Protective Effect of Quercetin and Curcumin against Ovarian Oxidative Stress Induced by Gossypol in Albino Female Rats | ||||
Journal of Applied Veterinary Sciences | ||||
Article 11, Volume 7, Issue 4, October 2022, Page 74-80 PDF (570.27 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/javs.2022.154169.1167 | ||||
View on SCiNiTO | ||||
Authors | ||||
Mahmood A. Abdullah ; Fadwa Kh Tawfeeq | ||||
Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq | ||||
Abstract | ||||
This study aimed to investigate the effect of gossypol on ovarian physiology, which includes oxidative stress, hormone levels, and ovarian apoptosis, and detect the positive role of quercetin and curcumin against gossypol's effect. Forty-eight albino female rats were used in the experiment, divided into six groups that included the control group (corn oil), gossypol (40 mg / kg/ b.w), quercetin (100 mg / kg /b.w), curcumin (200 mg / kg / b.w), gossypol + quercetin (40 and 100 mg / kg /b.w), gossypol + curcumin (40 and 200 mg / kg /b.w). All treatments were administered orally using a gavage needle for 35 days. The results showed that gossypol significantly decreased glutathione levels compared to the control group. However, the control group showed a significant increase in malondialdehyde levels and caspase-3 levels in ovarian tissue. In addition, treatment with curcumin (alone) significantly increased the anti-Müllerian hormone level compared to the control group. Furthermore, it was observed that in treatment with the gossypol and quercetin, there were no significant differences in caspase-3 levels compared with the gossypol group. However, there was a significant increase in glutathione levels compared with the gossypol group. As well as a significant decrease in malondialdehyde levels compared to the gossypol group. More research using different concentrations of these antioxidants (quercetin and curcumin) is needed to determine their effectiveness against gossypol effects. In conclusion, gossypol causes harmful effects on the ovaries of rats by inducing oxidative stress, decreasing glutathione levels, and increasing malondialdehyde levels. | ||||
Keywords | ||||
Albino female rats; Curcumin; Gossypol; Oxidative stress; Quercetin | ||||
References | ||||
ALEKSEYEVA, I. N., MAKOGON, N. V., BRYZGINA, T. M., VOZNESENSKAYA, T. Y., and SUKHINA, V. S., 2011. Effects of NF-κB blocker curcumin on oogenesis and immunocompetent organ cells in ovarian immune injury in mice. Bulletin of experimental biology and medicine, 151(4): 432-435.https://doi.org/10.1007/s10517-011-1349-1
ALGANDABY, M. M. 2021. Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on antioxidant, anti-inflammatory and anti-apoptotic activities. Arabian Journal of Chemistry. 14(7): e103191. https://doi.org/10.1016/j.arabjc.2021.103191
ALMAGHRABI, O. A. 2015. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidneys. Saudi journal of biological sciences. 22(2): 227-231. https://doi.org/10.1016/j.sjbs.2014.12.008
ALTUNDAG, E. M., KASACI, T., YILMAZ, A. M., KARADEMIR, B., KOCTURK, S., TAGA, Y., and YALCIN, A. S., 2016. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. Journal of thyroid research, 2016, e 9843675. https://doi.org/10.1155/2016/9843675
AUGUSTYNIAK, A., BARTOSZ, G., CIPAK, A., DUBURS, G., HORAKOVA, L. U., LUCZAJ, W., and ZARKOVIC, N., 2010. Natural and synthetic antioxidants: an updated overview. Free radical research, 44(10): 1216-1262. https://doi.org/10.3109/10715762.2010.508495
AZAMI, S. H., NAZARIAN, H., ABDOLLAHIFAR, M. A., EINI, F., FARSANI, M. A., and NOVIN, M. G., 2020. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reproduction, Fertility and Development. 32(3): 292-303. https://doi.org/10.1071/RD18472
BOOTS, A. W., HAENEN, G. R., and BAST, A., 2008. Health effects of quercetin: from antioxidant to nutraceutical. European journal of pharmacology, 585(2-3): 325-337. https://doi.org/10.1016/j.ejphar.2008.03.008
CHENG, J. S., LO, Y. K., YEH, J. H., CHENG, H. H., LIU, C. P., CHEN, W. C., and JAN, C. R., 2003. Effect of gossypol on intracellular Ca2+ regulation in human hepatoma cells. Chinese Journal of Physiology, 46(3): 117-22. PMID: 14672280.
CHERAGHI, E., and ROSHANAEI, K., 2019. The protective effect of curcumin against aluminum-induced oxidative stress and hepatotoxicity in male rats. Pharmaceutical and Biomedical Research. 5(1): 11-18. https://doi.org/10.18502/pbr.v5i1.761
CIFTCI, O., OZDEMIR, I., TANYILDIZI, S., YILDIZ, S., and OGUZTURK, H., 2011. Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicology and industrial health, 27(5): 447-453. https://doi.org/10.1177%2F0748233710388452
DE CARVALHO, W. L., MAIOLI, M. A., MENDES, L. C. N., ROZZA, D. B., and MINGATTO, F. E., 2013. Mecanismos da intoxicacao do figado de rato causada pelo gossipol1. Pesquisa Veterinaria Brasileira. 33(3): 339-344. (abstract). https://doi.org/10.1590/S0100-736X2013000300011
EL-DIN, E. A. A., MOSTAFA, H. E. S., SAMAK, M. A., MOHAMED, E. M., and EL-SHAFEI, D. A., 2019. Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart? A histopathological, immunohistochemical, and genotoxic study. Environmental Science and Pollution Research, 26(21): 21556-21564. https://doi.org/10.1007/s11356-019-05433-2
ELKADY, M. A., SHALABY, S., FATHI, F., and El-MANDOUH, S., 2019. Effects of quercetin and rosuvastatin each alone or in combination on cyclophosphamide-induced premature ovarian failure in female albino mice. Human and experimental toxicology. 38(11): 1283-1295. https://doi.org/10.1177%2F0960327119865588
EL-SENOSI, Y. A. 2017. Biochemical studies on the effect of curcumin in experimentally induced osteoarthritis in rats. Benha Veterinary Medical Journal. 33(2): 46-51. https://dx.doi.org/10.21608/bvmj.2017.29987
EL-SHARAKY, A. S., NEWWAIRY, A. A., ELGUINDY, N. M., and ELWAFA, A. A., 2010. Spermatotoxicity, biochemical changes and histological alteration induced by gossypol in testicular and hepatic tissues of male rats. Food and Chemical Toxicology. 48(12): 3354-3361. https://doi.org/10.1016/j.fct.2010.09.004
GABR, A. M., SALEM, T. A., ATA, H. S., and MEKI, A. R. M., 2014. Ameliorative effect of curcumin against cadmium-induced hepatotoxicity in rats. International Journal of Phytopharmacology. 5(5): 394-402.
GADELHA, I. C. N., DO NASCIMENTO, R. A. H., SILVA, A. R., and SOTO-BLANCOl, B., 2011. Efeitos do gossipol na reprodução animal. Acta Veterinaria Brasilica, 5(2), 129-135. (abstract). https://doi.org/10.21708/avb.2011.5.2.2343
GADELHA, I. C. N., FONSECA, N. B. S., OLORISI, S. C. S., MELO, M. M., and SOTO-BLANCOl, B., 2014. Gossypol toxicity from cottonseed products. The Scientific World Journal, 2014, e 231635. https://doi.org/10.1155/2014/231635
GENG, X., HONG, Q., WANG, W., ZHENG, W., LI, O., CAI, G., and WU, D., 2017. Biological membrane-packed mesenchymal stem cells treat acute kidney disease by ameliorating mitochondrial-related apoptosis. Scientific reports, 7(1): 1-12. https://doi.org/10.1038/srep41136
GUPTA, S. C., PATCHVA, S., KOH, W., and AGGARWAL, B. B., 2012. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and experimental pharmacology and physiology, 39(3): 283-299. https://doi.org/10.1111/j.1440-1681.2011.05648.x
HAASLER, L., KONDADI, A. K., TSIGARAS, T., VON MONTFORT, C., GRAF, P., STAHL, W., and BRENNEISEN, P., 2021. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Archives of toxicology. 95(4): 1349-1365. https://doi.org/10.1007/s00204-021-02987-4
HERVE, J. C., PLUCIENNIK, F., BASTIDE, B., CRONIER, L., VERRECCHIA, F., MALASSINE, A., and DELEZE, J., 1996. Contraceptive gossypol blocks cell-to-cell communication in human and rat cells. European journal of pharmacology, 313(3), 243-255.
HOLLMAN, P. H., and KATAN, M. B., 1999. Dietary flavonoids: intake, health effects and bioavailability. Food and chemical toxicology, 37(9-10): 937-942. https://doi.org/10.1016/0014-2999 (96)00476-1
HONG, M. W., CHOI, S. Y., KIM, H., and LEE, S. J., 2021. Transcriptome changes in porcine granulosa cells in response to gossypol cytotoxicity. Research Square. 1: 1-32. https://orcid.org/0000-0002-1603-7145
JIA, Y., LIN, J., MI, Y., and ZHANG, C., 2011. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles. Reproductive Toxicology. 31(4): 477-485. https://doi.org/10.1016/j.reprotox.2010.12.057
KOVACIC, P. 2003. Mechanism of drug and toxic actions of gossypol: focus on reactive oxygen species and electron transfer. Current Medicinal Chemistry, 10(24): 2711-2718. https://doi.org/10.2174/0929867033456369
LI, Y. F., BOOTH, G. M., and SEEGMILLER, R. E., 1989. Evidence for embryotoxicity of gossypol in mice and chicks with no evidence of mutagenic activity in the Ames test. Reproductive Toxicology, 3(1): 59-62. https://doi.org/10.1016/0890-6238 (89)90039-7
LUZ, V. B., GADELHA, I. C. N., CORDEIRO, L. A. V., MELO, M. M., and SOTO-BLANCOl, B., 2018. In vitro study of gossypol's ovarian toxicity to rodents and goats. Toxicon, 145: 56-60. https://doi.org/10.1016/j.toxicon.2018.02.051
MOON, D. O., CHOI, Y. H., MOON, S. K., KIM, W. J., and Kim, G. Y., 2011. Gossypol decreases tumor necrosis factor-α-induced intercellular adhesion molecule-1 expression via suppression of NF-κB activity. Food and chemical toxicology, 49(4): 999-1005. https://doi.org/10.1016/j.fct.2011.01.006
MUN, S. H., JOUNG, D. K., KIM, Y. S., KANG, O. H., KIM, S. B., SEO, Y. S., and KWON, D. Y., 2013. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 20(8-9): 714-718. https://doi.org/10.1016/j.phymed.2013.02.006
NASEER, Z., AHMAD, E., EPIKMEN, E. T., UCAN, U., BOYACIOGLU, M., IPEK, E., and AKOSY, M., 2017. Quercetin-supplemented diet improves follicular development and oocyte quality and reduces ovarian apoptosis in rabbits during summer heat stress. Theriogenology, 96: 136-141. https://doi.org/10.1016/j.theriogenology.2017.03.029
NOWZARI, F., RAHMANIFAR, F., TANIDEH, N., DORVASH, M. R., KHORADMEHR, A., BAGHBAN, N., and TAMADON, A., 2021. Dietary cottonseed consumption induced subfertility in male and female rats: a potent eco-friendly rodenticide compound. Research Square, 1: 1-20. https://doi.org/10.21203/rs.3.rs-538459/v1
OYEWOPO, O. A., Dare, J. B., Towolawi, A. O., Olaniyan, O. T., Omotoso, O. D., Shafe, M. O., and OWOLABI, O. J., 2012. Cottonseed extract and anti-fertility: metabolic versus hormonal changes in rat model. World Journal of Life Sciences and Medical Research, 2(5): 196-199. ISSN 2249-0574
PANDEY, R., and SAIRAM, M., 2009. Modulation of ovarian structure and abdominal obesity in curcumin-and flutamide-treated aging FSH-R haploinsufficient mice. Reproductive Sciences, 16(6): 539-550. https://doi.org/10.1177%2F1933719109332822
RANDEL, R. D., CHASE JR, C. C., and WYSE, S. J., 1992. Effects of gossypol and cottonseed products on reproduction of mammals. Journal of Animal Science, 70(5): 1628-1638. https://doi.org/10.2527/1992.7051628x
RANDEL, R. D., WILLARD, S. T., WYSE, S. J., and FRENCH, L. N., 1996. Effects of diets containing free gossypol on follicular development, embryo recovery and corpus luteum function in Brangus heifers treated with FSH. Theriogenology, 45(5): 911-922. https://doi.org/10.1016/0093-691X (96)00021-0
RASHIDI, Z., ALEYASIN, A., ESLAMI, M., NEKOONAM, S., ZENDEDEL, A., BAHRAMREZAIE, M., and AMIDI, F., 2019. Quercetin protects human granulosa cells against oxidative stress via thioredoxin system, Reproductive biology. 19(3): 245-254. https://doi.org/10.1016/j.repbio.2019.07.002
SANTANA, A. T., GUELFI, M., MEDEIROS, H. C., TAVARES, M. A., BIZERRA, P. F., and MINGATTO, F. E., 2015. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E. Biological research, 48: 1-8. http://dx.doi.org/10.1186/S40659-015-0026-7
SCAPAGNINI, G., SONYA, V., NADER, A. G., CALOGERO, C., ZELLA, D., and FABIO, G., 2011. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Molecular neurobiology, 44(2): 192-201. https://doi.org/10.1007/s12035-011-8181-5
SEDLAK, J., and LINDSAY, R. H., 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 25: 192-205. https://doi.org/10.1016/0003-2697 (68)90092-4
SENGUL, E., GELEN, V., GEDIKLI, S., OZKANLAR, S., GUR, C., CELEBI, F., and CINAR, A., 2017. The protective effect of quercetin on cyclophosphamide-Induced lung toxicity in rats. Biomedicine and Pharmacotherapy, 92: 303-307. https://doi.org/10.1016/j.biopha.2017.05.047
TIETZ, NW, 1999. Textbook of clinical chemistry. 3rd ed. C.A. Burtis, E.R. Ashwood, W.B. Saunder. Pp 819-861. https://doi.org/10.1515/cclm.2000.37.11-12.1136
UEKI, M., UENO, M., MORISHITA, J., and MAEKAWA, N., 2013. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. Journal of bioscience and bioengineering, 115(5): 547-551. https://doi.org/10.1016/j.jbiosc.2012.11.007
WANG, J., QIAN, X., GAO, Q., LV, C., XU, J., JIN, H., and ZHU, H., 2018. Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. Journal of ovarian research, 11(1), 1-11. https://doi.org/10.1186/s13048-018-0421-0
WIERUSZ-WYSOCKA, B., WYSOCKI, H., BYKS, H., ZOZULINSKA, D., WYKRETOWICZ, A., and KAZMIERCZAK, M., 1995. Metabolic control quality and free radical activity in diabetic patients. Diabetes research and clinical practice, 27(3): 193-197. https://doi.org/10.1016/0168-8227 (95)01043-D
YAN, Z., DAI, Y., FU, H., ZHENG, Y, BAO, D., YIN, Y. and CUI, Y., 2018. Curcumin exerts a protective effect against premature ovarian failure in mice. Journal of molecular endocrinology, 60(3): 261-271. https://doi.org/10.1530/JME-17-0214
ZHANG, D. W., FU, M., GAO, S. H., and LIU, J. L., 2013. Curcumin and diabetes: a systematic review. Evidence-Based Complementary and Alternative Medicine, 2013, e 636053. https://doi.org/10.1155/2013/636053 | ||||
Statistics Article View: 381 PDF Download: 442 |
||||