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I. INTRODUCTION 

ANY purposes necessitate the use of high-

resolution (HR) images. Super-resolution (SR) 

reconstruction is often regarded as an efficient 

method of increasing image spatial resolution. The resolution 

of an image is highly important in image processing. The 

quality of an image determines how much information can be 

extracted from it. It will be exceedingly difficult and deceptive 
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to understand the image if it is degraded. As a result, a zoom is 

used to enlarge the image areas. Unfortunately, the 

interpolation technique produces a fuzzy and low-resolution 

(LR) image, when zoomed past its resolution. Creating the 

required information in the original image is, in reality, 

difficult. The use of super-resolution methods is another option 

to guess this information [17, 40, 41]. The purpose of the multi-

frame super-resolution technique is to generate an HR image 

from a succession of LR images that have been degraded by 

noise, blur, and decimation [34]. Medical diagnostics [22], 
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 Abstract— High-resolution images are often required and desired for most 

applications, as they incorporate complementary information. However, the 

optimal utilization of sensor technology and visual technology to improve picture 

pixel density is often limited and prohibitively expensive. As a result, employing 

an image processing method to build a high-resolution image from a low-

resolution one is a costly and comprehensive option. The goal of video super-

resolution is to restore intricate points and reduce the sensory effects. This 

research builds on the multi-frame super-resolution approach by using wavelet 

analysis to train convolutional neural networks (CNNs). For that purpose, the 

approach begins by applying wavelet decomposition on video segments for multi-

scale assessment. Then, several CNNs are trained independently to approximate 

wavelet multi-scale characterizations. The trained CNNs do inference by 

regressing wavelet multi-scale characterizations from LR frames, followed by 

wavelet reconstruction, which produces recovered HR frames. This research 

presents a learning-based method for preserving fine features in low-resolution 

multi-frame images captured with various camera zoom lenses. The 

experimental findings confirm the proposed strategy for restoring difficult 

frames. 
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satellite imaging [8], face identification [26], network analysis 

[2], and video monitoring [26] are examples of SR methods 

employed. Furthermore, the public and industry demand for 

converting low-resolution and outdated digital movies to high-

definition (HD) movies is growing every day. 

The initial stage for multi-frame SR is to align all LR images 

by using motion information [31]. This stage is important for 

multi-frame SR algorithms to work since super-resolution is 

severely hampered without a strong estimate of motion between 

the LR frames [7]. Many efforts have been made to address the 

problems of the registration phase. Iterative back projection 

(IBP) [9,18], projection on a convex set (POCS) [25], and 

optical-flow projection [6] are some of the approaches adopted 

to correct registration errors. However, because the solutions 

are non-unique and can only handle translational and rotational 

motion between LR frames, these strategies are unsuccessful.  

 

 

Fig. 1: The proposed multi-frame wavelet multi-scale CNN.  

 

 

To mitigate the misregistration issues, more robust methods 

have been proposed [24, 38]. The authors of [37] discovered a 

non-local effective method that may be used for non-global 

motion. Otherwise, to cope with non-parametric deformations 

between the LR pictures, the authors of [29] presented the 

concept of elasticity registration, but it was limited to minor 

deformations and did not address larger ones. Other methods 

rebuild the HR image using maximum a posteriori (MAP) 

algorithm [39] and a spatial domain monitoring technique. 

Other techniques have subsequently been developed [5, 27], 

although they still suffer from misregistration problems. After 

that, choosing a function of regularization for the procedure for 

dehazing and noise removal in the final stage of the SR method 

is critical for staying away from various artifacts. The selection 

of this function must be done with considerable care. A variety 

of SR methods [4,28,43] rely on a regularization framework. 

Although these methods produce promising outcomes, they 

have certain flaws. Two of these methods are the staircase 

illusion and the haze apparition on flat surfaces. Although the 

regularization value may be adjusted to decrease noise and blur 

in smooth sections, the resulting characterization is hazy. To 

address the issue of single image SR, deep learning has also 

been frequently utilized. One of the most well-known works is 

that of Dong et al. [16], in which the SRCNN technique was 

suggested consisting of triple convolutional phases. Patch 

extraction, non-linear mapping, and reconstruction are the three 

processes that are accomplished. The SRCNN has shown 

promising results, but the necessity for massive HR images for 

data training remains an embarrassment. Then, Dong et al. 

proposed the FSRCNN [3], a faster variant of SRCNN to 

include the up-sampling operation within the network. As a 

consequence, the restoration quality is excellent, while the 

execution time is short. Other techniques are then developed to 

address the shortcomings of the preceding strategy; for further 

information, see [23]. Zhang et al. [42] proposed a similar 

network (DnCNN) using more recent developments in deep 

learning, giving good performance. Chen et al. [12] recently 

looked at the CISRDCNN framework for compressed images, 

revealing good results. 

In preliminary research, Lei et al. [19] used a local-global-

combined network (LGCNet) to capture restoration 

characteristics at both local and global levels in the spatial 
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domain in preliminary research to bridge deep learning with 

multi-scale analysis. Wei et al. [20] created an extremely deep 

residual neural network to improve the precision of multi-

spectral picture panning. Li et al. [21] employed spectral 

mixture evaluation and sparseness to allow multispectral image 

SR. These approaches used strategies based on advanced 

machine learning in the fundamental spatial or spectral 

domains, but they ignored image properties in transform 

domains. For SR, interpretations of images at various 

frequencies reflect distinct characteristics, while components 

with high frequency have a major influence [30]. This 

encourages other researchers to create a plethora of SR 

algorithms at various frequency bands. Filter banks are used in 

wavelet analysis to describe images in multi-scale frequency 

bands. In this case, the nomenclature of the two new wavelet-

based techniques in [32] and [33] is comparable. Depending on 

the above discussion, the contribution of this paper can be 

explained as follows: 

 The proposed approach differs from that in [32] in that it 

uses several concurrent CNNs. 

 The proposed approach differs from that in [33] in that it 

uses wavelet synthesis for full reconstruction. 

 As a result, there are considerable changes in the structure 

of the model, feature extraction methods, and learning 

spaces between the proposed approach and those in [32] 

and [33]. 

 

Multiple CNNs are trained in multi-scale frequency ranges 

provided by the wavelet analysis to restore frequency features 

in different directions, unlike deep learning-based SR 

techniques (such as SRCNN and LGCNet), which analyze 

images in their initial spatial domain. As opposed to edge-

protecting wavelet-based SR [10], which only handles local 

features, SR features are represented at several frequency 

ranges using several CNNs. The proposed approach, in 

particular, captures both high-frequency local variations and 

low-frequency general patterns. 

 

II. WAVELET MULTISCALE CNNS FOR MULTI-

FRAME SR 

This part introduces how to train wavelet multi-scale CNNs 

to characterize different scales and in order to reconstruct HR 

images. 
 

A. Multiscale Regression Features Using Wavelet 

Representations 

A discrete wavelet transform is used to perform a multi-

scale evaluation on several frames. The discrete wavelet 

transform is accomplished by the use of filter banks composed 

of biorthogonal high-pass filters and low-pass filters. Let L 

stand for a low-pass filter matrix with columns representing 

low-pass filter coefficients, and H stand for a high-pass filter 

matrix with columns representing high-pass filter coefficients. 

As for the initial level representation, one original HR image is 

utilized, and the wavelet decomposition is conducted as 

follows [11]: 

 

𝐶𝑗 = (𝐿†𝐶𝑗−1𝐿)𝑠↓ ,                𝐷𝑗
ℎ = (𝐿†𝐶𝑗−1𝐻)𝑠↓            (1)  

𝐷𝑗
𝑣 = (𝐻†𝐶𝑗−1𝐿)𝑠↓,              𝐷𝑗

𝑑 = (𝐻†𝐶𝑗−1𝐻)𝑠↓                  

 

where j is indeed the division level, and s↓ is just the down-

sampling by 1/s of the initial resolution. The recursive down-

scaling division expresses every image from multi-frame 

images in terms of various spatial ratios, allowing for more 

complete distant observations using multi-frame images. 

𝐶𝑗 , 𝐷𝑗
ℎ , 𝐷𝑗

𝑣 , and 𝐷𝑗
𝑑 indicate the comprehensive low frequency, 

horizontal high frequency with vertical low frequency, vertical 

high frequency with horizontal low frequency, and 

comprehensive high-frequency properties of the final level 

characterization 𝐶𝑗−1, respectively. In various spatial 

proportions, rotations, and frequency bands, the wavelet 

decomposition produces multi-scale representations for every 

image. In the next part, wavelet multi-scale representations are 

employed as regression features for training several CNNs for 

super-resolution. 

 

B. CNNs-based Regression Wavelet Multi-Scale Properties 

from LR Images 

For regressing wavelet multi-scale properties from LR 

images, several CNNs are trained. Fig. 1 shows four CNNs that 

are trained in the example framework. Each CNN examines the 

LR picture layer at a time, with the outer layer seeking the 

regression of one of the HR image multi-scale interpretations 

described in Section II-A. Each CNN is built using the 

framework of a state-of-the-art super-resolution convolutional 

neural network (SRCNN) [3]. Like the input, an LR image is 

obtained from a HR image. The output of the n-th convolutional 

layer is: 

 

𝑓𝑛(𝐼𝐿 ,𝑊𝑛, 𝑏𝑛)  =  𝜎(𝑊𝑛 ∗  𝑓𝑛−1 (𝐼𝐿) +  𝑏𝑛),                   (2) 
 

where the net weights and training bias are characterized by 𝑊𝑛, 

and 𝑏𝑛 , respectively. Σ is a linear function that has been 

adjusted (𝑒. 𝑔.𝑚𝑎𝑥(0, 𝑥)) to allows the CNNs to quickly 

converge. 

Each CNN is penalized by a loss function that computes the 

difference between the interpretation produced by the CNN 

from the LR image and the interpretation generated by the 

wavelet division of the corresponding HR image for the 

objective of creating components that best regress the wavelet 

multi-scale interpretation. The top CNN loss function in Fig. 1 

is defined by 
 

𝑙 =  
1

2𝐾
 ∑‖𝐶(𝐾) − �̃�(𝐾)‖

2

2
,

𝐾

𝐾=1

                                 (3) 

 

where K is the wavelet multi-scale representation pixel index, 

C is the wavelet multi-scale representation that maintains a 

high-resolution image two-direction smoothing properties, and 

�̃� is the characterization created by the CNN from the LR image  
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𝐼𝐿 . The loss functions for the remaining three CNNs may be 

obtained by substituting 𝐷ℎ, 𝐷𝑣 , and 𝐷𝑑  for C in (3), 

respectively. 

Using a back-propagation algorithm, the multiple CNNs are 

separately trained to learn properties given by the appropriate 

wavelet evaluation and to minimize their loss functions, 

sequentially. The multi-scale image characteristics are captured 

in different orientations and numerous frequency bands by the 

multiple CNNs that have been trained in this way. 
 

C. Wavelet Multi-Scale Convolutional Neural Networks for 

SR 

To begin SR, an LR image is fed into each of the several 

CNNs, individually. Subsequently, from the jth to the (j - 1)th 

stage, wavelet restoration is performed on the CNN-created 

characterizations as follows: 
 

�̃�𝑗−1 = 𝐿(�̃�𝑗 )𝑠↑𝐿
† + 𝐻(𝐷 𝑗

ℎ)𝑠↑𝐿
† +  𝐿(𝐷 𝑗

𝑣)𝑠↑𝐻
†

+  𝐻(𝐷 𝑗
𝑑)𝑠↑𝐻

†                                    (4)  
The tidal symbols denote that �̃�𝑗, 𝐷 𝑗

ℎ, 𝐷 𝑗
𝑣, and 𝐷 𝑗

𝑑 are CNN-

generated representations, as opposed to those acquired using 

wavelet decomposition in (1). Because a single CNN is 

equipped with visual features characterized in one frequency 

range with such orientations indicated by the wavelet transform, 

wavelet formulation inherently ensembles detailed information 

from multi-scale bandwidths and orientations and accomplishes 

appropriate SR. Fig.1 shows a one-level wavelet synthesis 

example for SR, in which four CNN-generated representations 

are synthesized to restore an HR image. 

 

D. Observations 

Regional computation and multi-scale evaluation, which 

closely mirror the receptive fields of the nervous system, are 

two important features that allow convolutional neural 

networks to be effective. Training network weights, which 

conduct regional filtering across one entire image, influence 

regional computation. The multi-scale analysis is carried out via 

pooling, with down-sampling as the primary modification. 

State-of-the-art CNN-based SR approaches like SRCNN tend 

to focus on regional computation, while ignoring multi-scale 

analysis. Unlike precise pattern identification, SR tasks try to 

upgrade image feature characterization. As a result, simple 

down-sampling processes contradict the SR up-scaling aim. 

Training of several CNNs is proposed without pooling based on 

image wavelet characterizations to take full advantage of CNN 

representational capacity in terms of both regional computation 

and multi-scale evaluation. The CNN network weights are 

learned by training, and the CNNs filter image representations 

in a supervised manner. Wavelet decomposition and synthesis, 

on the other hand, employ commercially available wavelet 

filters and perform unsupervised filtering on multi-scale 

interpretations. In addition to the filtering done by the CNN 

network weights, they, therefore, augment the local processing 

effects. As a result of the increased local processing, image 

features are captured more comprehensively. Wavelet down-

sampling procedures are a good alternative for the pooling 

operations that are not used in the currently available CNN-

based SR algorithms. In addition, the wavelet analysis employs 

multi-frequency range filters with various orientations, 

resulting in a more generalized multi-scale analysis. 

Furthermore, multi-scale representations favor holistic 

descriptions of images in addition to improving detailed visual 

characterization. Finally, using wavelet-decomposition-

conjugated filtering corrections, the wavelet synthesis upscales 

the multi-scale representations, resulting in SR. The four CNNs 

trained at one level can be recursively utilized to regress 

wavelet multi-scale representations at many levels for multi-

level analysis. An image may be upscaled to high resolution 

using this recursive approach. However, this imposes a 

limitation: a single image resolution can only be upscaled twice. 

This is because wavelet analysis requires down-sampling and 

up-sampling by two in terms of filter banks. Also, the 

computational complexity of various techniques is compared. 

The proposed approach outperforms previous deep learning-

based SR techniques in terms of both training and testing 

efficiency. Because the proposed model uses four CNNs, each 

with the same design as SRCNN, it is evident that the proposed 

model is four times more complicated than the SRCNN. Even 

though the proposed model is more complicated than the 

SRCNN, it is suitable since its sophistication rises directly 

proportional to the number of CNNs rather than dramatically. 

The proposed three-layered model, on the other hand, is not as 

deep as deep the SR models like (VDSR) [36], which has 20 

weight layers. Unlike the extremely deep structure, the CNN 

model SR capabilities are increased by extending it rather than 

making it deeper, i.e., by training several three-layered CNNs 

in parallel in decomposed frequency sub-bands. Among the 

evaluation criteria are peak signal-to-noise ratio, structural 

similarity, normalized variation information (NVI), normalized 

mutual information (NMI), mutual information, joint entropy, 

and conditional entropy. 

 

III. EXPERIMENTS 

As a proposed training set, 25 YUV format video sequences 

are employed. They have been widely used in several video SR 

approaches [44], [35], [45]. To increase the size of the training 

set, model training is done using a volume-based approach, 

which involves cutting numerous overlapping volumes from 

training films and using each volume as a training sample. Each 

volume has a spatial dimension of 32 × 32 and a temporal 

duration of 10. The spatial and temporal strides, respectively, 

are 14 and 8. As a consequence, given the original dataset, 

around 41,000 volumes can be constructed. The proposed 

model is put to the test on four videos: City, Calendar, Foliage, 

and Walk, all of which have been employed by cutting-edge 

approaches [46], [47]. Because the convolutional procedure 

may scale to films of any spatial extent and temporal length, 

volumes during testing do not need to be removed. The 

architecture and parameters of the SRCNN are used in [3] to 

build individual CNNs. Model performance is specifically 
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analyzed in terms of peak signal-to-noise ratio (PSNR) [1] and 

structural similarity (SSIM) [15]. 

 

A. The Convergence of the Models 

The SRCNN is improved by training several CNNs to 

describe wavelet multi-scale characterizations in the proposed 

convolutional neural networks (MFWM). For training 

purposes, their convergence speeds are compared. The analysis 

was carried out on the same network setup and computing 

environment. Fig. 2 depicts the convergence curves concerning 

PSNR. The SRCNN gets convergence in 8 ×  104 iterations, 

whereas the proposed MFWM achieves convergence in 4 ×
 104 iterations with greater accuracies. 

 

 

Fig. 2: Convergence curves. 

 

The SRCNN recovers multi-frame images in their entirety. 

The proposed MFWM, on the other hand, regresses the entire 

multi-frame image wavelet multi-scale representations. The 

wavelet-based divide-and-conquer (in terms of different 

orientations and frequency ranges through CNN training) 

technique produces a more powerful characterization than 

solitary holistic characterizations. CNNs learn multi-frame 

images intrinsically quicker from wavelet multi-scale 

representations than from full images, as evidenced by the 

proposed MFWM rapid training convergence. 

The parameter setting of this work is provided in TABLE I, 

and it is highly significant in CNNs.   

 
TABLE I 

PARAMETER SETTING 
 

𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒏𝟏 𝒏𝟐 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒂𝟏 𝒂𝟐 𝒂𝟑 

9 1 5 64 32 9 5 5 relu relu Linear 

 

where 𝑓1 is the first convolutional filter size, 𝑓2 is the second 

convolutional filter size, 𝑓3 is the third convolutional filter size, 

𝑛1 is the number of the first convolutional filters,  𝑛2 is the 

number of the second convolutional filters, 𝑝1 is the first 

convolutional patch size, 𝑝2 is the second convolutional patch 

size, 𝑝3 is the third convolutional patch size, 𝑎1 is the first 

convolutional activation type, 𝑎2 is the second convolutional 

activation type, 𝑎3 is the third convolutional activation type.  

B. Evaluations (Quantitative and Qualitative) 

Every rebuilt HR image must match the original image to 

assess the validity of the image reconstruction technique. 

Similarity measurement aids in the monitoring and evaluation 

of the picture reconstruction procedure performance. In the 

literature, there are a variety of similarity measurement tools. 

The PSNR, SSIM, NVI, NMI, mutual information, joint 

entropy, and conditional entropy are a few of the most well-

known metrics. 

The MSE, which is the average error between the original 

image and the SR image, is used to calculate the PSNR. The 

PSNR is defined as the ratio of signal strength to noise in the 

image, and it is calculated as follows:  
 

𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
) , 

 

where MSE stands for mean squared error, which is defined as: 
 

𝑀𝑆𝐸 = 
1

𝑀𝑁
 ∑∑(𝑌(𝑖, 𝑗) − 𝑋(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

. 

 

The SSIM is computed on many windows of a given image, 

i.e. the distance between two windows x and y of size N × N is 

defined as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝜎𝑦 + 𝐶2)(2𝑐𝑜𝑣𝑥𝑦 + 𝐶3)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶1)(𝜎𝑥𝜎𝑦 + 𝐶3)
, 

 

where the variables are denoted by x and y, respectively. 𝜇𝑥 and 

𝜇𝑦, are mean values. 𝜎𝑥
2 and 𝜎𝑦

2, are variance values. 𝑐𝑜𝑣𝑥𝑦 is 

the covariance. 𝐶1 = (𝐾1𝐿)
2, and 𝐶2 = (𝐾2𝐿)

2 are two 

constants that help to keep everything in balance. L is the 

dynamic range of pixel values. It is 255 for the 8-bit encoded 

images. Based on the recognized properties of the human visual 

system, The SSIM provides an estimate of the image quality. 

The entropy of a discrete random variable x is: 
 

𝐻(𝑥) =  − ∑𝑝(𝑥) log 𝑝(𝑥) 

𝑥

= −𝐸[log 𝑝(𝑥)] 

 

The predicted uncertainty in x is measured by the entropy. 

H(x) is also roughly equal to the amount of information we gain 

on average from a single instance of the random variable x. For 

two random variables x and y, the joint entropy is calculated as 

follows: 
 

𝐻(𝑥, 𝑦) =  − ∑𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑥,𝑦

. 

 

The joint entropy quantifies the amount of uncertainty in the 

two random variables x and y when they are combined. The 

conditional entropy of x given y is: 

 

𝐻(𝑥|𝑦) =  − ∑𝑝(𝑥, 𝑦) log 𝑝(𝑥|𝑦) 

𝑥,𝑦

= −𝐸[log 𝑝(𝑥|𝑦)] 

= 𝐻(𝑋, 𝑌) − 𝐻(𝑌)                                      
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The mutual information between two discrete random 

variables x, and y that are jointly distributed according to p (x, 

y) can be calculated as follows: 
 

𝐼(𝑥; 𝑦) =  ∑𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥,𝑦

 

                                     = 𝐻(𝑥) − 𝐻(𝑥|𝑦) = 𝐻(𝑦) − 𝐻(𝑦|𝑥 ) 
 

 
TABLE II 

 THE COMPARISON OF PSNR AND SSIM BETWEEN BICUBIC INTERPOLATION, VDSR [36], AND (MFWM). 
 

Model 
Calendar City Foliage Walk Average 

Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 

 PSNR 

Bicubic 23.45 20.71 29.32 25.07 28.27 23.35 32.07 26.02 28.27 23.78 

VDSR 24.49 21.31 30.77 25.48 29.27 24.03 33.46 27.17 29.49 24.49 

MFWM 25.11 21.62 32.84 25.68 30.38 24.17 35.31 27.67 30.91 24.78 

 SSIM 

Bicubic 0.9799 0.7953 0.9734 0.7511 0.9778 0.7514 0.9916 0.8927 0.9806 0.7976 

VDSR 0.9821 0.8458 0.9894 0.7916 0.9907 0.8078 0.9914 0.9229 0.9884 0.8420 

MFWM 0.9917 0.8625 0.9966 0.8084 0.9968 0.8209 0.9989 0.9326 0.9960 0.8561 

 

    

    

    

    

(a) original (b) bicubic (c) VDSR (d) MFWM 

Fig. 3. Visual comparison among input LR frames and SR results by bicubic, VDSR, and MFWM, respectively, on the dataset  

with an upscaling factor of 2. 
 

 

               = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦) 
  

The NMI is defined as: 

𝑁𝑀𝐼(𝑋, 𝑌) =  
2 × 𝐼(𝑋; 𝑌)

[𝐻(𝑋)𝐻(𝑌)]
 

 

The variation of information is defined as: 
 

𝑉𝐼(𝑥; 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 2𝐼(𝑥, 𝑦) 
    = 𝐻(𝑥, 𝑦) − 𝐼(𝑥, 𝑦) 

 

The normalized variation information is defined as: 
 

𝑁𝑉𝐼(𝑥; 𝑦) =  
𝑉𝐼(𝑥; 𝑦)

𝐻(𝑥, 𝑦)
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The simulation experiments have been implemented on the 

following hardware: Intel® CoreTM i3-5005U, 2.00GHz CPU, 

4GB RAM, Win10 operating system, and Matlab R2018b 

simulation platform. 

The bicubic interpolation is compared to VDSR [36], and 

the proposed MFWM. 

Experiments are carried out using upscaling factors of two 

and four. The quantitative SR findings in terms of PSNR and 

SSIM are shown in TABLE II. For upscaling by two and four, 

the proposed MFWM beats VDSR in terms of PSNR and SSIM. 

The quantitative SR findings in terms of NVI, NMI, mutual 

information, joint entropy, and conditional entropy are shown 

in TABLE III. With increased similarity, the normalized 

variation information, joint entropy, and conditional entropy 

decrease. With increasing similarity, both mutual information 

and normalized mutual information are maximized.  

 

   

 

    

    

    

(a) original (b) bicubic (c) VDSR (d) MFWM 

Fig. 4. Visual comparison among input LR frames and SR results by Bicubic, VDSR, and MFWM, on the dataset with an 
upscaling factor of 4. 

 
TABLE III 

 THE COMPARISON OF NVI, NMI, MUTUAL INFORMATION, JOINT ENTROPY, CONDITIONAL ENTROPY, AND ENTROPY BETWEEN  

BICUBIC INTERPOLATION, VDSR [36], AND MFWM. 
 

Model 
Calendar City Foliage Walk Average 

Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 

 NVI 

Bicubic 0.8155 0.8580 0.8234 0.8964 0.8171 0.8886 0.6710 0.7774 0.7817 0.8551 

VDSR 0.8172 0.8546 0.8053 0.8900 0.8007 0.8804 0.6790 0.7603 0.7755 0.8463 

MFWM 0.8037 0.8592 0.7811 0.8873 0.7891 0.8798 0.6251 0.7558 0.7497 0.8445 

 NMI 

Bicubic 0.3115 0.2487 0.3002 0.1877 0.3092 0.2005 0.4951 0.3641 0.3540 0.2502 

VDSR 0.3091 0.2539 0.3259 0.1983 0.3323 0.2137 0.4859 0.3867 0.3633 0.2631 

MFWM 0.3282 0.2468 0.3592 0.2026 0.3484 0.2146 0.5454 0.3925 0.3953 0.2641 

 Mutual information 

Bicubic 2.2652 1.8037 2.0108 1.2441 2.2615 1.4561 3.6232 2.6621 2.2901 1.7915 

VDSR 2.2596 1.8431 2.2044 1.3213 2.4401 1.5574 3.5623 2.8294 2.6166 1.8878 

MFWM 2.3933 1.7991 2.4297 1.3549 2.5554 1.5676 3.9921 2.8734 2.8426 1.8987 

(continued on the next page)  
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(TABLE III: continued)  

Model Calendar City Foliage Walk Average 

 Scale2 Scale4 Scale2 Scale4 Scale2  Scale2 Scale4 Scale2 Scale4 

 Joint entropy 

Bicubic 12.2782 12.7004 11.3843 12.0147 12.3667 13.0696 11.0117 11.9607 11.7602 12.4363 

VDSR 12.3602 12.6763 11.3250 12.0089 12.2445 13.0223 11.0992 11.8037 11.7572 12.3778 

MFWM 12.1920 12.7781 11.0991 12.0188 12.1155 13.0428 10.6476 11.7678 11.5135 12.4018 

 Conditional entropy 

Bicubic 5.0683 5.5225 4.7645 5.5315 5.0791 5.8809 3.6943 4.6519 4.6515 5.3967 

VDSR 5.0738 5.4832 4.5709 5.4544 4.9006 5.7795 3.7552 4.4847 4.5751 5.3004 

MFWM 4.9402 5.5272 4.3456 5.4207 4.7853 5.7694 3.3254 4.4407 4.3491 5.2895 

 

 

The wavelet multi-scale analysis, which not only 

compensates for SRCNN lost pooling procedures but also 

enhances its regional filtering features with wavelet filters, is 

responsible for this enhancement of SRCNN. According to this 

empirical comparison, the wavelet analysis, not the greater 

model size, is the key to MFWM efficacy. In terms of PSNR 

and SSIM, it is found that the proposed technique outperforms 

VDSR. It is worth noting that VDSR has 20 weight layers, but 

the proposed architecture is made up of four three-layered 

CNNs for a total of twelve levels. These findings indicate that 

while the proposed technique has lower structural complexity 

than VDSR, it nevertheless delivers equivalent results. The 

contrastive results are because VDSR uses the entire multi-

frame images as input for training one comprehensive model, 

whereas the proposed technique uses CNNs to restore multiple 

frequency sub-bands, ensuring that each frequency 

characterization is restored, appropriately. 

Since higher up-sampling recovery produces more SR 

unpredictability, comprehensive quality with up-sampling 

parameter 4 is worse than that with up-sampling factor 2. Some 

comparative approaches, like the proposed MFWM, 

demonstrate comparable performance for some classes in this 

case. The proposed MFWM, on the other hand, outperforms 

other approaches. The SRCNN has just been utilized as the 

basic model for multi-scale learning in the proposed research. 

Wavelet multi-scale learning based on alternative SR models 

(e.g., VDSR) is expected to generate promising results since 

wavelet multi-scale representations establish extensive feature 

subspaces. For qualitative evaluations, the SR outcomes of 

several approaches are illustrated. The recovered high-quality 

multi-frame images with the upscaling factor of two are shown 

in Fig. 3, and the recovered high-quality multi-frame images 

with the upscaling factor of four are shown in Fig. 4. The 

magnified views of the items in the dash line boxes show that 

the proposed MFWM recovers textures more accurately and 

clearly than the other compared techniques, as can be seen. 

 

IV. CONCLUSIONS AND FUTURE WORK 

A multi-frame super-resolution framework has been created 

based on wavelet multi-scale convolutional neural networks. 

Wavelet filters improve the CNN capacity to handle data 

locally. Down-sampling in wavelet decomposition 

compensates for the scarcity of pooling activities in CNN-based 

super-resolution. The proposed framework combines the CNN 

representational strength for learning specific features with 

wavelet analysis multi-scale capabilities for getting numerous 

orientations and frequency representations. The usefulness of 

the proposed super-resolution framework has been shown in 

experiments. Disparities between recovered and original high-

resolution images are used in traditional multi-frame image 

super-resolution evaluation methods. However, in actual cases, 

retrieving the initial HR images is problematic. In the future, 

methods for creating a visual evaluation and also no-reference 

performance indices as evaluation criteria will be investigated. 

In addition, how visual evaluation and no-reference 

performance indices may be included in the objective function 

will be looked into to improve perceptual performance. 
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Arabic Title: 

 باستخدام النطاقات المتعددة للشبكات استراتيجية فيديو فائق الدقة 

 العصبية الملتفة المويجية

 

Arabic Abstract: 

نها غالباً ما تكون الصور عالية الدقة مطلوبة ومطلوبة لمعظم التطبيقات ، لأ

تتضمن معلومات تكميلية. ومع ذلك ، فإن الاستخدام الأمثل لتكنولوجيا 

المستشعرات والتكنولوجيا المرئية لتحسين كثافة بكسل الصورة غالباً ما يكون 

محدودًا ومكلفًا. نتيجة لذلك ، يعد استخدام طريقة معالجة الصور لإنشاء صورة 

لفًا وشاملًً. الهدف من دقة الفيديو عالية الدقة من صورة منخفضة الدقة خيارًا مك

الفائقة هو استعادة النقاط المعقدة وتقليل التأثيرات الحسية. يعتمد هذا البحث على 

نهج الدقة الفائقة متعدد الإطارات باستخدام تحليل المويجات لتدريب الشبكات 

ت (. لهذا الغرض ، يبدأ النهج بتطبيق تحليل المويجاCNNالعصبية التلًفيفية )

على مقاطع الفيديو لتقييم متعدد المقاييس. بعد ذلك ، يتم تدريب العديد من شبكات 

CNN  بشكل مستقل لتقريب الخصائص متعددة المقاييس المويجة. تقوم شبكات

CNN  المدربة بالاستدلال عن طريق تراجع التوصيفات متعددة المقاييس المويجة

 HRيجي ، والتي تنتج إطارات ، متبوعة بإعادة البناء المو LRمن إطارات 

مستردة. يقدم هذا البحث طريقة قائمة على التعلم للحفاظ على الميزات الدقيقة في 

الصور منخفضة الدقة متعددة الإطارات التي تم التقاطها باستخدام عدسات تكبير 

 للكاميرا. تؤكد النتائج التجريبية الاستراتيجية المقترحة لاستعادة الأطر الصعبة.
 

 

 


