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Arnoldi Method for Transfer Function Matrices
Computation of Linear Multivariable Control Systems.
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ABSTRACT

We propose an Arnoldi-based numerical method to compute the
transfer function matrices of linear [maultivariable system. The
method is composed only of basic linear algebraic operations such
as matrix-vector multiplication and solution of upper Hessenberg
linear systems of smaller dimensions. The efficiency, compared
with other methods, is shown by means of operations. Counts. An
illustrative numerical example is given to demonstrate the
accuracy compared with the direct method.
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I- INTRODUCTION
Consider the linear time-invariant system
xCLd = A xCtd + B ultd
€l1.1>
yCtd = C xCt2> + D uCtd

where x(t) is an n-vector of states, ulCt) is a p-vecior of inputs
and y(td is an m-vector of outputs. A,B,C and D are matrices of
proper dimensions. The design and analysis of time-invariant
linear control systems give rise to varisety of interesting linsar
algebra problems. One of these problems is the computation of the
transfer function matrix which is defined by,

-1

GCsD =CC:;Ir - AD B + D Ci1.2>

The computation of the matrix G(s) has been studied in control
literature. Among the recent known methods are Pole-Zero
approach [3,7] and the approach in [5) which is based on some
determinant identities and characteristic pel ynomial computation
of an upper Hessenberg matrices. The above methods compute GCs)

one element at a time (si ngle input - single output subsystems
(A’b,’ci .d\J)) . where each element is written in terms of
denominator and numerator polynomials. They first require a
reduction to Hessenberg form, for each input-ocutput pair, to

obtain the corresponding minimal order subsystem. Besides the
computational effort of the reduction, it is known [4) that for
large and sparse matrices the reduction to Hessenberg form C(for
example using or thogonal transformation) is not numerically
ef fective. '

In [3,7) the coefficients of the denomi nator polynomial, for each
(i, jd>- element, is obtained by computing the eigenvalues of the
state matrix of the corresponding subsystem. The coefficients of
the correspording numerator polynomial is obtained by solving =a
generalized eigenvalue problem. Solving algebraic or generalized
eigenvalue problem not only expensive, but alsoc for systems with
ill- conditioned eigenvalue or generalized eigenvalue problem the
computed matrix G(S) will be inaccurate.

The, recently, efficient method proposed in [5)] writes 4ihe
denominator and numerator pPelynomials in terms of two determinanis
of upper Hessenberg matrices. Using a variant of Hymand’s method
[8] the two dse-terminants computation is accompl i shed in
approximatly 3N, ¢ n_ ¢ where n_ is the dimension of the

corresponding controllable and obser vable subsystem.

In this paper, we propose an efficient method for compuling the
'.Lransf‘er function matrix based on Arnoldi - reduction in the
initial process. A sclution of upper Hessenberg linear systems of

the same dimensions is followed tc obtain the matrix & s) one
column at a time. ‘
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Since Arncoldi’'s algorithm uses matrix-veclor multiplication only,
then it is suitable for large and sparse matrices [4]. For each
column wvector computation, the method consists of choosing an
initial Arnoldi-veclor appropriately and running m-steps in the

Arnoldi-algorithm. Finally, a solution of an m » m Hessenberg
system followed by a matrix-vector multiplication to obtain the
column vector. Besides the method is effective for large and

sparse matrices, a certain amount of parallelism is invelved which
makes it suitable for parallel implementation.

I11- THE PROPOSED ALGORI THHM

We are concerned with an efficient computation of the transfer
function matrix defined in €1.2>. First, we drop the matrix D and
in the final step we add it to the transfer function matrix.
Therefore, our problem is reduced to the computation of the
matrix,

-1

&sd) = C CsIr- AD B.

The algorithm evaluates G(s) one column at a tLime, i.e. we
evaluate,

-4

gds) := C (sl - Ad b, i = 1,800 00 i Ps
1 T L

We shall describe first the Arnoldi-algorithm and state a lemma,
because of Lheir importance in developing the technique.

A- The Method of Arncldi

Given a real constant unsymmetric n x n matrix A. Let v, a

starting vector of norm one, and let m be chosen not exceeding n.

The method generates a sequence of vectors L R L™ and an mxm
upper Hessenberg matrix H := VAV, where V := [u’.....v"]. This
is done by the following algorithm,
For j =1,2,....,m do

h_A:=CA v, U)|l=1.2'...-'_j|

i) 3 L

- j

v = Av - L h v

1+ L=4 1) L

~

e I uj‘l I
and

v 1= v < h

1+ g} J*1,)

Define Hm as the (m+1) x m meirix whose nonzero entries are hu.-
Lthen Hm is the mxm matrix obtained from H" by deleting its last
TOW.

i
L
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B- Lemma [6]

Let V be the nxm matrix and H the mxm Hessenberg matrix generated
by Arnoldi-algeorithm with an initial vector o= bAl b Il , for

some column vector b. Then the following equivalence relation,

CsI - A 'p 2>y CsI

™ !

~—H)_1Hbllel

holds, where e, is the first column of the mxm identity matrix.
Upon the above lemma, the proposed algorithm may then takes the
following steps.
For i =1 : p, do
bt
Step 1. Compute the i-th starting vector o ;= M5l where b‘ is

i
T

the i-th column of the matrix B.
Step 2. Perform m-steps of the Arnoldi-algorithm starting with the
vector v Lo generate the matrices Vl and HV

Step 3. Solve the upper Hessenberg system,

(s -~ H.> ¥ = 11 le e,

m

Step 4. Compute the column gfs) which is giwven by,

g\Cs) := C \.’iL L

Step 5. Form your required transfer function matrix &(sd) which
will be given by,

Ks) = [gleD,....,ngSDJ.

C- Remarks About The Algorithm

€13 The chosen m in the algorithm is in fact the number cof out put

veclors,
(2> For some o Calld the resulting system <o LT RNy T
' 11 21 L
might be not or thonormal . A remedy for this is the
reorthogonalization | using the modified Gram-Schmidt method

developed in ({21.
(3> The method depends heavily on Arnoldi algorithm, which is

-2 ,
stable of OXn*. For i = 1,2,...,p, generating H and V are
L i

thus requires C{pnzj operations,

C4> LU decomposition ©f €sI - HD, in step 3, requires only L
k1] v ="

flops. Thus, for each 1, the onled =~ . 3 osabem Lakes
flops.

r-
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(5) The computation of each column vector, in step 4, is thus
requires =mn flops.

(B) If the matrix A is large and sparse, thus if a multiprocessor
computer architecture is used we can apply known [11
techniques for parallel soclution of the sparse simultaneous
linear systems, in step 3 (p processors are employed to
compute the transfer function matriso.

11T THE alLGORITHM EFFICIENCY

An aificient method was propossd to compute the transfer function
matrix of linear multivariable systems. A simple operations count

shows that the proposed method rquires only mzp +  Znmp
+oC an»Oper aticns. This oper ations count incl ude running
Arnoldi algorithm p - tims , selvig p — UpPpPer Hessenberg linear
systems and finally a matrix - vectors multiplicaticons to obtain
the required matrix. This count comparss very favorably to the
recent known exisiting methods. The Misra - Patel method [85]

=
requires énan+m) operations just to find the minimal order
. 1
subsystem for each input - output pair. Moreover, it tLakes -—Bnc+n¢

oparztions to compute the.two detrminants corresponding to each
element computation of the transfer function matrix. Since, for
control linear systems we have, in general, m , P < n, then our
algorithm is quite efficient.

iV THE ALGORITHM ACCURACY

In Misra - Patel method [S51, the accuracy was tested by computing
the coefficients of the denomenator and the numerator of the
transfer function matrix elements using examples with known exact
coefficient transfer functions. Since our method computes the
transfer function matrix ,directy, one column at a time, then we
cannot compare the accuracy of the twe methods. Therefore, we
compare the accuracy with the exact direct method using randsmly
generated exanpes.

In Example 1, we illustrate the algorithm by computing the first
column of the transfer function matrix where A is 3x3, C is 8x3
and bl is 3%l using s=2. We applied Arnoldi algorithm to get an
upper Hessenberg matrix H of size ax& and the corresponding 3xa
orthonormal matrix V Cusing hand clculaticond.

In Example &, we did the same steps, with A is 10x10, C is
6x10,and bl is 10x1 using different values for s. In this example
computa tions were done using the MATLAB and a software package
designed by Youssif Saad( Univeristy of Illinois USAD for Arneldi
algorithme : The results are quite satisfactory.

P
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A is 10%x10 randemly generated matrix

Columns 1 through 7

0.2113
0.7560
0.0002
0.3303
0.6654
0.6284
0.8B497
0. 6857
0.8782
[0.0684

Columns B

0.5376
0.1200
0.2256
0.6274
0.7609
0.0496
0.6724
0.2017
0.3912
0.8300

0.54608
0.6624
0.7264
0.1985
0.5443
0.2321
0.2312
0.2165
0.B8834%
0.6525

through

0.5879
0.4829
0.2233
0.8401
0.1206
0.2855
0.8408
0.84%94
0.5257
0.9931

10

0.3076
00,9330
O.2146
0.3126
0.3616
o.292e
0.5664
0.4826
0.3322
0.5935

0.64B89 |
0.9923
0.0500
0.7486
0.4104
0.6085
0.8544
0.0643
0.8279
0.9262 |
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0.5015
0,.436%
0.2693
0.6326
0.405e2
0.9185
0.04637
0.4819
0.2640
0.4148

0.20806
0.1280
0.7783
0.211%9
0.1121
0.6857
0.1531
0.6971
0.B41b
0.4062

H is upper Hessenberg matrix generated form Arnoldi

4,094%9
2.1100

b
L]
00D

1.7610

0.9781
0.6057

0
¢]
o

0.3198
0.5185
0.33469
0.5554
o}
o

V is the ortbhonormal matrix

0.3019
0.3043
0.4348
0.0303
0.2981
V = 10.0666
0.3878
0.1427
0.2912
0.5267

e

0.0010
0.364%4
-0.3443
0.5332
-0.0514
0.5126
-0.0115
0.3241
0.24%2
-0.2006

0.3452
~0.5634
0.0353
0.1208
0.4610
0.1257
=0.2675
0.4581
~0.1948
-0.0048

0.0822
0.08Bze2
0.2070
-0.2938
0.63514
0

-0.3205
-0.4253
-0.2925
-0.156%9
0.1901
0.0641
0.6903
0.0871
0.2628
~-0.1130

-0.2915
=0,2341
-0.2759
-0,1950
-0.1494
0.7157

-0.2920
-0.283%
0.9653
-0.026%
-0.44688
0.1550
0.1932
0.2021
-0.4137
0.143%

0.4095
0.8784
0.1138
0.1998
0.5619
0.52%96
0.6B54
0.9906
0.5042
0.3494

-0.2681
-0.26882
-0.0164
-0, 3541
0.06%1
-0.4967

-0.0253
0.3048
-0.296%
0.0345
0.3966
-0.0114
0.2696
-0.1461
-0.743%9

0.1107

0.3874
0.9223
0.9488
0.3435
00,3760
0.7341

0.24616
0.4993
0.2639
0.5254
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Coluwims 1 Lhy augh 7
0.2113 0.4524
0.0824 0.8075
0.759%9 0.4B32

=|(0.0087 0.6135
0.B0%s% 0.2749
0.8474 0.8807

Columns 8 through 10

0.6553 0.9166
0.9700 0.1402
0.0380 0.7054
0.0968 0.0178
0.2560 0.2611
0.5598 0.1358

[0.5667 ]
0.5712
0.8160
0.0569
0.55%96
0.1249
0.7279
0.2678
0.5465
| 0.9885 |

» s1=10

» gi=C¥invisli#*i-A)«b]

91 =

0.4258
0.5666
0.44691

0.5007
0.5465
0.6026

» s2=20

» gl=C¥#inv(sd#i-A)xbi

gl =

0.1357
0.1B65
0.158B4
0.1708
0.1917
0.2011

0.6538
0.4899
0.7741
0.9626
0.9933
0.8360

0.0503

1 0.5782

0.2432
0.%448
0.5874
0.7256

gl =

gl =

0.7469
0.0378
0.4237
0.2613
0.2403
0.3405

Y gl=Cuvsinv

0.4255
0.5&42
O.4692
0.500%9
0.5464
0.6026

G.1357
0.1865
0.1584
0.1708
0.1917

0.2011
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0.1167
0.6250
0.5510
0.3550

0.4943 .

0.0365

(sluI—H)*narm(bIJ*el

0.2260
0.815%9
0.2284
0.8553
0.0621
0.7075

» 91=C*Uﬁinv(52ﬂI—H)*norm(bl)iel

’

CAIRO

0.2408
0.6907
0.1062
0.2640
0.7034
0.4021
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» 3=30
» gl=C*inv(§3ii—A)*bl » 91=C*V*inv(53*l—H)¢n0rmlbl)’el
g] = g] =
0.0BOZ 0.0802
0.1115 0.1115
0.0935 0.0955
0.1033 0.1033
0.31171 0.1171
0.1208 0.1208
» s4=40
» gl=Ceinvis4si-A)sbl » gl=CiV¢inv(sQIl-H)“norm(bl)*el
91 = gl =
0.056% 0.05469
0.0795 0.0795
0.06B4 0.0684
0.0741 . 0.0741
0.08B43 0.0843
00,0863 0.0863
5= 50
» gl:C«inv(SSci-A)ibl » 91=C'V‘iﬂv(sS*I-H)ﬁnorm(bl)ue}
gl -l ql =
0.0441 0.0441
0.0618B 0.0618
9,039 0.0533
0.0577 0.0578
0.065% 0.065%
0.0872 0.0672

V- CONCLUSION

An Arnoldi-based method is presented for efficient computation of
transfer function matrices one column at a time. The efficiency
and the performance (in case of large and sparse state matrices)
were compared with some recent methods. An illustrative numerical

example was given to test the accuracy compared with the exact
direct method.

-
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