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Nigella sativa L. seeds are traditionally known for their ability 

to cure different diseases including airway and digestive 

system disorders, back pain, chronic headache, paralysis, 

diabetes, hypertension, and skin diseases. Keeping in view the 

numerous traditional medicinal uses of N. sativa seeds which 

may be related to thymoquinone (TQ), the main component of 

its essential oil, we provide an overview of the biological 

efficacy and toxicology of TQ to support their therapeutic 

potential in treatment of human diseases. The current review 

covers the recent literature from 2002 to 2021. The data was 

collected from books, journals, electronic searches (Pub Med, 

ScienceDirect, Google Scholar, and Springerlink), and theses. 

Thymoquinone exhibits importance in combating various 

diseases such as inflammation, arthritis, ulcerative colitis, 

cancer. Also, it showed ability to cure neuropathic pain, male 

infertility, diabetes, hepatitis, cardiovascular, musculoskeletal, 

respiratory, renal, skin, microbial infection, and 

neurodegenerative diseases comprising Parkinson's and 

Alzheimer's. That explains the traditional uses of N. sativa 

seeds in folk remedies in curing different ailments. The current 

review provides an explanation of the ethnopharmacological 

uses of N. sativa L. seeds which are related to the 

pharmacological activities of TQ. The pharmacological 

properties, pharmacokinetics, efficacy, high therapeutic index, 

lipophilicity, and safety margin make TQ a hopeful candidate 

for drug development. 
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Abbreviations 

ABP, Acute bacterial prostatitis; ABTS, 2,2-

azinobis 3-ethylbenzothiazoline-6-sulfonic acid; 

BHT, butylated hydroxy toluene; CAT, catalase; 

cdk, cyclin-dependent kinase; COX, 

Cycloxygenase; DAPI, 4,6-diamidino-2-

phenylindole; DG, diosgenin; DHTQ, 

dihydrothymoquinone; DPPH, 1,1-diphenyl-2-

picrylhydrazyl; DTQ, dithymoquinone; ERK1/2, 

extracellular signal-regulated kinase ½; GIT, 

gastrointestinal tract; GSH, Glutathione 

peroxidase; GSK-3β, Glycogen synthase kinase-

3; GST, glutathione S- transferase; GT, 

glutathione transferase; GTP, guanosine 

triphosphate; H2O2, hydrogen peroxide; HD, 

Hydro-distillation; HMG-COAR, 3-hydroxy-3-

methylglutaryl- coenzyme A reductase; HO-1, 

Heme oxygenase-1; HPLC, high performance 

liquid chromatography; IL-6, Interleukin 6; 

LDLC, low density lipoprotein cholesterol; 

LDLR, low density lipoprotein receptor; LKB-1, 

liver kinase B; 5-LOX, Lipoxygenase; LPS, 

Lipopolysaccharides; LT-B4, Leukotrienes B4; 

MDA, malondialdehyde; MDCK, Madin-Darby 

canine kidney; MBIC, Minimum biofilm 

inhibition concentration;  MES, maximal 

electroshock; MICs, minimum inhibitory 

concentrations; MTD, maximum tolerated dose; 

NADH, nicotinamide adenine dinucleotide; 

NADPH, nicotinamide adenine dinucleotide 

phosphate-oxidase; l-NAME N omega-nitro-l-

arginine methyl esters; NF-κβ, nuclear factor 

kappa B; NO, nitric oxide; NOX-4, renal oxidase; 

NPSH, non-protein sulfhydryl; PARP, Poly 

(ADP-ribose) polymerase; PIP3, 

Phosphatidylinositol-3,4,5-trisphosphate; PG, 

Prostaglandin; PPAR, Peroxisome proliferator-

activated receptors; PTZ, pentylenetetrazole; 

QR, Quinone reductase; ROS, reactive oxygen 

species; SFE, supercritical fluid extraction; SLNs, 

Solid lipid nanoparticles; SMA, smooth muscle 

actin; SOD, superoxide Dismutase; SSAT, 

spermidine/spermine N-1-acetyl-transferase; 

STAT3, Signal transducers and activators of 

transcription 3; TCPL, Tri-Calcium Phosphate 

Lysine; TLR4, toll-like receptor 4; TNF, Tumor 

necrosis factor; TQ, Thymoquinone; TQRF, 

thymoquinone rich fraction; Vss, volume of 

distribution at steady state.  

1. Introduction                                                                                                             

 
Thymoquinone (TQ, 2-isopropyl-5-methyl-

1,4-benzoquinone) is a phytochemical 

component isolated for the first time from the 

seeds of Nigella sativa L., family Ranunculaceae 

by El–Dakhakhny [1]. High-performance liquid 

chromatography of N. sativa seed oil showed 

that TQ is its main component which constitutes 

(30–48%) of the total composition. This plant is 

known in English as black cumin and in Arabic 

as Habbatul Barakah. It has been used since 

ancient times as a dietary component with 

proven safety [2]. It has been widely used as a 

flavoring agent and spice in a diversity of food 

preparations such as sauces, pickles, yoghurt, 

bread, and salads. It has long been used in 

traditional medicine in Europe, Far East Asia, 

and Africa. It has also been considered by the 

earliest herbal specialists as a “herb from 

heaven” and described as a miraculous plant 

that cures a lot of ailments [2]. It has also been 

used topically to treat orchitis, eczema, blisters, 

swollen joints, and abscesses [2].  Different 

biological activities have been established for the 

seeds of N. sativa including; anti diabetes, gastro 

protective, anticancer, analgesic, 

antihypertensive, antimicrobial, 

immunomodulatory, and anti-inflammatory. It 

has been reported that majority of the biological 

activities is owing to the existence of TQ, which 

represents the main active constituent of N. 

sativa's seed oil [3]. 

 Several genera in the family Lamiacea are 

another reported natural source of TQ including 

Thymus, Monarda, Coridothymus, Agastache, 

Satureja, Mosla, and Origanum [4-7]. Cupressus, 

Juniperus and Tetraclinis genera were also 

documented as a source of TQ in the family 
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Cupressaceae. TQ was found in traces amount 

in the seeds of Nigella arvensis [8].  

Thymohydroquinone (THQ) and 

dithymoquinone (DTQ) in many plant species 

are reduced and dimeric forms of TQ. The 

maximum contents of THQ and TQ were found 

in Monarda didyma (bergamot) and Monarda 

media (purple bergamot) aerial parts and 

inflorescences (3564 and 2674 mg/kg of dried 

weight, respectively) in amounts significantly 

exceeding those in Nigela sativa seeds (THQ = 

530 mg kg-1 and TQ = 1881 mg kg-1), which are 

considered the main natural source of these 

compounds. Monarda didyma and Monarda media 

can be recommended as new prospective 

natural sources of THQ and TQ for 

pharmaceutical or food industries [9, 10].   

Several studies have revealed the molecular 

pharmacology of TQ and how it exerts its 

pharmacological effects. It can modulate various 

receptors, transcription factors, cell signaling 

pathways, apoptosis, ion channels, and different 

enzymes. To the best of our knowledge, there is 

no comprehensive review of the 

pharmacological activities of TQ. Thus, the 

current article aims at reviewing the 

pharmacological activities and toxicology of TQ 

to emphasize the link between the traditional 

applications of black cumin and modern 

research conducted on the biological activities of 

the main component of its oil. 

 

Table 1:  The thymoquinone content in different plants. 

No. Family Species Plant Part Content  

(mg/kg) TQ 

References 

1 Asteraceae Eupatorium 

cannabinum 

             Aerial             8 [11] 

2 Cupressaceae Juniperus communis L.        Twig     615 [11] 

3 Lamiaceae Monarda 

didyma (chemotype 1) 

M. didyma (chemotype 

2) 

 

 

 

Aerial 

Aerial 

Inflorescence 

Leaf 

Stem 

 

3029 

3425 

3564 

821 

23 

  

 

[4, 6, 12]  
 

 

 

 

 

 

[7]  

 

 

 

 

 

 

 

M. didyma L. pink lace 

M. media. wild 

M. menthifolia. 

M. urejamontana L. 

Satureja hortensis L. 

Thymus pilegioides L. 

Thymus serpyllum L. 

Thymus vulgaris 

Aerial 

Aerial 

Aerial 

Aerial 

Aerial 

Aerial 

Aerial 

Aerial 

670                          

2995 

1381 

1052 

217 

223 

233 

300 

4 Ranunculaceae Nigella sativa L.        Seed    1881 [8] 

 

2. Molecular and pharmacological Activities 

of Thymoquinone (TQ) 

This benzoquinone monoterpene TQ has 

been shown to possess myriad beneficial 

activities, including (but not limited to) 

antiinflammatory, antioxidant, hepatoprotective, 

nephroprotective, anticancer, antiepileptic, 

neuroprotective, as well as antifungal and 
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antibacterial. Pharmacologically, TQ limited the 

inflammation and oxidative stress via impairing 

release of the proinflammatory cytokines, 

activation of cyclooxygenase-2 (COX2), nuclear 

factor erythroid 2–related factor 2 (Nrf2), 

phosphatidylinositol 3-kinase/protein kinase B 

(PI3K/AKT), nuclear factor-kappa B (NF-κB) 

[13]. 

2.1. Effect of TQ on Inflammatory Mediators 

Cyclooxygenase (COX), officially known as 

prostaglandin-endoperoxide synthase, is an 

enzyme responsible for prostanoids formation 

[14]. Ramsay et al. [15] have reported that COX1 

(one type of COX enzyme) is expressed in 

inducible isoform in almost all tissues and 

regulated by the cytokines and growth factors. 

COX2 is another type of COX enzyme that has a 

vital role in inflammation and prostaglandin 

formation [16, 17]. TQ has been reported to play 

a critical role in mice in the reticence of COX2 

expression and production of PG in allergic 

airway inflammation [18]. Also, it reduced the 

inflammation mediated by FMLP by impairing 

phosphorylation on Ser-328 and Ser-304 of 

p47PHOX phosphor peptides. Moreover, it 

declined the CD11b and gp91PHOX expression 

and inhibited myeloperoxidase enzyme, so it 

conferred safety in FMLP stimulated 

polymorphonuclear cell [19, 20]. 

2.2. Effect of thymoquinone on innate and adaptive 

immunity types 

TQ exhibited diverse immunomodulatory 

effects due to its interference with several 

inflammatory pathways at multiple points. For 

instance, TQ has been found to ameliorate 

adjuvant- induced arthritis by lowering 

inflammatory cytokines like tumor necrosis 

factor (TNF)-α and interleukin (IL)-1β [21, 22]. 

Additionally, TQ has successfully countered the 

inflammatory disorders of airway by inhibiting 

NF-κB and lipoxygenase (5-LOX) in the setting 

of ovalbumin-induced asthma in mice [18, 23]. 

Further, in U266 multiple myeloma cells, IL-6 

induced STAT3 phosphorylation was found to 

be inhibited by TQ besides activation of c-Src 

and JAK-2. Moreover, TQ was evaluated for its 

anti-inflammatory activity on 96 cytokines. It 

diminished the expression of different cytokines 

and chemokines upregulated by LPS alongside 

attenuating microglia activation and 

inflammation-related neurodegenerative 

disorders [24, 25]. Otherwise, TQ affected the 

immune cells responses like dendritic cell 

maturity, NK-cells cytotoxicity, phagocytic 

involvement, chemotaxis, and the activation of 

T-cells [26, 27]. TQ mitigated IgE-mediated 

allergic response in activated mast cells, 

basophils, and neutrophils via targeting the 

pi3k-Akt-NF-κB axis and upregulating of the 

Nrf2-HO1 axis [28].   

TQ is an immunomodulator effectively that 

is capable of inhibiting TNF-α, which is 

considered an important mediator of 

inflammation. TQ attenuated allergen-evoked 

eosinophilic inflammation in the rat and allergic 

airway inflammation that would be translated to 

clinical setting in humans for management of 

allergic diseases, particularly asthma-like 

disease manner [29]. TQ can target 

inflammatory cytokines, oxidative agents and 

molecular signaling pathways as well as 

controlling regulatory T cells and epigenetic 

alterations that are important in limiting 

autoimmune diseases [30]. TQ is effective in the 

spleen tissue mast cell via affecting the 

expression of IL-4 and IFN-γ cytokines [31]. 

2.3. Antiviral Effect  

The antiviral effect of Nigella sativa oil, 

including its major active component TQ, was 

demonstrated in a murine cytomegalovirus 

(MCMV) model; this showed that Nigella 

sativa oil significantly reduced the liver and 

spleen viral loads with enhanced IFN-γ 

production and increased CD4 (+) T cell 

response [32].  TQ has also been shown to 

significantly inhibit Epstein-Barr virus (EBV) 

replication in EBV-infected B cells [33], 

while Nigella sativa has been shown to exhibit 

antiviral activity against the hepatitis C virus 

(HCV), as evidenced by reduced viral load and 

improved liver function in HCV patients who    

https://www.frontiersin.org/articles/10.3389/fphar.2017.00656/full#B135
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                              Figure 1: Different pharmacological activities of thymoquinone. 

  received Nigella sativa at 450 mg, three times a 

day for three successive months [34]. This effect is 

also supported by observations of the selective 

inhibition of HCV virus replication by alpha-zam, 

a Nigella sativa seed formulation [35]. Nigella 

sativa has also been suggested to be effective in 

controlling human immunodeficiency virus 

(HIV) infection, with one study reporting that 

treatment of HIV patients with Nigella sativa for 

six months resulted in sustained sero-reversion 

with a significant reduction in viral load and CD4 

count elevation [36]. The synergistic combination 

of TQ and curcumin showed anti-viral activity 

against H9N2 AIV in turkeys by elevating anti-

body titer. The raised cytokine gene countenance 

suggests the anti-viral activity of this combination  

[37]. 

Nigella sativa extract containing TQ has also, 

more specifically, been reported to decrease viral 

replication and loads in cells infected with some 

coronaviruses [38]. Interestingly, one in vitro 

study demonstrated that TQ showed significant 

antiviral activity against a SARSCoV-2 strain 

isolated from Egyptian patients [39] possibly 

through blocking the entry of the virus into the 

cells [40]. All studies highlight the immense 

potential of TQ as an effective antiviral agent 

against COVID-19, a premise which is highly 

supported by the molecular docking studies 

examining TQ’s effects against various virus and 

host cell targets [41-44]. 

2.4.  Anti-microbial Action  

The essential oil of N. sativa (2.43 mg/disc), 

containing 3.35 μg of TQ, was established to have 

anti-microbial activity against S. constellatus, S. 

mutans, G. haemolysins, and S. mitis with MIC of 

19.25 ± 1.6 mg/mL. In addition, TQ has been 

shown to inhibit the formation of bacterial 

biofilm (clusters of bacteria attached to a biotic or 

abiotic surface).  TQ also showed potential 

antibacterial activity in another study against 

several infectious bacterial strains including 

Salmonella aureus, S. enteritidis, S. typhimurium, 

Shigella flexneri, Pseudomonas aeruginosa, and 

Escherichia coli. TQ concentration required to 

kill S. aureus was 400 and 800 μg/mL. A study 

had suggested using TQ and 

dihydrothymoquinone in synergistic combination 

with known antibiotics like gentamicin, 

tetracycline, chloramphenicol, cephalexin and 

ampicillin might protect against S. aureus [45]. A 

study showed that 0.4% TQ was more effective 

than dexamethasone in attenuating the 

inflammation with exhibiting substantial 

antibacterial, analgesic and antihistaminic 

properties [20]. 
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Aljabre et al. [46] have tested TQ antifungal 

activity on 8 dermatophytes species.  Their results 

showed a greater minimum inhibitory 

concentration effect of oil and TQ than 

griseofulvin against the tested fungi. 

Additionally, TQ protected against rhinosinusitis 

in compared with standard antibiotics and the 

histopathological observations further support 

the results [47]. On the other hand, giardiasis and 

amoebiasis can be controlled by TQ which 

showed potent antiparasitic activity against 

Giardia lamblia and Entamoeba histolytica [48]. TQ 

was reported to be an alternative to control the 

spore forming bacteria Alicyclobacillus 

acidoterrestris and limit their contamination for 

the juices and acid beverages in industry.    

 

2.5.  Anticoagulant effect  

TQ also was capable to interfere with blood 

clotting by directly decreasing factor Xa activity 

in the blood coagulation pathway and by down-

regulating TNFα, that has role in the thrombosis 

pathway alongside inflammation [49].  

2.6.  Effect on Oxidative Markers 

The persistent formation of peroxy radical 

(ROO•), hydroxyl radical (•OH), and superoxide 

anion radical is caused by environmental 

pollution and UV radiation, as well as aerobic 

metabolism. The continued elevation of reactive 

oxygen species (ROS) causes oxidation of protein, 

lipid membrane, and nucleic acids. In various in 

vivo and in vitro animal models, TQ exhibited 

high potency in scavenging free radicals that 

initiate oxidative stress. Owing to the free radical 

scavenging and antioxidant potential of TQ, it 

normalizes toxins or xenobiotics adverse effects 

and thus protect against organ dysfunctions, 

oxidative damage, and pathogenesis of many 

illnesses [50-52]. Badary et al. [53], have reported 

that TQ can counter xanthine/xanthine oxidase 

system and impede the initiation of oxidative 

stress. It also enhances the first antioxidant 

defense by raising SOD activity which play an 

important function in converting superoxide 

anions into oxygen and H2O2 [54]. Furthermore, 

TQ was capable to induce GSH production, 

inhibit lipid peroxidation and protect against 

adduct formation with proteins or DNA [54-56].  

TQ scavenged •OH and carbon-centered radicals 

in the iron-catalyzed injury of deoxyribose and 

1,1-diphenyl-2-picrylhydrazyl (DPPH) in 

vitro assays [57]. TQ was efficient in ameliorating 

organ oxidative injury mediated by diverse drugs 

and chemicals like doxorubicin, cisplatin, 

isoproterenol, cyclophosphamide, ifosfamide, 

sodium nitrite, carbon tetrachloride, mercuric 

chloride and N (omega)-nitro-l-arginine methyl 

esters [56, 58-62]. 

2.7.  Anticancer Effect and Apoptosis 

TQ exhibited anticancer activity via numerous 

mechanisms of action, specifically by showing 

selective antioxidant and oxidant activity, 

interfering with DNA structure, affecting 

carcinogenic signaling molecules/pathways and 

immunomodulation [63]. TQ possessed 

anticancer effects in many experimental models 

via different mechanisms.  For instance, TQ 

triggered apoptosis via a p53-dependent 

mechanism in HCT-116 human colorectal cancer 

cells [64]. Moreover, TQ downregulated MUC4 

expression through JNK and p38 MAPK 

pathways in pancreatic cancer cells and reduced 

growth of cancer cells [65, 66]. TQ also reduced 

oxidative stress preserved the activity and 

expression of antioxidant enzymes in 

diethylnitrosamine induced hepatic 

carcinogenesis [67, 68] and 1,2-dimethyl-

hydrazine-induced colon cancer in murines [69]. 

It has been established that TQ has a 

significant role in chemoprevention through 

activating the Phosphatase and tensin homolog 

(PTEN) tumor suppressor genes.  PTEN causes 

dephosphorylation of PIP3 (Phosphatidylin-

ositol-3,4,5-trisphosphate) and also obstructs the 

Akt/PI3K pathways [70, 71]. Upregulation of 

PTEN and inactivation of PI3K/Akt are essential 

in chemoprevention, which were reported to be 

achieved by TQ treatment in MCF-7/DOX cells 

[72, 73]. Arafa et al.[72] have reported that the 

silencing of PTEN by target-specific siRNA leads 

to enhanced cell resistance via inhibiting TQ-

induced apoptosis. Other tumor suppressor 

https://www.frontiersin.org/articles/10.3389/fphar.2017.00656/full#B12
https://www.frontiersin.org/articles/10.3389/fphar.2017.00656/full#B21
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genes like p21, p27, and p53 were also modulated 

by TQ confirming its apoptotic activity.  TQ and 

5-fluorouracil have been shown to cause 

apoptosis by eliciting caspase-3 and caspase-9 

initiation in stomach tumor cells, as well as 

decreasing Bcl-2 and increasing Bax and release 

of Cyt-c from the mitochondria [74, 75]. 

Furthermore, TQ down-regulated STAT3-

regulated genes like the vascular endothelial 

growth factor, Mcl-1, cyclin D1, survivin, Bcl-2, 

and Bcl-xL [76, 77]. Das et al. [78] have 

demonstrated the role of TQ in inducing 

apoptosis by increasing the Bax/Bcl-2 ratio in 

Hep2 and A431 cells, stimulating executioner 

caspases, PARP cleavage, DNA disintegration 

and impairment of cell cycle. In the breast cancer 

cells, TQ caused upregulation of peroxisome 

proliferator-activated receptor (PPAR)-γ, leading 

to downregulation of the genes implicated in cell 

survival and death [79, 80]. Other isoforms of 

PPARs like PPAR-β/δ were also activated by TQ 

in breast cancer cells. The PPAR-γ activation role 

was further confirmed by abolishing TQ-induced 

apoptosis of MCF-7 cells by the PPAR-γ 

antagonist GW9662 [14, 81]. Moreover, inhibition 

of NF-κB and downstream effector molecules is a 

possible underlying mechanism of the antitumor 

and anti-angiogenic activity of TQ in 

osteosarcoma [82]. Moreover, TQ inhibited the 

motility of the human renal carcinoma cell line 

786-O-SI3 toward the lung, suggesting that TQ 

might be beneficial in combating cancer cell 

metastasis [83].  Similarly, TQ exerted the anti-

metastatic activity in breast cancer by down-

regulation of NF-κB regulated chemokine 

receptor type 4 expression that is responsible for 

increased cell proliferation, metastasis and poor 

prognosis in patients with breast cancer [84]. 

Most recently, TQ-induced inhibition of 

proliferation and migration of MDA-MB-231 

breast cancer cells were linked to suppressing 

autophagy [85, 86]. TQ also exhibited selective 

killing for prostate cancer cells at advanced stages 

[87]. Besides decreasing the oxidative injury 

caused by several chemotherapeutics agents, TQ 

increased the susceptibility of cancer cells to these 

drugs alongside its anticancer effect. For instance, 

sequential exposure to TQ followed by cisplatin 

or paclitaxel resulted in synergy or additive 

effects in diverse cancer cell lines [88]. TQ in 

combination with tyrosine kinase inhibitors may 

be prospective successful therapeutic approach 

by using nanotechnology [89]. TQ showed 

potency against cancer stem cells either alone or 

in combination with chemotherapeutic agents 

[90]. 

2.8.  Effect of TQ on Cardiovascular System 

TQ exerted its cardioprotective effect against 

isoproterenol induced myocardial lesions in rats 

through augmenting antioxidant effect and 

saving cardiomyocytes confirmed by the 

reduction of lipid peroxidation product, 

recovering cardiac enzymes and pro-

inflammatory cytokines [91]. In hyperlipidemic 

rabbits, TQ exhibited positive effect on 

aminotransferases, insulin and serum glucose by 

lowering of reactive oxygen species in steatosis 

caused by elevated cholesterol diets [92, 93]. TQ 

lowered the elevated blood pressure induced by 

the 4-week administration of L-nitro-arginine 

methyl ester to rats via reducing serum 

aldosterone concentration, implying TQ-action 

through the renin-angiotensin-aldosterone 

system [94]. The role of TQ in preventing and/or 

treating atherosclerosis is combatting 

hyperlipidemia, oxidative stress, and 

inflammation in atherosclerosis and 

preventing foam cell formation by decreasing 

low-density lipoprotein (LDL) availability and 

oxidation [95, 96].  

 

 

 

2.9. Gastro Protective Effects 

Arslan et al. [97] reported that TQ conferred 

protection against ethanol-induced acute gastric 

ulcer in rats. TQ is a potential inhibitor of 

indomethacin-induced gastric ulcers. TQ 

decreased the ulcer index and boost the recovery 

of gastric lesions induced by indomethacin in rats 

[98]. TQ alone or in combination with citalopram 

proved to be effective in protection from 

oxidative stress caused by reserpine in gastric 

https://www.frontiersin.org/articles/10.3389/fphar.2017.00656/full#B46
https://www.frontiersin.org/articles/10.3389/fphar.2017.00656/full#B22


Octahedron Drug Research 2022, 1, 65-84; doi: 10.21608/odr.2022.154399.1003                                            https://odr.journals.ekb.eg/  

72 

 

and duodenum tissues in comparison to 

citalopram alone [99]. TQ accelerated the healing 

of colon and decreased mucosal and submucosal 

damage alongside increasing the collagen 

synthesis [100].  

2.10. Hepatoprotective Effects  

Administration of TQ to rats protected against 

CCl4 induced liver toxicity and showed anti-

oxidant effect through reducing 

malondialdehyde content and increasing the 

levels of various antioxidants like GSH, SOD and 

CAT [101]. Moreover, oral administration of TQ 

reduced elevation of serum aminotransferases 

and hepatic damage elicited in acetaminophen-

overdose model by increasing the quinone 

reductase, GST, and GSH in the hepatocytes 

[102]. Badary et al.  [58] have reported that mice 

treated with TQ along with benzo(a)pyrene 

showed normal hepatic lipid peroxides and GSH 

levels. TQ intervention attenuated the obesity-

mediated decrease of oxygen consumption, 

fasting glucose and improved mitochondrial 

biogenesis via raising HO-1 in the setting of 

hepatic steatosis caused by high fat diet [103].  

The protection potential of TQ has been shown in 

several models of hepatotoxicity like those 

caused by acetaminophen [104], aflatoxin-B1 

[105], anti-tubercular drugs induced toxicities 

[106], cadmium [107] cypermethrin [108], 

tamoxifen [109], and cyclophosphamide [110], 

and Lead [111]. TQ has a beneficial therapeutic 

potential against fluvastatin and morphine 

induced hepatotoxicities [112, 113].  Thus, the 

multitargeting points of TQ against the oxidative 

stress pathway make it an essential supplement 

to limit liver toxicities. The hepatoprotective 

effect of TQ against D-

galactosamine/lipopolysacharride challenge was 

found to be comparable to silymarin [114, 115]. 

In the setting of liver fibrosis, TQ reversed 

inflammatory infiltrations, tissue damage and 

accumulated extracellular matrix proteins 

accompanying repeated insult with 

thioacetamide [116]. TQ has been shown to 

abridge the mRNA levels of collagen-I, tissue 

inhibitor of metalloproteinase-1 (TIMP-1), and α-

smooth muscle actin (α-SMA). Moreover, it 

condensed the countenance of toll-like receptor-4 

(TLR4) and the following increase in the levels of 

the inflammatory cytokine. TQ inhibited the 

phosphorylation of phosphatidylinositol 3-kinase 

(PI3K) and stimulated liver kinase B-1 and AMPK 

phosphorylation and thus reduced the 

extracellular matrix accumulation via AMPK 

phosphorylation signaling pathways. Oral 

administration of TQ reduced the N-

nitrosodiethylamine (NDEA)-induced liver 

cancer by downregulating the expression of 

tumor markers and reducing the liver injury. It 

also prevented nodules formation in 

hepatocellular tissues and reduced tumor 

development progression. TQ arrested the cell 

cycle in the G1/S phase and showed anti-

proliferative effects [117]. Also, it ameliorated the 

chromosomal abnormalities provoked by 

bilharzia in mice. The genoprotective effect of TQ 

has been demonstrated in vitro and in 

vivo experiments in the bone marrow and spleen 

cells [118]. TQ also inhibited ductular 

proliferation and oxidative stress in the surgically 

ligated bile ducts in rats [119]. 

2.11. Anti-diabetic Effects  

Diabetes mellitus is well-known for its 

complications like retinopathy, neuropathic pain, 

and kidney damage and heart problems. Many 

plants have been proven effective in treating 

diabetes, comprising N. sativa  [120]. TQ exerted 

strong anti-hyperglycemic activity and reduced 

gestational diabetes. For instance, TQ resulted in 

reducing glucose creation and it limited 

gluconeogenesis and stimulated insulin release 

from pancreatic β-cells in murines [121-123]. TQ 

modulated the toxic properties of streptozotocin 

like annihilation, mitochondrial swelling and 

DNA injury alongside preserving β-cell by 

decreasing the superoxide anions radicals and 

lipid peroxidation [124, 125]. 

TQ caused a decrease in the rate of 

miscarriages, a progress in the number of actual 

pregnancies and a reduction in demise among 

new inborn pups of mothers who have diabetes 

by flourishing GST, CAT, and GSH levels and 
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reducing DNA injury [126]. Also, [127] have 

reported that TQ treatment controlled the rise in 

plasma cholesterol and triglyceride levels in TQ 

treated diabetic rats. Orally administered TQ 

limited the diabetic polyneuropathy occurring in 

the sciatic nerves and myelin breakdown [128]. 

Besides, TQ improved renal function and 

morphology in streptozotocin-induced diabetes 

model [128, 129]. Intraperitoneal administration 

of TQ to diabetic rats regulated elevations of 

TNFα and IL-1β levels [130].  

2.12. Effects of TQ on Respiratory disorders 

The useful effects of TQ in respiratory 

illnesses comprising dyspnea and asthma have 

been anciently identified [131]. Kanter [132] has 

shown that TQ attenuated lung damage caused 

by elongated susceptibility to toluene interceding 

anti-apoptotic mechanisms. It also decreased the 

development of pulmonary inflammation and 

fibrosis and overactivation of NF-κB in the lung 

tissue mediated by bleomycin in rats [133]. 

Similarly, TQ has also been shown to be effective 

in rats against cyclophosphamide driven 

pulmonary damage [134]. In addition, TQ 

resulted in a relaxation of pre-contracted 

pulmonary arterial rings and decreased the 

tightening of these rings in a concentration-

dependent manner via non-competitive 

obstruction of endothelin, serotonin, and alpha-1 

receptors, as well as ATP-sensitive K+ channels 

activation [135]. TQ also possessed marked anti-

allergic and anti-asthmatic activity and may have 

beneficial effects in the prevention or treatment of 

these disorders [136]. El Gazzar et al.  [137] have 

reported the mechanism of anti-inflammatory 

activity of TQ in lung persuaded by airway 

challenge of OVA-sensitized mice through the 

hang-up of Th-2 driven immune response. El 

Mezayen et al. [18] have also revealed that the 

anti-inflammatory action of TQ is modulated by 

hanging up the expression of COX-2 and 

production of PGD-2. 

 Isik et al.  [138] have demonstrated the 

possibility of using TQ in case of acute 

respiratory distress in rats. The preventive and 

curative effects of TQ were also confirmed on 

lung damage created by cigarette smoke on rats 

as evidenced by reducing the apoptosis and 

inflammation response [139].   TQ limited 

pulmonary injury and inflammation caused by 

LPS-challenge [140]. TQ oil capsules (500 mg/ 

day) was found to beneficial for chronic 

obstructive pulmonary disease therapy [141]. TQ 

exhibited a bronchodilator activity via blocking 

the muscarinic of the bronchial smooth muscle 

[142]. TQ reduced the number of coughs in 

guinea pigs and its antitussive activity was linked 

to stimulation of opioid receptors like codeine 

[143]. 

2.13. Effects of TQ on the Urinary System 

Evidence from the existing literature suggest 

that exposure to xenobiotics like 

chemotherapeutics, heavy metals, pesticides, and 

other environmental chemicals mediates kidney 

injury in experimental animals, which was 

ameliorated by TQ treatment. In rodent models, 

administration of TQ attenuated the severity of 

acute renal injury caused by cisplatin and 

boosted the healing outcomes in both rats and 

mice. In addition, TQ modulated biochemical 

changes and abnormalities in the kidney due to 

vancomycin administration to rats [144]. Kanter 

(2009) [128] has revealed that TQ also enhanced 

the morphology of kidneys and generated 

functional improvement in streptozotocin-

induced diabetes in rats. TQ provide hepatorenal 

protection in methotrexate-induced toxicity in 

rats [145].  TQ possessed a potential antioxidant, 

antiapoptotic defense and exhibited strong 

nephroprotective activity against diclofenac-

induced toxicity [146].  Similarly, treatment with 

TQ to mice also improved gentamicin-induced 

acute renal failure by limiting the oxidative stress 

[147]. In DOX-induced nephrotoxicity, treatment 

with TQ reduced kidney damage by suppressing 

peroxidation of lipids and enhancing the 

endogenous antioxidant activities [135, 148]. 

Pretreating rats with TQ reduced 

cyclophosphamide-induced oxidative stress and 

apoptosis [149]. Fouda et al. [56] have reported 

that TQ prevented renal damage in rats driven by 

mercuric chloride as indicated by restoring the 
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function of the kidney, enhanced activities of 

antioxidant enzymes and renal tissue salvaging 

[57].  

Awad et al. [150] have reported the 

effectiveness of TQ in hepatorenal dysfunction 

caused by ischemia/reperfusion. The beneficial 

effects of TQ in renal injury were also 

demonstrated in rheumatoid arthritis or sepsis 

[151]. TQ treatment restored the oxidative 

stress/antioxidant balance in pyelonephritis to the 

normal state [152]. Ince et al. [108] have 

elucidated the benefits of TQ supplementation 

against cypermethrin-induced necrosis of renal 

tubules, shrinkage of glomeruli, and sloughing 

off epithelial cells in mice kidneys. In 

cyclophosphamide-induced hemorrhagic cystitis, 

TQ reduced epithelial denudation, edema, 

cellular infiltration, hemorrhage in the bladder 

tissues and fragmentation of DNA via Nrf2 

expression and normalization of oxidative stress 

[153]. Targeting activation of NF-κB, Caspase, 

and TGF-β signaling pathways were reported to 

additional molecular mechanisms of TQ-

mediated kidney protective effects [154].   

2.14. Effects of TQ on Male Infertility 

The protective effects of TQ on testis damage 

caused by cadmium were linked to its anti-

oxidant and anti-inflammatory effects [155]. TQ 

protected against the lead toxicity induced 

testicular injuries by enhancing the testosterone 

level and roles of the testis [111]. Gökçe et al. 

(2011) [156] established that TQ administration in 

mice lessened interstitial space dilatation and the 

deleterious manifestations in testis caused by 

methotrexate. TQ demonstrated ameliorative 

potential against the detrimental effects of 

nicotine towards sperm count, membrane, 

mitochondria and testosterone level [157].    TQ 

ameliorated testicular damage and improved 

sperm quality in varicocele-induced adolescent 

rats by reducing apoptosis, oxidative stress, and 

lipid peroxidation [158]. TQ reduces oxidative 

stress in the testicular tissue of reserpinized rats 

by decreasing the oxidative stress and increasing 

the decreased antioxidant capacity [159]. TQ 

supplementation limited bacterial prostatitis 

because of a substantial boost in the antioxidant 

enzymes [160]. 

2.15. Effect of TQ on the Skin and Hair 

TQ given systemically and/or topically 

reduced inflammation and oxidative stress and 

accelerated the rate of wound closure or re-

epithelialization in a rat burn model [161].  TQ 

accelerated wound healing during the 

inflammatory phase due to its antioxidant, anti-

inflammatory and antimicrobial properties, while 

decelerated wound healing capacity during the 

proliferation phase due to antiangiogenic effect 

[162]. Ethosomal vesicles loaded with TQ were to 

overcome the hydrophobicity, poor aqueous 

solubility, and photosensitive nature were found 

to be beneficial in experimental mice model of 

psoriasis [163]. Furthermore, TQ loaded topical 

nanoemulgel showed promising results in wound 

healing [164].   TQ also increased both the 

viability of NIH/3T3 cells and its wound closure 

activity in vitro [165]. TQ might be useful for 

clinical application in skin disorders like 

hypopigmentation or vitiligo, because of acting 

like acetylcholine in mediating melanin 

dispersion leading to skin darkening via 

stimulation of muscarinic receptors within the 

melanophores of lizard wall [166].  

2.16. Neuroprotective Actions  

TQ has been investigated in various 

neurological disorders like epilepsy, 

Parkinsonism, anxiety, neuroinflammation, 

depression, Parkinson disease, Alzheimer 

disease, encephalomyelitis, transient global 

cerebral ischemia (forebrain ischemia), traumatic 

brain injury and others.  TQ spared brain cells 

from diverse injuries because of its antioxidant, 

anti-inflammatory and apoptotic proper 

[167].  For instance, intracerebroventricular 

injection of TQ was useful in maximal 

electroshock and pentylenetetrazol-induced 

seizures together with its effects on pentobarbital 

induced locomotor activity and hypnosis via 

augmenting the opioid receptor-mediated GABA 

action [168, 169]. Ilhan et al. [170] have 

demonstrated the anti-epileptic of N. sativa oil 
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was better than sodium valproate on abating 

pentylenetetrazole-induced epilepsy in mice. 

Moreover, TQ improved the potency of sodium 

valproate, when co-administered together, 

against epilepsy and reduced the magnitude and 

incidence of hepatotoxicity in children due to 

chronic administration of sodium valproate [171]. 

TQ attenuated induction of pro-inflammatory 

cytokines and oxidative stress and showed 

neuroprotective effect against ischemia-

reperfusion injury of the spinal cord and epilepsy 

[156]. TQ treatment significantly decreases 

cerebellar changes resulting from 

propylthiouracil-induced hypothyroidism, and 

results in the retention of neuronal structural 

integrity in the cerebellar cortex and could be a 

beneficial natural candidate to limit the the 

impairment of learning and memory caused by 

antithyroid drugs [171, 173]. Co-administration of 

TQ and amphetamine demonstrated a marked 

rise in dopamine level at 48 hours of exposure 

when compared to amphetamine alone [174]. TQ 

maintained the structural integrity of the retina 

and mitigated retinal thinning caused by 

rotenone in a rat model of Leber’s hereditary 

optic neuropathy [175]. TQ had also protective 

action on diverse brain disorders evidenced by 

hindering apoptosis, oxidative stress and 

inflammation like the damage driven by the 

organophosphate diazinon [176], encephalopathy 

caused by repeated challenge with thioacetamide 

[177] and Alzheimer’s disease [178]. Other 

neurotoxic chemical agents which TQ was 

applied for includes lead, ethanol, toluene, 

glutamate, acrylamide, lipopolysaccharides and 

streptozotocin [179]. 

2.17. Effect on Transcription Factor 

NF-κB is an axial transcription factor that can 

be activated subsequent to Toll-like receptors 

stimulation, free radicals and cytokine receptors, 

leading upregulation of inflammatory genes, 

angiogenic factors, cytokines and cell cycle-

regulating proteins [51]. TQ inhibited 

inflammatory the stimuli-induced activation of 

NF-κB, generation carcinogens and TNF-α by 

impairing IkBα degradation and phosphorylation 

[180]. TQ ameliorated rheumatoid arthritis via 

limiting LPS-induced NF-κB nuclear 

translocation and phosphorylation of MAPKS 

p38 and ERK1/2 [22, 181]. Similarly, Wilkins et al. 

[182] showed that TQ interefered with NF-κB 

translocation to the nucleus in macrophages 

stimulated by LPS. Additionally, 

encephalomyelitis was alleviated by TQ in a rat 

model of multiple sclerosis perhaps via NF-κB 

inhibition [183].  In HS766T pancreatic ductal 

adenocarcinoma cells, [184] reported that TQ 

prevented TNF-α-induced NF-κB activation and 

translocation to the nucleus. Thus, interfering 

with activation and nuclear translocation of NF-

κB appears to be a key mechanism for TQ to curb 

inflammation in different settings. 

The nuclear factor erythroid 2–related factor 2 

(Nrf2) is another cell signaling transcription 

factor that transduces signals for phase II 

antioxidant enzymes like heme oxygenase-1 (HO-

1), NADPH dehydrogenase [quinone] 1 (NQO1), 

CAT, SOD, and GST. These enzymes help in 

detoxifying harmful substances from the body 

and play a necessary role in chemo-preventive 

and organotropic effects against anticancer drugs 

including (but not limited to) cyclophosphamide, 

cisplatin, and doxorubicin. For instance, TQ was 

reported to confer protection against 

cyclophosphamide-induced hemorrhagic cystitis 

via upregulating Nrf-2 in mice [153].   

The signal transducers and activators of 

transcription (STAT) has been affected by TQ  

[185]. STAT3 is a member of the STAT family that 

plays a significant role in driving the 

transcription of genes related to the cellular 

immune reactions, metastasis, angiogenesis, 

apoptosis, propagation and differentiation  [186]. 

For instance, TQ suppressed phosphorylation of 

STAT-3 and the expression of its downstream 

signaling effectors VEGF,  Mcl-1, surviving, 

cyclin D1, Bcl-XL, and Bcl-2 [187, 188]. In multiple 

myeloma U266 cells, TQ hindered the 

phosphorylation of constitutive and IL-6-

inducible STAT3, as well as inhibit activation of 

JAK-2 and c-Src. The TQ apoptotic activity was 

dependent on STAT3, because mice embryonic 

fibroblasts lacking STAT3 were resistant to TQ-
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mediated apoptosis more than wild-type 

fibroblasts [55].  

3. Quantification of TQ in Nigella oil "GC-

MS" and the influence of geographical source 

on TQ content in the oil. 

 The essential oil content in aromatic plants 

were influenced by environmental conditions 

such as temperature, climatic condition, light, day 

length, and water status. Also, cultivation 

conditions and cultural practices greatly affect the 

oil composition [189]. The chemical composition 

of N. sativa seeds oil from both Bangladesh and 

India were similar. The major volatile compounds 

in Bangladesh oil were p-cymene (36.35%), TQ 

(29.77%), α-thujene (12.40%), carvacrol (2.85%), β-

pinene (2.41%), limonene (1.64%), methyl 

linoleate (1.33%) and sabinene (1.18%), 

contribution of these is 87.93% of the total volatile 

oil. On the other hand, the major volatile 

compounds in Indian seeds were p-cymene 

(41.80%), α-thujene (13.93%), TQ (10.27%), methyl 

linoleate (4.02%), carvacrol (3.65%), β-pinene 

(2.96%), d-limonene (2.11%), 4,5-epoxy-1-

isopropyl-4- methyl-1-cyclohexene (1.80%), 

sabinene (1.50%) and 4-terpineol (1.22%); 

contribution of these were 83.24% of the total 

volatile oil. In both oils, p-cymene, TQ, and α-

thujene were the major components. Importantly, 

N. sativa seeds of Bangladesh contained almost 3-

fold TQ compared to Indian seeds. In conclusion, 

the seeds from Bangladesh contain a higher 

amount of terpene ketones (29.86%) represented 

by TQ in comparison to Indian seeds (10.61%) 

[190]. In Iran, the major compounds of the 

volatile oil were trans-anethole (38.3%), p-cymene 

(14.8%), limonene (4.3%), and carvone (4.0%), 

while TQ represented 0.6% [191].GC-MS analysis 

of the essential oil of N. sativa seeds from Uttar 

Pradesh, India,  revealed that the major 

components were TQ (37.6%) followed by p-

cymene (31.2%), 𝛼-thujene (5.6%), 

thymohydroquinone (3.4%), and longifolene 

(2.0%)[192]. Additionally, the essential oil of N. 

sativa seeds from Tamil Nadu, India contains a 

total of 32 compounds and 9-eicosyne (63.04%) 

was a major chemical constituent followed by 

linoleic acid (13.48%), palmitic acid (9.68%), p-

cymene (2.54%) and TQ (1.86%)[193]. The major 

component of the oil of seeds collected from 

Menzel-Temime was p-cymene (49.48%) followed 

by a-thujene (18.93%), a-pinene (5.44%), b-pinene 

(4.31%) and c-terpinene (3.69%), whereas TQ 

represented only (0.79%)[194]. In fact several 

authors have reported the chemical composition 

of the N. sativa oil and it has been found that TQ 

content changes considerably according to the 

geographical origin. 

4. Safety and side Effects of TQ 

There is a significant increase in the usage of 

botanical medicines for their curative and 

preventative advantages. Nonetheless, the topic 

of their safety has also earned remarkable 

attention before usage in humans. There is a lot of 

researches on potency, but toxicology surveys are 

not available to fulfill proper regulations for 

promoting clinical studies and complete the 

prerequisites for their use in health and medical 

care. The oil and seeds of a plant containing TQ 

have very low lethality or appear to be free of 

toxicity  [195]. Many surveys were adopted to 

assess the TQ toxicity in vivo and in vitro  [196, 

197]. Different dose ranges of TQ have been 

studied in animal models with various diseases 

where have been shown a promising therapeutic 

and preventive agent with minimal toxicities  [52, 

116, 198]. TQ administration in rodent models for 

20 days did not cause death in Balb/c mice or 

affect their mean body weight, a true subtle 

toxicity limit  [107]. Gali-Muhtasib et al. [199] 

have demonstrated that administration of 1 

mg/kg/day TQ was well-tolerated. 

Administration of TQ to rats for 30 days using a 

lysine tri-calcium phosphate pill showed no sign 

of toxicity on reproductive system and minimal 

adverse effects on dynamic strictures.   

Remarkably, subchronic administration of TQ at 

doses of 90 mg/kg/day to rats was found safe and 

free of any toxicity. Administration of TQ at high 

doses (2–3 g/kg) for 1 day, exhibited difficulty in 

respiration and hypo activity as signs of toxicity. 

It reported that encapsulation of TQ in lipid 
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carrier minimizes the lipid toxicity of the 

compound   [200]. 

5. Conclusion  

The seeds of Nigella sativa L. are used in folk 

medicine all over the world for preventing and 

curing many diseases. Previous studies reported 

that, much of the seed’s biological activities are 

due to TQ, the main ingredient of its essential oil. 

This review accentuates the biological efficacy of 

TQ and shows its importance in combating 

diseases such as inflammation, arthritis, 

ulcerative colitis, neuropathic pain, diabetes, 

hepatitis, cardiovascular, musculoskeletal, cancer, 

respiratory, renal, male infertility, immunity, and 

neurodegenerative diseases comprising 

Parkinson's and Alzheimer's. It demonstrated 

beneficent properties towards skin and hair and 

proved to be antibacterial and antiviral agent 

including Covid-19. The multifunctional, poly-

pharmacological actions of TQ rationalize its use 

with other conventional medicines to enhance the 

synergistic combination by improving 

effectiveness and reducing side effects. The 

natural origin of this compound provides an 

excellent privilege, thus clinical trials are required 

to translate the experimental results into fact in 

humans. The pharmacological properties, 

pharmacokinetics, efficacy, high therapeutic 

index, lipophilicity, and safety margin make TQ a 

hopeful candidate for drug development. The 

exact molecular mechanism of TQ is still not well 

understood and the SAR of this pharmacophore 

need a detailed examination to develop a real 

effective and safe drug.  
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