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ADBSTRACT

This paper presents the design considerations and performance
capabilities of a modified series combination of passive and

active elements as a system for vibration control. The
investigated primary model consists of a main mass and a
randomly excited support. The performance measures, which

considered to be minimal, are the main mass acceleration and the
relative displacement between the mass and the system support.
The operation of the modified system depends essentially on an
implemented ideal filtration process in the proposed
combination. This process is realized in two different ways: (1D
by the use of an ideal low pass filter CLPF), (&) by the use of
an ideal high pass filter CHPF). Additioconally, this process
controls tLhe flow of the command signal of the combined system
which operates the active element. Thereby, the modified system
has the property of operating either as a combined system or as
a classical passive system. The stochastic optimal control
theory in addition to a graphical criterion are well posed
together in order to determine the effective cut-off frequency
for any of the implemented ideal filters. The pertinent results
are compared with those of the combined system. In contrast,
they are found to be more encouraging, superior, and compatible
with the requirements of many actual engineering applications.

INTRODUCTION

Basically, the passive vibration isolation systems offer
simplicity, reliability, stability, and low cost (1], In
contrast, the fully active systems are costly, complex, and
require an external power supply. While, the semi —active systems
are significantly simpler and less costly than the fully active
ones. The original concept of semi-activity has been presented
by Karnopp et al [3). This concept depends essentially on the
implementation of an active damper such that its associated
power is always dissipative. In addition, 1t requires only
signal processing and low power supplies. Mor eover , the

‘semi —active systems offer the reliability and cost ef fecti veness
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comparable to passive systems enhanced by performance close L01
that of active ones [4). Alternative schemes of semi-activity
have been presented by Rakheja and Sankar [8], and Alanoly and
Sankar [B) for the realization of a more simplified system
hardware. The active systems are intended to be used in
combination with classical passive elements in order to increase
their reliability and to reduce, if possible, the supplied
power. In such situation, the full performance potential of
active systems can not be achieved due tc the control policy
used and the combination suggested [3,4,7). The full performance
potential has been proven by Guntur and Sankar [8] for various
parallel combinations in case of harmonically excited single-DOF
system. In essence, The parallel combination complicates,
large degree, tunability of the active element for varying
operating conditions, since the passive force is always a part
of the total contrel force. While in case of a series
combination the active force is independent of wvalues of the
passive elements [2].

In this work, a series combination of a one active element and

to a

two passive elements Clinear spring and viscous damper) is
considered. Such combination provides the fail-safe feature for
vibration control, {i.e., the system works as a passive one in

case of failure of the active element. Moreover, it allows the
adaptation of the system for varying operating conditions. On
basis of many frequency response predictions, a quite different
methodology from that of Karnopp 1s investigated for the
realization of a semi-active vibration control.

MODIFIED COMBINED SYSTEM CONFIGURATION

The schematic diagram of the modified system is shown in
Fig.C(1). The system states are measured and combined properly by
the ald of a signal conditioner and a microcomputer superviseor
to perform the electrical signal which equivalent to the desired
control law (forced of the combined system u, - This signal 1is

fed intoe an ideal filtration process to give the moedified
combined control law u . Then, the signal u ocan be amplified
m

and fed inte a force generator which generates a force
proportional to the controlled state variables. On basis of a
prescribed criterion for determining the effective cut-off
frequency, the ideal filtration process determines whether the
force generator Cactuator) will work or not. In the time where
the actuator becomes inactive, 1t 1is regarded as a rigid
connection between the main mass and the massless plate, and the
system seems to be a classical passive single-DOF system.
Additionally, the mass of the actuator is neglected in
comparison with the main mass of the primary system. But, when
the actuator operates 1t 1s regarded as an ideal force
generator, {.e., no limitations to the frequency band or the
peak force capablility [5,6,8,8], and the system seems to be a
combined vibration control system of two-DOF. In practice, the
actuator can be realized as a pneumatic servoval ve,
electrohydrualic servomotor, etc. Also, it is assumed here that

the system state variables are all measurable as well as the
excltation.

L
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Fig.1 Schemalic diagram of Lhe modifled enmbined syslem

SYSTEM ANALYSIS

A band-limited stationary random excitation X is imparted at the
L=]

support of the investigated system shown in Fig.1l. The power
spectral density function of this excitation is [3,9].

Vo v
Sl & s B e 1)
o wz __SZ

It is common practice in literature [(9,10] to treat the velocity
of such excitation as a white noise process such that

X = wCtD cad
(=]
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rA white noise excitations satisfies
ElwCtd]) = O 3D

ElwCt) wCrd] =2 T V &Ct-1d c4d
(=] .

It is assumed here that w(td) has a Guassian probability
distribution and that Egn.(3) implies a zero mean value, while
EqnC4) indicates the independence of the mean square value of
time.

From Fig.1l the equations of motion of the modified system are.

mX = u C8)
i 1 m
¥ -

KCX XD + CCX -X > = —-u CBd
v v o v owv

(o] m

And the system state variables are selected such that,

Y = X -X

1 i o
Y= X =X

2 v [=]
Y = X

9 1

Differentiating these states and substituting Egqns. (2>, (B) and
(B> to get on the state space form:

Y o o 1 Y 0 —wC LD
i 1
; K, 1
YZ = O _"-i:— (8] YZ + _—(T:— Um+ O (7)
. » 1v
O O (8} b § O
9 m
1
With contrelled outputs.
Yz
Z 1 0] (8)
(21 = = Y2 caen
Z O 1 O
N Y
a

The modified centrel law can be related to the desired combined
as follows.

u =f u : caD

where, u according to the signal processing in Fig.1 is given
[ =]

by.

u = GCX X2 + GCX -XD2 + GX C10D
c i 1 o 7 v [=} a1
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rand f 1is a constant determines the operation of the ideall
a ™

filtration process, and can be defined in case of operation of a
LPFF as fellows.

[+
f = { C11)
<
O if z

While in case of operation of a HPF it can be defined as :

1. if 0w w
[~

£ = . c1ad
© 0 if o < w

c

Therefore, when fc equals 1 u_ replaces u_ in the second term of

Egqn. (7, and the modified system behaves exactly like a combined
system of two-DOF. Conversely, when fc equals O u in Egqn.C7)

vanishes, and the actuator becomes a rigid connection between
the main mass and the massless plate, and the modified system
behaves exactly like a classical passive single-DOF system.

The performance measures either in case of operation as a
combined system or as a passive system can be calculated by
substituting Eqns.(9) and C10) into Eqns. (5 and (B8) to yield

mX - f [GCX-XD +GCX -X)D +6G X131 =0.0
i 1 c 1 1 o 2 v o 3 1

13D
KCX~—X)=C(X—X)+f[GCX—X)+GCX—X)+G)()=0.0-
v v o v v (<] c 1 1 o 2 v (<} 8 1

After performing some algebraic manipulations the set C13) can
be rewritten in a complex matrix form as follows.

[ —m wi—f @ -f G = B @ 0 X .

1 c 1 c 2 c 8 i )
+ =

f G K +f & f G w C w X

L- c .41 v c 2 c 9 v v

g

[ -f (6 + 6D o)
° + X 14>

K f CG +6 D C w ©

| - v c i -2 - v

Without loss of generélity xo in the last complex matrix

equation is equated te unity. Hence, the outcomes of this
equation will be

IXII represents the transfer function of the main mass

Ldisplacement.
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[|X1ﬁ1| represents the transfer function of the relative]

displacement between this mass and the system support.
Since the excitation is a stationary random process, the mean

square values of the acceleration and the relative displacement
can be conveniently written as [(12]

2 % , v .
E {Xl ] =f |X1| w do.
(5] W
1
W
2 u v
E (23, =f |x —1|2 ° do.
w, : %

OPTIMIZATION PROBLEM

It should be kept in mind that the optimization problem of the
modified system is considered only when it works as a combined
system at all times of operation over tLhe specified frequency
band. While in the time of operation as a passive system, there
is no need for optimizing the passive elements, since their
optimality may deteriorate the potency of the filtration
process. Thus any set of passive elemenls by which the maximum
exploitation of the filtration process can be achieved is said
to be optimum.

The state space form of Egns.(7) and (8) can be rewritten in a
more general form as follows.

[yl

n

LAY [Y) + [B) [ul + [w] €153
[2) = (V] (Y] c16D

The statement of the regulator problem here is to find out the
optimum steady state contrel law u_ that minimizes the following

performance index

P.I.

.8 Lim. E [{ZJT[QJ (2) +tul LRI [u]] C17>

t <00 ™

subject to the system dynamics in the specified state space
form of Egqns. (15> and (16D

Q (0]
Where, R = R, : o= c18d
1 o (%

The interpretation of the P.I. in Egn.C17) is that the term E[Z'
Q 2Z)] minimizes the controlled ocutput CZ and ZV J, while the term

Etu” R u) minimizes the control law which, in some sense,
proportional to the main mass acceleration. The general solution
to this preblem can be found in Appendix A. For Further details
about the behaviocur of the combined system in comparison with
Lthe fully active system you can see Ref.[2].
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IMPLEMENTATION

The numerical calculations are doqg in the region of fixed
parameters m = 100 kg. and v;=7001 m-.s. During the solution of

the regulator problem the welghs R‘ and Q2 are equated to the
unity, while the weight Ql is varied between 1x10° to 3x10° with

step equals 1x10° to obtain a considerable range of trade-off
solutions. Then Simpson’s rule |is used for calculating the
r.ms. values of the specified performance measures over a
frequency band ranges between w = 1 and w = 100 rad. /s. The
DI AGONALI ZATION method (111 is used to solve matrix Riccati
equation CA3D

RESULTS

In the sense of the resulted set of optimum trade-off solutions,
three solutions are selected such that one of them is medium and
the twe others are extremals. Hence, the frequency response of
the combined system at these three solutions are plotted versus
that of the passive system. Figs.2.3,--7 show many frequency
response predictions at various combination of tv and ®, - In

general, the effort in the present work is posed for treating
the problem of determining w_ of any of the suggested filtration

processes in a general sense. In other words, it is very
significant from the practical point of view to relate the
determination of W to either fixed or variable parameters in

the system. Of course, this will save, to a considerable extent,

many sophisticated frequency response predictions before
deciding the effective value of w .

In this manner, the points of intersection between the vertical
centre lines and the horizontal axes in Figs.(2-a), (3-a), and
C4-2) indicate that w_ of a LPF can be approximately related to

w as follows.

v
w T Y B2 w 19

c v

The points of intersection between the centre lines and tLhe
horizontal axes in Figs.(2-bd, (3-bd, and (4-bY indicate that w
c

of a LPF can be related to W, by use of the following

approximate relation.

w 2.0 w 20
v

<
.

In Egn.C19) the articulation is given to Xl to have the maximum

exploitation in case of using a LPF, while in Eqn.(20> the
articulation is given te Z. However, both Egns.(19) and (20> are
not applicable when Zv becomes either moderate or large. The

last cautionary remark can be verified by predicting the points
of intersection between the centre lines and the horizontal axes
in Figs.8, 6, and 7
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rThe first method to deter mine

w of a HPF is to point  out
c

the frequency at which the

col ncidence, Lthat begins at
the lower frequency limit,

between the frequency response
curves of X1 of both the

combi ned and
systems begins
Thereby, a considerable part.
- from the eminent frequency
response of Z can be omitted

the passive
to vanish.

wi thout any loss in the
frequency response of X’. In
this manner, the points of
intersection between the
dashed 11ines and the

horizontal axes in Figs.(2-a),

(3-ad, and C4-2a) indicate that
w; of a HFF can be
approximately related to w as
v
follows.
w T 0.8 @ Celd
, ] v
Also, it is shown in
Figs.C85-ad, (B-a), and C7-ad
that a damping ratio E
v
greater than 0.1 violates, to
a great extent, Egn.C21). The
above ment i oned figures
indicate that at ¢ = 0.3, and
v

whatever the value of W,
v c
becomes a constant. val ue

equals 3 rad. -s.

An alternative approach would
be to use a variable value of
w_ of a HPF. What is meant by

variable wc is to alter its

value everytime the trade-—off
solution changes. For exampl e,
from the point of view of the

frequency response of Z, the
bl ack points in each of
Figs.(2-b), (3-b), . and C4-bd
determine the correct

positions of w by which the
(=}

maximum exploitation from the
operation of a HPF can be
taken. Since, whatever the
| value of the desired trade-off
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[solution, values of { and w, remain unchanged, the logic here|
is to relate the variable w_ to any of the optimum feedback

gains, because they change every time tLhe solution changes as
shown in Table 1. A FORTRAN code is written by us to determine,
with a considerable accuracy, the positions of the mentioned
black peints along the obtained set of optimum trade-off
solutions. The solid lines in Fig.8 show the output of the
FORTRAN code, while the dashed lines show a linearly fitted
relation between w_ and the feedback gain G‘. The maximum

deviation between the fitted and the actual curves occurs at
relatively small values of fv and w, as shown in Fig.(8-ad. It

is also obvious in Fig.(7-b) that at relatively large values of
Ev and ® all the frequency response curves of the combined

system intersect that of the passive system at a unique point at
w = 10 radss. Therefore, there is no need for doing approximate
relation or to use variable w since w_ can be taken as 10

radss. However, for the sake of exploring the per formance of the
modified system with the two suggested ideal filters, the
problem is solved at three different combinations of Ev and W,

The resultis are shown in Figs.9, 10, and 11.

DISCUSSION OF RESULTS

It should be stressed from the very beginning that, from
practical point of view, the LPF seems to be better than The
HPF. A LPF requires an actuator to bperate at low exciting
frequencies. Therefore, it reduces merely the cost of the system
hardware. By the aid of Fig.@ it can be concluded that the LFF
reaches its maximum potency at relatively small values of fv and

w_ . While the maximum exploitation can be taken from the
operation of a HPF at relatively large values of { and w as
' v v

shown in Figs.10 and 11.

It is worth noting that the resulted sets of trade-off solutions
by the use of a LPF in Fig.(8-a) seem to be very significant,
since they are approximately horizeontal, i.e., whatever the

° &

desired r.m.s. value of 2Z, the r.m.s. value of X1 remains

unchanged. Of course, cuch trend of solutions may meet the
requirements of many actual applications. In addition, as shown
in Fig.(9-b> a LPF with articulation to be given to the relative
displacement Cuz:lS) achieves a considerable save in the r.m.s.

. actuated force rather tLhan that when the articulation is gilven
to the acceleration C%=1OJoAL relatively large values of f and
3 v

¢ e - Fem 8. r.m. N, Fam .

9 ) ) 2 ] Y  Hl 3 z,,
mao? | -2238.0 4280 -e82. 0 9e. 0 2248 | o248 0030
a0’ -m477.0 8.0 -ton7.0 | 198.0 .s2a7 | ozo2 . 0090
1:d0° 10000, ¢ | 371. 0 -1440.0 3190 ere0 o179 . ooR8
210" -1at14a2) | 382.0 -1711.0 4100 | 1.2%0m | mm o112
Hsao” -200000 | 332.0 -2032. 0 #34.0 | 1.0178 or47 o1 41
a,do. ~244040 0.0 -22478 O a23.0 1.8704 0140 .o1m
o1 0” -300x 0 | 308.0 -gann. o 7280 | 218090 | o132 .o183
20" -4472.9% | 277.0 -30m .0 °00.0 | 2. 8819 | 0120 . o2n8

L_;,dn' -%477.0 | 282.0 -33m2 0 | 1141.0 | 3 2042 0113 ozes

Table C1) Come ymerlenl exsmples declara the oplimm fasdbeck gains

L : slon with the oplimized performance measimes for the
enmbned system w.v. L. the firal folelation.
R <08 @ s10", v - 0001 w

g €0, ¥ . 10.0 rad/s,
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[®, as shown in Fig.11 it is clear that no actual benefit can be|

taken from the use of a LPF. This is in the time where the HPF
with variable W reaches its maximum potency. The offered trend

of trade-off solutions by use of a HPF with w equals 10 radss
=}
in Fig.(11-a) seems to be very significant, since various values

of X’ can be taken with little change in the r.m.s. value of Z

well as in the r.m.s. wvalue of the actuated force as shown in

Fig.C11-bd. Also, this trend of solutions is needed by many
practical applications.

CONCLUSIONS

i- The modified combined system is capable of providing a
performance which can not be achieved by the combined system. In
addition to 1ts superior performance, it <can provide a
considerable save in the r.m.s. actuated force,.

£-Although the low fixed cost and the attainable reliability
which can be achieved by implementing a LPF, the potency of such
filter is not effective except at low passive elements. In other
words, a LPF loses quite its potency at relatively large
passive elements. o ‘

3~ The maximum explolitation by implementing a HFF in the

modified system can be taken at relatively large values of the

passive elements, but 1t remains effective at either low or
moderate values of these elements.

4-The fixed passive elements can be properly selected and a LPF
is implemented to achieve trade-off sclutions in which the
r.m.s. value of the accelerations seems to be approximately
constant whatever the value of the relative displacement.

5- Also Lhe fixed passive elements can be properly selected and
a HPF can be used to obtain Lrade-off solutions in which the
r.m.s. acceleration can be changed without effective change in
Lthe r.m.s. relative displacement as well as the r.m.s. actuated
force.
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APPENDIX CA)

Since the excitation is a stationary random process, the
performance index in Eqn.C17) can be conveniently redefined by.

0
P.I. = 0.8 [¢Z'Q 2 + u"R w dt CALD
(8]

Note that the matrix suffix is omitted for simplicity.
Moreover, the solution of the problem will be equivalent to that
of a deterministic regulator problem in which [11].

-4 T

ult> = -R" B P Y CAS2D
And requires the solution of the following matrix Riccati
equation to determine the matrix P.

ATP+PAT+cTQe-PBRR'SB" P - o CAZD

The main advantage of using the matrix riccati equation is that
it provides a unique solution which .ensures tLhe stability of the
system. The solution of this matrix equation is feasible when
the the pair A and B of the state space form (15) and i)
constitutes a completely contreollable system such that

rank[ By AB, & By—riemmim A" B ] = n CA4D
and the pair A and C ensure a completely observable system such

that

T

rank[ Vi, AT VT, cATZ VT, o ATy T ] = n € ABD

It is worth noting that the state form of Egns.(7) and (8)
satisfies CA4) and CASD.

NOMENCLATURE

[A)l : matrix of state space form.
L AC. : acceleromeler.
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[ TB) : matrix of state space f{orm.

CV : classical passive damping

factor.

El.]1: stands for variance.

F.G.: force generator.

Gi. Gz, Ga : feedback gains

(F) Riccati matrix

o 1 performance index.

P.E D F.: power spectral densily

function
LQ) : weighting matrix.

Q], Q; : welghting factors.
{R] : weighting matrix.
R’ : weightling factor.
(V) : output matrix
Xi : displacement of the main mass
Xo : Guassian random input.
X : displacement of massless plate
X!‘ minimal main mass acceleration
m
Y’. Yz’ Y5 :system state variables.
Z : relative displacement, Xi—X
o
Z minimal relative displacement
LU
z : relative displacement, X -X
v v o]
iZ] : wvector of contrelled outputs
fc : constant determines operation
of a filtration process
moc prrimary mass.
N : order of state space form
s : Laplace operator.
L. : time instant.
u : control law of a combined system
[ ~]
U : control law of a modified system
m
v, excitation constant.

wCt): white noise excitations.
SCL): Dirac Delta Function.
r : damping ratio of classical

passive system, Cv\a mw .

T : time instant.
w : forcing frequency.
w : cubt-of f frequency.
[ =]
w 1 upper frequency limit.
W lower frequency limit.
w : natural frequency of
v

L rassive system, V¥ Kv/m{
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