 

types of tasks: capacity tasks (that require huge 

amount of storage capacity), and memory tasks (that 

require more memory). 

Table 1. Characteristics of fog nodes 

Parameter Value 

Number of fog nodes 3,4,5 

Number of VMs in each node 2 

Computation power of VM [10, 200] 

Storage capacity of VM 5000-10000 

Memory of VM 5000-10000 

Memory Usage Cost 0.01-0.03 

Storage Usage Cost 0.01-0.03 

Table 2. Attributes of Tasks 

Attribute Value 

Number of tasks {500, 1000, 1500, 2000, 2500, 3000} 

Arrival Time [0, 20] 

Deadline [2, 10] 

Length [5, 50] 

Required Capacity [5, 50] 

Required Memory [5, 50] 
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5.2 PERFORMANCE EVALUATION 

PARAMETERS 

We used some parameters to evaluate the 

performance of the proposed algorithm in fog 

computing environment. The considered parameters 

are: 

5.2.1 Makespan 

Makespan also called “schedule length” is defined as 

the maximum finish time of last task executed on the 

VMs  or the time when the last machine finishes. It 

begins from the time the request is received to the 

time that the last task is completed. To achieve higher 

performance, makespan should be minimized. It can 

be calculated by Equation 3[39]. 

Makespan = Max [CT(Pi)]  (3)  

Where CT is the completion time, i ϵ VMs (1≤ i ≤ m) 

5.2.2 Response Time 

Response time (RT) is the time taken by a task to 

complete the execution [37]. In other words, it is the 

elapsed time between submission and completion 

time of task. It can be calculated by Equation 4 [40]. 

RT = CTj – SBj    (4) 

Where j ϵ T (1≤ j ≤ n). CT is the completion time; SB 

is the submission time. 

To calculate the average response time for all tasks 

on one VM, Equation 5 is applied. 
 

𝐴𝑣𝑔. 𝑅𝑇 =  
∑ 𝑅𝑇𝑛

𝑗=1

𝑛
    (5) 

Then, the mean of total average response time of all 

VMs is calculated by using Equation 6. 

Mean of total Avg. RT = 
∑ 𝐴𝑣𝑔.𝑅𝑇𝑚

𝑖=1

𝑚
  (6) 

Where n is the number of tasks in VM and m is the 

number of VMs. 

5.2.3 Throughput  

Throughput is the no of tasks completed per unit 

time. It reflects the efficiency of the scheduling 

algorithm. It can be calculated by equation 7 [41]. 

Throughput = 
𝑛

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
    (7) 

Where n is the total number of tasks 

5.2.4 Resource utilization (RU) 

An important optimization metric is maximizing 

resource utilization. It is defined as the resource 

usage of the resource units on the computing nodes. 

It can be calculated as follow [41]: 

RU = 
∑ Makespan𝑖

m
i=1

m∗Max_Makespan
    (8) 

Where i ϵ VMs (1≤ i ≤ m), max_makespan can be 

expressed as: 

Max_Makespan= max {Makespani} (9) 

Where i ϵ VMs (1≤ i ≤ m) 

5.2.5 Load Balancing 

Load balancing refers to the process of distributing a 

set of tasks over a set of resources, with the aim of 

making their overall processing more efficient. It is 

calculated by equation 10 [41]. 

Load Balancing = 
∑ Makespan𝑖

m
i=1

m
 (10) 

Where i ϵ VMs (1≤ i ≤ m) 

5.2.6 Total Cost 

To calculate the cost of processing a task Tj on a VM 

Pi, we must calculate the usage cost of resources 

included in that VM. These resources include CPU 

(processing), storage, and RAM. In this work, we 

have calculated only storage and memory cost. The 

cost of task “j” on a VM “i” can be expressed by 

equation 11 [42]. 

Cost (𝑇𝑗
𝑖) = Cr (𝑇𝑗

𝑖) + Cs (𝑇𝑗
𝑖) (11) 

In equation 11, each cost can be calculated as follow: 

RAM cost can be defined as equation 12: 

Cr (𝑇𝑗
𝑖) = c1 * RAM (𝑇𝑗

𝑖)  (12) 

Where c1 is the RAM usage cost per data unit in VM 

Pi and RAM (Tj
i) is the RAM required by task Tj . 

Storage cost can be defined as equation 13: 

Cs (𝑇𝑗
𝑖) = c2 * S (𝑇𝑗

𝑖)  (13) 

Where c2 is the storage usage cost per data unit in 

VM Pi and S (Tj
i) is the storage required by task Tj. 
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Finally, the total cost for all tasks executed on the 

system can be calculated as follows: 

Total cost = ∑ ∑ 𝐶𝑜𝑠𝑡 (𝑇𝑗
𝑖)𝑛

𝑗=1
𝑚
𝑖=1  (14) 

Where i ϵ VMs (1≤ i ≤ m), j ϵ T (1≤ j ≤ n)   

5.3 EXPERIMENTAL RESULTS 

In our simulation, we compared the evaluation 

metrics of our proposed algorithm “DARA” with 

those of DRAM algorithm, with varying the number 

of VMs from 6 to 10 VMs and varying the number of 

tasks from 500 to 3000 tasks.  

5.3.1 Results on 6 VMs 

The results are shown in figure 3, 4, 5, 6, 7, 8. The 

comparison results of evaluation metrics between 

DARA, DRAM, and MRR algorithms are listed in 

table 3, 4. 

From figure 3, it is shown that DARA algorithm 

consumes lesser time to process tasks than DRAM. 

This means that tasks are properly allocated to the 

most suitable VMs that satisfy the requirements of 

task and complete its execution in lesser time.  

Table 3. Comparison results of DARA and DRAM algorithms on 6 VMs 

No. of 

Tasks 

Total Makespan Average Response Time Resource Utilization 

DARA DRAM DARA DRAM DARA DRAM 

500 1613 1748 12.500064 13.61795955 0.326203761 0.166666667 

1000 2066 2981 8.067044654 11.77713178 0.302355599 0.203007939 

1500 3315 3583 8.221315193 9.36502601 0.2942182 0.256954135 

2000 3542 4015 6.667184918 7.879491674 0.337756446 0.292320465 

2500 2902 4245 4.621646391 6.725723458 0.577188146 0.344837063 

3000 4351 4896 5.707701909 6.330559601 0.479391711 0.363596133 

 

Table 4. Comparison results of DARA and DRAM algorithms on 6 VMs 

No. of Tasks 
Throughput Load Balancing Total Cost 

DARA DRAM DARA DRAM DARA DRAM 

500 0.309981401 0.28604119 567.5 567.5 613302.85 597935.18 

1000 0.484027106 0.3354579 1171.833333 1171.833333 620397.45 604905.58 

1500 0.452488688 0.418643595 1753 1753 633209.45 617677.78 

2000 0.564652739 0.498132005 2301.5 2301.5 654435.05 638922.18 

2500 0.861474845 0.588928151 2878.666667 2878.666667 686209.65 670737.18 

3000 0.689496667 0.612745098 3444 3486.166667 728197.05 712395.58 
 

 

Figure 3. Comparison of Total Makespan 

 
      Figure 4. Comparison of Average Response Time 

0

1000

2000

3000

4000

5000

6000

500 1000 1500 2000 2500 3000

M
ak

e
sp

an

No of Tasks

Total Makespan on 6 VMs

DARA

DRAM

0

5

10

15

500 1000 1500 2000 2500 3000

A
vg

 R
e

sp
o

n
se

 T
im

e

No of Tasks

Avg Response Time on 6 VMs

DARA

DRAM



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022 

114 
 

Figure 4 represents the average response time 

comparison. We can see from the figure that, DARA 

algorithm process tasks with lesser response time 

than DRAM algorithm. That makes DARA algorithm 

best suited for real time applications than DRAM 

algorithm. Resource utilization results shown in 

figure 5 demonstrates that, DARA algorithm provide 

better resource utilization than DRAM algorithm 

which means that, majority of resources have been 

allocated. 

 

Figure 5. Comparison of Resource Utilization 

 

Figure 6. Comparison of Throughput 

In figure 6, it is seen that DARA algorithm provides 

better throughput than DRAM algorithm. This means 

that DARA can process more tasks than DRAM in 

one unit time which results in improving the overall 

performance of the system. 

Figure 7, 8 show the load balancing and total cost 

results. We can see that the two algorithms provide 

the same results or close results. This shows that, we 

have improved the other performance metrics while 

maintaining the total cost and load balancing 

parameters as stable as possible. 

 

Figure 7. Comparison of Load Balancing 

 

Figure 8. Comparison of Total Cost 

5.3.2 Results on 8 VMs 

The results are shown in figure 9, 10, 11, 12, 13, 14. 

The comparison results of evaluation metrics 

between DARA, DRAM, and MRR algorithms are 

listed in table 5, 6. 

5.3.3 Results on 10 VMs 

The results are shown in figure 15, 16, 17, 18, 19, 20. 

The comparison results of evaluation metrics 

between DARA, DRAM, and MRR algorithms are 

listed in table 7, 8. 
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Table 5. Comparison results of DARA and DRAM algorithms on 8 VMs 

No. of 

Tasks 

Total Makespan Average Response Time Resource Utilization 

DARA DRAM DARA DRAM DARA DRAM 

500 1100 1526 7.4820 11.5958 0.2313 0.1480 

1000 1778 2005 6.4829 7.9063 0.2605 0.2262 

1500 2270 2420 5.3171 6.2742 0.3794 0.2851 

2000 1931 2643 3.5724 5.1750 0.4710 0.3377 

2500 2488 2771 3.9312 4.3935 0.4581 0.3985 

3000 2703 3222 3.6754 4.1929 0.4795 0.4092 

Table 6. Comparison results of DARA and DRAM algorithms on 8 VMs 

No. of Tasks 
Throughput Load Balancing Total Cost 

DARA DRAM DARA DRAM DARA DRAM 

500 0.4545 0.3276 425.125 425.125 268582.35 256274.17 

1000 0.5624 0.4987 878.375 878.375 279034.95 266753.37 

1500 0.6607 0.6198 1,313.75 1,313.75 300243.95 288011.57 

2000 1.0357 0.7567 1,724.625 1,724.625 315780.75 303494.77 

2500 1.0048 0.9022 1,984.25 2,157.25 335729.95 323437.07 

3000 1.1098 0.9310 2,201.25 2,579.125 360727.65 348347.47 

       

 

Figure 9. Comparison of Total Makespan 

 

Figure 10. Comparison of Average Response Time 

 

Figure 11. Comparison of Resource Utilization 

 

Figure 12. Comparison of Throughput 
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Figure 13. Comparison of Load Balancing 

 
Figure 14. Comparison of Total Cost

Table 7. Comparison results of DARA and DRAM algorithms on 10 VMs 

No. of 

Tasks 

Total Makespan Average Response Time Resource Utilization 

DARA DRAM DARA DRAM DARA DRAM 

500 1100 1526 7.482014849 11.59587814 0.185090909 0.118414155 

1000 1778 2005 6.482926517 7.906320072 0.208436445 0.180997506 

1500 2351 2420 5.299293051 6.274216353 0.264142918 0.228099174 

2000 1954 2643 3.597008952 5.17506273 0.371801433 0.270185395 

2500 2536 2771 4.043187311 4.393547247 0.358359621 0.318837965 

3000 2796 3222 3.445009154 4.141423032 0.395028612 0.333022967 

Table 8. Comparison results of DARA and DRAM algorithms on 10 VMs 

No. of Tasks 
Throughput Load Balancing Total Cost 

DARA DRAM DARA DRAM DARA DRAM 

500 0.454545455 0.327653997 340.1 340.1 163129.27 145373.87 

1000 0.562429696 0.498753117 702.7 702.7 173581.87 155853.07 

1500 0.638026372 0.619834711 1030.1 1051 194790.87 177111.27 

2000 1.023541453 0.756715853 1151.8 1379.7 225864.47 208077.67 

2500 0.985804416 0.902201371 1403 1725.8 245786.97 228019.97 

3000 1.072961373 0.931098696 1737.7 2090.1 271110.27 253300.37 

 

 

Figure 15. Comparison of Total Makespan 

 

 

Figure 16. Comparison of Average Response Time 
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Figure 17. Comparison of Resource Utilization 

DARA algorithm is based on dividing tasks 

according to its type resulting in minimizing the 

completion time and maximizing resource utilization 

of the system. Also, executing tasks with higher 

requirements first resulted in higher throughput and 

lesser response time. On the other side, taking the 

deadline of tasks into consideration improve the 

overall performance of the system.  

 
Figure 18. Comparison of Throughput 

 
Figure 19. Comparison of Load Balancing 

 
Figure 20. Comparison of Total Cost 

6. CONCLUSION AND FUTURE WORK 

Fog computing is an emerging computing paradigm 

that brings cloud services nearest to the users. 

Efficient resource allocation is a key issue which 

affects the overall performance in terms of total 

completion time of the application, resource 

utilization, and the total cost of consuming resources. 

In this paper, we proposed DARA algorithm that 

efficiently allocate the application tasks on the 

available resources under deadline constraint. It can 

be implemented in the fog layer. DARA is suitable 

for real-time and latency sensitive applications. Due 

to few resources available in our experiment, a 

simulator has been built to evaluate the performance 

of DARA algorithm against DRAM algorithm. The 

results showed that DARA provide better 

performance than DRAM in terms of makespan, 

resource utilization, throughput, and the average 

response time while maintaining the total cost of 

using resources and load balancing as stable as 

possible. From the results we can see that the total 

improvement ratio of makespan is approximately 

16% while increasing the number of tasks and the 

number of VMs. In the future, we can take into 

consideration other QoS constraints like user defined 

budget to enhance the performance of the system. On 

the other side, we can enhance DARA algorithm to 

improve the results of cost and load balancing. We 

can also apply it on other simulators like iFogSim. 

REFERENCES 

[1] Kamyab Khajehei, “Role of virtualization in cloud 

computing”, International Journal of Advance Research 

in Computer Science and Management Studies, 

Volume 2, Issue 4, April 2014. 

0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500 3000

R
e

so
u

rc
e

 U
ti

liz
at

io
n

No of Tasks

Resource Utilization on 10 VMs

DARA

DRAM

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500 3000

Th
ro

u
gh

p
u

t

No of Tasks

Throughput on 10 VMs

DARA

DRAM

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

Lo
ad

 B
al

an
ci

n
g

No of Tasks

Load Balancing on 10 VMs

DARA

DRAM

0

50000

100000

150000

200000

250000

300000

500 1000 1500 2000 2500 3000

To
ta

l C
o

st

No of Tasks

Total Cost on 10 VMs

DARA

DRAM



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022 

118 
 

[2] S. Agarwal, S. Yadav, and A.Yadav, “An Efficient 

Architecture and Algorithm for Resource Provisioning 

in Fog Computing”, in MCEP, 2016, doi: 

10.5815/ijieeb.2016.01.06 

[3] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, 

“Zenith: Utility-aware Resource Allocation for Edge 

Computing”, IEEE International Conference on Edge 

Computing., 2107, 10.1109/IEEE.EDGE.2017.15 

[4] Monika Gupta, “Fog Computing Pushing Intelligence to 

the Edge”, International Journal of Science Technology 

& Engineering `IJSTE`, Volume 3, February 2017. 

[5] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog 

computing and its role in the internet of things. In 

Proceedings of the First Edition of the MCC Workshop 

on Mobile Cloud Computing-MCC ’12, Helsinki, 

Finland, 17 August 2012; pp. 13–15. 2342513. 

[6] Redowan Mahmud, Ramamohanarao Kotagiri and 

Rajkumar Buyya, “Fog Computing: A Taxonomy, 

Survey and Future Directions”, Springer Nature 

Singapore Pte Ltd. 2018. 

[7] Z. Ning, J. Huang, X. Wang, Vehicular fog computing: 

Enabling real-time traffic management for smart cities, 

IEEE Wireless Communications 26 (1) (2019) 87–93 

(2019). 

[8] S. K. Goyal, M. Singh, Adaptive and dynamic load 

balancing in grid using ant colony optimization, 

International Journal of Engineering and Technology 4 

(4) (2012) 167–174 (2012). 

[9] B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos, 

Fog based framework for iot service provisioning, in: 

2019 16th IEEE Annual Consumer Communications & 

Networking Conference (CCNC), IEEE, 2019, pp. 1–6 

(2019). 

[10] Ranesh Kumar Naha, Dimitrios Georgakopoulos, 

Prem Prakash Jayaraman, and Yong Xiang,” Fog 

Computing: Survey of Trends, Architectures, 

Requirements, and Research Directions”, IEEE Access 

• August 2018. 

[11] Huang CY and Xu K. Reliable realtime streaming in 

vehicular cloud-fog computing networks. In: 2016 

IEEE/ CIC international conference on communications 

in China (ICCC), Chengdu, China, 27–29 July 2016, 

pp.1–6. New York: IEEE. 

[12] Masip -Bruin X, Marn-Tordera E, Alonso A, et al. 

“Fog to- cloud Computing (F2C): the key technology 

enabler for dependable e-health services deployment”, 

2016 Mediterranean ad hoc networking workshop 

(Med-Hoc-Net), Vilanova i la Geltru´ , 20–21 June 

2015, pp.1–5. New York: IEEE. 

[13] Lin Y and Shen H. Leveraging fog to extend cloud 

gaming for thin-client MMOG with high quality of 

experience. In: 2015 IEEE 35th international 

conference on distributed computing systems, 

Columbus, OH, 29 June–2 July 2015, pp.734–735. 

New York: IEEE. 

[14] Deng R, Lu R, Lai C, et al. “Optimal workload 

allocation in fog-cloud computing toward balanced 

delay and power consumption”. IEEE Internet Things 

2016; 3(6): 1171–1181. 

[15] K. Chronaki, A. Rico, M. Casas et al., “Task 

scheduling techniques for asymmetric multi-core 

systems,” IEEE Transactions on Parallel and 

Distributed Systems, vol. 28, no. 7, pp. 2074–2087, 

2017. 

[16] G. Lucarelli, F. Mendonca, and D. Trystram, “A new 

on-line method for scheduling independent tasks,” in 

Proceedings of the 17th IEEE/ACMInternational 

Symposium on Cluster, Cloud and Grid Computing, 

(CCGRID ’17), pp. 140–149, Spain, May 2017. 

[17] J. Wu and X.-J. Hong, “Energy-Efficient Task 

Scheduling and Synchronization for Multicore Real-

Time Systems,” in Proceedings of the IEEE 3rd 

international conference on big data security on cloud, 

pp. 179–184, China, May 2017. 

[18] T. Wauters, B. Volckaert, and F. De Turck, “Fog 

Computing: Enabling the Management and 

Orchestration of Smart City Applications in,” 2018. 

[19] Tejaswini Choudhari, Melody Moh, and Teng-Sheng, 

“Prioritized Task Scheduling in Fog Computing”, 

ACMSE 18 Proceeding of the ACMSE Conference, 

Article No.22, 2018. 

[20] Xiaolong Xu , Shucun Fu, Qing Cai, Wei Tian, Wenjie 

Liu ,Wanchun Dou , Xingming Sun , and Alex X. Liu, 

“Dynamic Resource Allocation for Load Balancing in 

Fog Environment”, Hindawi, Wireless 

Communications and Mobile Computing, Volume 

2018, Article ID 6421607, 15 pages. 

[21] Xuan-Qui Pham, Nguyen Doan Man, Nguyen Dao Tan 

Tri, Ngo Quang Thai and Eui-Nam Huh, “A cost- and 

performance-effective approach for task scheduling 

based on collaboration between cloud and fog 

computing”, International Journal of Distributed Sensor 

Networks 2017, Vol. 13(11). 

[22] Yan Sun, Fuhong Lin, and Haitao Xu, “Multi-

objective Optimization of Resource Scheduling in Fog 

Computing Using an Improved NSGA-II”, Wireless 

Pers Commun (2018), Springer Science + Business 

Media, LLC, part of Springer Nature 2018.  

[23] Simar Preet Singh and Anand Nayyar, “Dynamic Task 

Scheduling using Balanced VM Allocation Policy for 

Fog Computing Platforms”, Scalable Computing: 

Practice and Experience, Volume 20, Number 2, pp. 

433–456, May 2019. 

[24] S. Razzaq, A.Wahid, F. Khan, N. ul Amin, M. A. 

Shah, A. Akhunzada, I. Ali, Scheduling algorithms for 

high-performance computing: An application 

perspective of fog computing, in: Recent Trends and 

Advances in Wireless and IoT-enabled Networks, 

Springer, 2019, pp. 107–117 (2019). 

[25] J. Wang, D. Li, Task scheduling based on a hybrid 

heuristic algorithm for smart production line with fog 

computing, Sensors 19 (5) (2019) 1023 (2019). 

[26] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, H. 

Luo, Container-based fog computing architecture and 

energy-balancing scheduling algorithm for energy iot, 

Future Generation Computer Systems (2019). 

[27] S. Javaid, N. Javaid, T. Saba, Z. Wadud, A. Rehman, 

A. Haseeb, Intelligent resource allocation in residential 

buildings using consumer to fog to cloud based 

framework, Energies 12 (5) (2019) 815 (2019). 

[28] L. Li, Q. Guan, L. Jin, M. Guo, Resource allocation 

and task offloading for heterogeneous real-time tasks 

with uncertain duration time in a fog queueing system, 

IEEE Access 7 (2019) 9912–9925 (2019). 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 2, July.2022 

119 
 

[29] R. Mahmud, R. Buyya, Modeling and simulation of 

fog and edge computing environments using ifogsim 

toolkit, Fog and Edge Computing: Principles and 

Paradigms (2019) 433–465 (2019). 

[30] S. Kim, Novel resource allocation algorithms for the 

social internet of things-based fog computing radigm, 

Wireless Communications and Mobile Computing 2019 

(2019). 

[31] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, J. 

Rodriguez, Computation resource allocation and task 

assignment optimization in vehicular fog computing: A 

contract-matching approach, IEEE Transactions on 

Vehicular Technology (2019). 

[32] Chu-ge Wu, Ling Wang, “A Deadline-Aware 

Estimation of Distribution Algorithm for Resource 

Scheduling in Fog Computing Systems”, Apr 2019, 

IEEE Congress on Evolutionary Computation (CEC) 

[33] Chandu Thota, Gunasekaran Manogaran, Revathi 

Sundarasekar, Varatharajan R, and Priyan M. K., 

“Centralized Fog Computing Security Platform for IoT 

and Cloud in Healthcare System”, 2018, IGI Global. 

[34] S.Balamurugan , L.Jeevitha, A.Anupriya, and 

Dr.R.Gokul Kruba Shanker, “Fog Computing: 

Synergizing Cloud, Big Data and IoT- Strengths, 

Weaknesses, Opportunities and Threats (SWOT) 

Analysis”, International Research Journal of 

Engineering and Technology (IRJET), Volume: 03 

Issue: 10 | Oct -2016. 

[35] Latiff, M. S. A., Syed, H. H. M., & Abdullahi, M. 

(2016). Fault tolerance aware scheduling technique for 

cloud computing environment using dynamic clustering 

algorithm. Neural Computing & Applications.  

[36] Madni, S. H. H., Muhammad, S. A. L., & Coulibaly, 

Y. (2016). An appraisal of meta-heuristic resource 

allocation techniques for IaaS cloud. Indian Journal of 

Science and Technology, 9(4), 1–14. 

doi:10.17485/ijst/2016/ v9i4/80561. 

[37] Haidri, R.A., Katti, C.P. & Saxena, P. C. (2014). A 

load balancing strategy for Cloud Computing 

environment. In Proceedings of the 2014 International 

Conference on Signal Propagation and Computer 

Technology (ICSPCT) (pp. 636-641). IEEE. 

[38] Panda, S.K., Gupta, I., Jana, P.K.: Task scheduling 

algorithms for multi-cloud systems: allocation-aware 

approach. Inf. Syst. Front. 1–19, 2017. 

[39] Mokhtar A. Alworafi, Atyaf Dhari , Asma A. Al-

Hashmi , Suresha , A. Basit Darem, "Cost-Aware Task 

Scheduling in Cloud Computing Environment", I. J. 

Computer Network and Information Security, 

2017,5,52-59. 

 

 

 


