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ABSTRACT 

We propose an Arnoldi-based numerical method to compute the 
transfer function matrices of linear lmaultivariable system. The 
method is composed only of basic linear algebraic operations such 
as matrix-vector multiplication and solution of upper Hessenberg 
linear systems of smaller dimensions. The efficiency, compared 
with other methods, is shown by means of operations Counts. An 
illustrative numerical example is given to demonstrate the 
accuracy compared with the direct method. 

Prof. of Mathematics, Benha Higher Institute of Technology. 
Benha, Egypt. 

*ea Dept. of Mathematics, Faculty of Science, Menoufia University. 



FOURTH ASAT CONFERENCE 
GC-3 374 

\14-16 May 1991 , CAIRO 

I- INTRODUCTION 

Consider the linear time-invariant system 

xCt) = A x(t) + B uCt) 

y(t) = C xCt) + D uCt) 
C1.1) 

where xCt) is an n-vector of states, uCt) is a p-vector of inputs 
and yCt) is an m-vector of outputs. A,B,C and D are matrices of 
proper dimensions. The design and analysis of time-invariant 
linear control systems give rise to variety of interesting linear 
algebra problems. One of these problems is the computation of the 
transfer function matrix which is defined by, 

GCs) = C CsI - A) B + D 
ro C1. 2) 

The computation of the matrix GCs) has been studied in control 
literature. Among the recent known methods are : Pole-Zero 
approach [3,7) and the approach in [5) which is based on some 
determinant identities and characteristic polynomial computation 
of an upper Hessenberg matrices. The above methods compute GCs) 
one element at a time Csingle input - single output subsystems 
CA,b,c ,d )), where each element is written in terms of i 	13 - 
denominator and numerator polynomials. They first require a 
reduction to Hessenberg form, for each input-output pair, to 
obtain the corresponding minimal order subsystem. Besides the 
computational effort of the reduction, it is known [4] that for 
large and sparse matrices the reduction to Hessenberg form Cfor 
example using orthogonal transformation) is not numerically 
effective. 

In [3,7) the coefficients of the denominator polynomial, for each 
Ci,j)- element, is obtained by computing the eigenvalues of the 
state matrix of the corresponding subsystem. The coefficients of 
the corresponding numerator polynomial is obtained by solving a 
generalized eigenvalue problem. Solving algebraic or generalized 
eigenvalue problem not only expensive, but also for systems with. 
ill- conditioned eigenvalue or generalized eigenvalue problem the 
computed matrix GCS) will be inaccurate. 
The, recently, efficient method proposed in [5) writes the 
denominator and numerator polynomials in terms of two determinants 
of upper Hessenberg matrices. Using a variant of Hymand's method 
[8) 	the two1 a determinants computation is accomplished in 
approximatly 3 -nc 

 + n
c  C where n is the dimension of the c  

corresponding controllable and observable subsystem). 
In this paper, we propose an efficient method for computing the 
transfer function matrix based on Arnoldi - reduction in the 
initial process. A solution of upper Hessenberg. linear systems of 
the same dimensions is followed to obtain the matrix as) one 
column at a ti me, 

1 
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Since Arnoldi's algorithm uses matrix-vector multiplication only, 
then it is suitable for large and sparse matrices (4). For each 
column vector computation, the method consists of choosing an 
initial Arnoldi-vector appropriately and running m-steps in the 
Arnoldi-algorithm. Finally, a solution of an m x m Hessenberg 
system followed by a matrix-vector multiplication to obtain the 
column vector. Besides the method is effective for large and 
sparse matrices, a certain amount of parallelism is involved which 
makes it suitable for parallel implementation. 

II- THE PROPOSED ALGORITHM 

We are concerned with an efficient computation of the 
function matrix defined in C1.2). First, we drop the matr 
in the final step we add'it to the transfer function 
Therefore, our problem is reduced to the computation 
matrix, 

transfer 
ix D and 
matrix. 
of the 

GCs) = C CsI - A3-1  B. 

The algorithm evaluates G(s) one column at a time, i.e. we 
evaluate, 

g Cs) := C CsI - A) 
1  b, 	i = 1,2 	 '17). i 	n 	 t  

We shall describe first the Arnoldi-algorithm and state a lemma, 
because of their importance in developing the technique. 

A- The Method of Arnoldi 

Given a real constant unsymmetric n x n matrix A. Let v a 

starting vector of norm one, and let m be chosen not exceeding n. 

	

The method generates a sequence of vectors v ,v 	and an mxm 
I 2 
V := Iv 	3. This We 

= 1 ,2 , 	 h. 	= CA v., vI,  , 

=: A v - 	h„ v 
1+1 	i 	i =I 	LI 	I. 

h 	: = 1 1 Z 
	

II . 

and 

v := 	h 
i+i 	J•Id 

 

Define H as the Cm+1) x m matrix whose 
m 

 

then H is the mxm matrix obtained from 

row. 

nonzero entries are hid,  
H by deleting its last 

Ty, 

   

upper Hessenberg matrix H := VTAV, where i.   

is done by the following algorithm, 
For j = 1,2,...-,m do 

j 



in step 3, requires only 7  
flops.  Thus , f oY-  each j , 4 he f7s.-1t.1 flops.  

thus requires 0( n2)operations. 

(43 LU decompo iti,r, of CsI - 
7f. 

i 	1 t
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B- Lemma 67 

Let V be the nxm matrix and H the mxm Hessenberq matrix generated 

by Ar nol di -al gori thm with an initial  vector v : = b/H b H , for 
some COI umn vector b. Then the following equivalence relation, 

CsI - A3-1  b ZY-.. V CsI 	- H 3-1  II b II el  n 	 TY, 

holds, where eI. is the first column of the mxm 

Upon the above lemma , 	the pr oposed algorithm 
fol 1 owi ng steps. 

For 	i 	= 1 	: 	p, 	do 

identity matrix. 

may then takes the 

Step 1.  Compute the i-th starting vector

the i-th column of the matrix B. 

H b H  where b 	is 
i" 

Step 2.  Perform m-steps of the.Ar nol di-al gor thm starting with the 
vector v 	to generate 	matrices V 	and H

. Step 3.  Solve the upper Hossenberg system, 

CsI 	- 	Hi3 	yi 	= I I bll e. 

Step 4.  Compute the column gCs3 which is given by. 
Cs3 	:= C V 	

y.. gt,  

Step 5. 5. Form your 	requir ed  transfer 	function will be gi ven by, matrix GCs3 	which 

GCs) 	: = 	[ glCs), 	, gCs33.  
P 

C- Remarks About. The Algorithm 

C1) The chosen m in the algorithm is in fact the number of output. vectors. 
C23 For some 

C al 13 the resul ti ng system {v 	 v 	,v .3 
might be not or thonor mal . A remedy for this i s the 

2i 	mi 

r eor thogonal i zati on . usi na the modi f'i ed Gram-Schmidt. method devel oped i n I 27. 

C 33 The method depends heavi 1 y on Ar nol di al gori thm, which i 
 is stable of 0(n2

). For i = 1,2,... ,p, generating H and V are 
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(5) The computation of each column vector, in step 4, is thus 
requires 2mn flops. 

'6.)  If the matrix A is large and sparse, thus if a multiprocessor 
computer architecture is used we can apply known Ell 
techniques for parallel solution of the sparse simultaneous 
linear systems, in step 3 Cp processors are employed to 
compute the transfer function matrix). 

III THE ALGORITHM EFFICIENCY 

An efficient method w.a= proposed to compute the transfer function 
matrix of linear multivariable systems. A simple operations count 

shows that.the proposed method rquires only 	m
zp + 2nmp 

+o- C.pn vOperations: 	This 	operations 	count 	include 	running 

Arnoldi algorithm p - tims , solvig p - upper Hessenberg linear 
systems and finally.a matrix - vectors multiplications to obtain 
the required matrix. This count compares very favorably to the 
recent known exisiting methods. The Misra - Patel method [5] 

. 	9  
requires - 3

n
a  Cp+m) operations just to find the minimal order 
 1 

subsystem for each input - output pair. Moreover, it takes -".:i na +n c 

operations to compute the.two detrminants corresponding to each 
element computation of the transfer function matrix. 	Since, for 

control linear systems we have, in general , m , p < n, than our 
algorithm is quite efficient. 

IV THE ALGORITHM ACCURACY 

In Misra - Patel method [5], the accuracy was tested by computing 
the coefficients of the denomenator and the numerator of the 
transfer function matrix elements using examples with known exact 
coefficient transfer functions. 	Since our method computes the 
transfer function matrix ,directy, one column at a time, then we 
cannot compare the accuracy of the two methods. Therefore, we 
compare the accuracy with the exact direct method using randomly 
generated examples. 
In Example 1, we illustrate the algorithm by computing the first 
column of the transfer function matrix where A is 2x3, C is 2x3, 
and bl is 3x1 using s=2. We applied Arnoldi algorithm to get an 
upper Hessenberg matrix H of size 2x2 and the corresponding 3x2 
orthonormal matrix V Cusing hand ciculation). 
In Example 2, we did the same steps, with A is 10x10. C is 
6x10,and bl is 10x1 using different values for s. In this example 
computa tions were done using the MATLAB and a software package 
designed by Youssi f SaadC Univeristy of Illinois USA) for Arnoldi 
algorithm. . 	The results are quite satisfactory. 



Example 1 

1 1 2 31 
A = 	1 	1 

C1 
1 C = 

1 	1 1 1 1.1 

r 

Lo] 
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From Arnoldi we have 

1 	1/2 1 0 

H = , 	\I 	-,--- 

s = 2 

12-  

Direct Method : 

We have o - 1.2 
(sI -AD 	1  0 

-1/2 -1/2 	1 

Cs) = C CsI - AD-1  b 

2 3 o 1/2 0 1 

1 1 1 -1,2 0 0] [ 0 

-5/21 

-1 /2 1/2 1 0 -1 

Proposed Method : 

g Cs) = C V CsI - H ) H b He , 

[1 2 3] 
1 1 1 

   

 

0 

 

O 

  

 

0 

   



0.2113 
0.7560 
0.0002 
0.3303 
0.6654 
0.6284 
0.8497 
0.6857 
0.8782 
0.0684 

A 7.: 
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1 

A is 10x10 randomly generated matrix 

Columns 1 through 7 

	

0.56013 	0.3076 	0.5015 	0.2006 	0.4095 	0.3874 

	

0.6624 	0.9330 	0.4369 	0.1280 	0.8784 	0.9223 

	

0.7264 	0.2146 	0.2693 	0.7783 	0.1138 	0.9488 

	

0.1985 	0.3126 	0.6326 	0.2119 	0.198 	0.3435 

	

0.5443 	0.3616 	0.4052 	0.1121 	0.56
9
19 	0.3760 

	

0.2321 	0.2922 	0.9185 	0.6857 	0.5296 	0.7341 

	

0.2312 	0.5664 	0.0437 	0.1531 	0.6854 	0.2616 

	

0.2165 	0.4826 	0.4819 	0.6971 	0.9906 	0.4993 

	

0.8834 	0.3322 	0.2640 	0.8416 	0.5042 	0.2639 

	

0.6525 	0.5935 	0.4148 	0.4062 	0.3494 	0.5254 

Columns 8 through 10 

0.5376 
0.1200 
0.2256 
0.6274 
0.7609 
0.0496 
0.6724 
0.2017 
0.3912 
0.8300 

0.5879 
0.4829 
0.2233 
0.8401 
0.1206 
0.2855 
0.8608 
0.8494 
0.5257 
0.9931 

0.6489 
0.9923 
0.0500 
0.7486 
0.4104 
0.6085 
0.8544 
0.0643 
0.8279 
0.9262 

H is upper Hessenberg matrix generated form Arnoldi 

4.0949 1.7610 0.3198 0.0822 -0.2915 -0.2681 
2.1100 0.9781 0.5185 0.0822 -0.2341 -0.2682 

0 0.6057 0.3369 0.2070 -0.2759 -0.0164 
O 0 0.5554 -0.2938 -0.1950 -0.3541 

H = 	0 	0 	0 	0.6514 	-0.1494 	0.0691 

O 0 	0 	0 0.7157 -0.4967 

V is the orthonormal matrix 

V 4.  

0.3019 
0.3043 
0.4348 
0.0303 
0.2981 
0.0666 
0.3878 
0.1427 
0.2912 
0.5267 

0.0010 0.3452 -0.3205 -0.2920 -0.0253'-  

0.3494 -0.5634 -0.4253 -0.2839 0.3048 
-0.3443 0.0353 -0.2925 0.5653 -0.2969 
0.5352 0.1208 -0.1569 -0.0269 0.0345 
-0.0514 0.4610 0.1901 -0.468B 0.3966 
0.5126 0.1257 0.0641 0.1550 -0.0114 
-0.0115 -0.2675 0.6903 0.1932 0.2696 
0.3241 	0.4501 	0.0871 	0.2021 	-0.1461 
0.2492 -0.1948 0.2628 -0.4137 -0.7439 
-0.2006 -0.0048 -0.1130 0.1439 0.1107 
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CoJowils 1 thpouyh 

	

0.2113 	0.4524 	0.6538 	0.7469 	0.1167 	0.2260 	0.2408 

	

0.0824 	0.8075 	0.4899 	0.0378 	0.6250 	0.8159 	0.6907 

	

0.7599 	0.4832 	0.7741 	0.4237 	0.5510 	0.2284 	0.1062 C = 

	

0.0087 	0.6135 	0.9626 	0.2613 	0.3550 	0.8553 	0.2640 

	

0.8096 	0.2749 	0.9933 	0.2403 	0.4943 	0.0621 	0.7034 

	

0.8474 	0.8807 	0.8360 	0.3405 	0.0365 	0.7075 	0.4021 

Columns 8 through 10 

F 

0.6553 
0.9700 
0.0380 
0.0988 
0.2560 
0.5598 

0.- 5667 
0.5712 
0.8160 
0.0569 
0.5596 
0.1249 
0.7279 
0.2678 
0.5465 
0.9885 

0.9166 
0.1402 
0.7054 
0.0178 
0.2611 
0.1358 

0.0503-  
0.5782 
0.2432 
0.9448 
0.5876 
0.7256 

bl = 

• 	

s1=10 

D 	g1=C4inv(s10 A)*b1 

91 = 

0.4258 
0.5666 
0.4691 
0.5007 
0.5465 
0.6026 

)> s2=20 

• 	

g1=C.minv(s2•1-A)*bl 

9 1  = 

0.1357 
0.1865 
0.1584 
0.1708 
0.1917 
0.2011 

g1=C*Ve inv(sl*I-H>mnorm(b1)4.el 

91  = 

0.4255 
0.5662 
0.4692 
0.5009 
0.5464 
0.6026 

g 1=C*V• inv (52-1.1-H) -11 nO rmlb1)*e1 

gl = 

0.1357 
0.1865 
0.1584 
0.1708 
0.1917 
0.2011 



GC-3 381 

)) s3=30 

)) g1=C*inv(s3*1-A )*bl 

gl = 

0.0802 
0.1115 
0.0955 
0.1033 
0.1171 
0.1208 
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g1=C*V*inv(s3*1-H)wnorm(b1).e1  

0.0802 
0.1115 
0.0955 
0.1033 
0.1171 
0.1208 

1 

)) 54=40 

D g1=C*inv(s4*i-A)*bl 	)) g1=C*V4tinv(s441 1 -H)*norm( b1)*el  

gi = 
	 • gl 

0.0569 

0.0795 
0.0684 
0.0741 
0.0843 
0.0863 

s5= 50 

)) g1=C4inv(s5.01-A)41, b1 

gl 

0.0441 
3.0618 
0.0533 
0.0577 
0.0659 
0.0672 

0.0569 
0.0795 
0.0684 
0.0741 
0.0843 
0.0863 

N g1=C*0*inv(s541 I -14)*norm( b1)*eI  

01  

0.0441 
0.0618 
0.0533 
0.0578 
0.0659 
0.0672 

V- CONCLUSION 

An Arnoldi-based method is presented for efficient computation of 
transfer function matrices one column at a time. The efficiency 
and the performance Cin case of large and sparse state matrices) 

were compared with some recent methods. An illustrative numerical 
example was given to test the accuracy compared with the exact 
direct method. 
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