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ABSTRACT 

In this paper, the unsteady three-dimensional thin-layer Navier-

Stokes equations in the moving frame of reference are solved by using 

a time-accurate implicit approximately-factored finite-volume scheme. 

The steady results for a delta wing of aspect ratio of 1 and 20.5°  

angle of attack are compared with the experimental data of ref. 18 . 

With the steay results serving as the initial conditions for the 

pitching motion the problem is solved. We present comparisons between 

the Euler equations solution and the thin-layer Navier-Stokes solution 

for both the steady and unsteady flows. 
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Introduction 

The literature on the computational solution and experimental data of the 

unsteady vortex-dominated flows, particularly in the transonic regime, is 

unfortunately very limited. This is attributed to the complexity of the flow 

and its dependence on numerous parameters, and the substantial computational 

cost involved for the flow resolution and the time-accurate computations. 

Most of the existing unsteady computational schemes are based on the 

unsteady small disturbance (UTSD) theory1-3, unsteady full potential (UFP) 

equation4-6, UTSD equation with non-isentropic flow corrections and UFP 

equation with non-isentropic flow corrections8. These schemes are restricted 

to attached flows only. 	For mildly separated flows, integral and finite- 

difference boundary-layer schemes have been coupled with potential flow 

schemes9'10. 	• 

The unsteady Euler equations adequately model shock waves and their 

motion, entropy increase across shocks and entropy gradient and vorticity 

production and convection behind shocks, as can be seen from Crocco's theorem 

and the inviscid vorticity transport equation. 	Moreover, the computational 

solution of Euler equations adequately models separated flow from sharp 

edges11-13. For smooth-surface separation, round-edge separation, shock-

induced separation, viscous diffusion and dissipation, vortex breakdown, flow 

transition and turbulence; viscous terms must be added to Euler equations to 

recover the full Navier-Stokes equations or an approximate form of these 

equations. 

Recently, successful time accurate solutions of the unsteady Euler and 

Navier-Stokess equations have been presented for airfoils13 ,14-17 . 	The only 

existing unsteady Euler solutions for vortex-dominated flows are those of the 
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rolling-oscillation of a sharp-edge delta wing in a locally conical supersonic 

flow around a mean angle of attack and a zero angle of attack, which were 

presented by the authors in Refs. 12 and 13. The authors derived the unsteady 

Euler equations for the flow relative motion in a moving frame of reference, 

and the equations have been solved by using an explicit, multi-stage time 

stepping, finite-volumne scheme. Periodic solutions were achieved in the third 

cycle of rolling oscillation. Details of the surface pressure, cross-flow 

velocity and cross-flow Mach contours were presented showing the primary 

vortex and wave shocks formation and interaction. 

In this paper, the unsteady three-dimensional thin-layer Navier-Stokes 

equations in the moving frame of reference are solved by using a time-accurate 

implicit approximately-factored finite-volume scheme. The steady results for 

a delta wing of aspect ratio of 1 and 20.5°  angle of attack are compared with 

the experimental data of ref. 18. 	With the steay results serving as the 

initial conditions for the pitching motion the problem is solved. We present 

comparisons between the Euler equations solution and the thin-layer Navier-

Stokes solution for both the steady and unsteady flows. 

Formulation 

In the absolute frame of reference, the unsteady, compressible Navier-

Stokes equations in the conservation form is given by 

ap 
+ V • (pi:) = 0 

at 

a 	- 	
• (p V V + p i) - v • (T) = 0 

a 

at 
(pe) + v • (p h V) - v • (; • CI - (71) = 0 
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p = (y-1) (pc - f V2) 

h = 72(i.P:r 2 
2 

(4) 

2 M.  p . 1 
T - 	
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[1.) " -3- tr (5)) , 5 . 2 (V ; + ; V) 	(5) 

M p 
'5 - 	

. 
(y-1) Pr Re 

VT 	 (6) 
 

1+C u = T3/2  (7.47) , C = 0.4317 	 (7) 

p. V. 1 	V . 
Re = 	 , Pr = 0.72 , M_ = 7-- 	(8) 

ti. 	"0 

In Eqs. (1)-(8), p is the density, V the fluid velocity, p the pressure.2 e the 

total energy per unit mass, I the temperature, p the viscosity, Re the 

freestream Reynolds number, Pr the Prandtl number, M.  the freestream Mach 

number, V.  the freestream velocity, and y the ratio of specific heats. The 

characteristic parameters are t, a., p., T.  and u.  which are the root chord, 

freestream speed of sound, freestream density, freestream temperature and 

freestream viscosity. The Sutherland's constant C is the ratio of 

198.6°R/460°R. 

To express Eqs. (1)-(3) in terms of a moving frame of reference, denoted 

by "I ", we use the following relations of the substantial and local 

derivatives of a scalar "a" and a vector "A": 

Da _ D'a 
Dt DT' 
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where 

9t =9-9r  =Vo 	
(10) 

In Eqs. (9) and (10), it  is the transformation velocity from the absolute 

frame to the moving frame, Vr  the relative flui flow velocity, ; the angular 

velocity of moving frame, and F is the position vector of a fluid particle 

with respect to the moving frame. With the transformation given in Eq. (9), 

Eqs. (1)-(5) become 
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In the matrix form and in terms of the Cartesian coordinate (x, y, z), Eqs. 

(11)-(13) become 
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In Eqs. (18)-(26), if 7r  and El vanish in the Euler limit, we obtain the 

unsteady Euler equations in the moving frame of reference. 

Computational Method 

Using the time-independent body conformed coordinate E, n and c in the 

moving frame of reference given by 

E = C(x, Y, z), n = n(x, Y, z), C = C(x, Y, z) 	(30) 

and using the thin-layer Navier-Stokes approximation, i.e., keeping the 

viscous and heat transfer derivatives in the c direction (normal to the body) 

and neglecting the c and n derivatives of the viscous and heat transfer terms, 

Eq. (18) reduces to 

a' Qr 	3Er 
 aFr 

	3 
3E 

+ 
an 	ac + —

(Gr 
 - G
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 + 4z G

vr  ] 
	(36) 

S = J-I  S 	 (37) 

Equation (31)-(37) along with uniform flow initial conditions and the flow 

boundary conditions ars solved using the time-accurate implicit approximate 

factorization which is-adapted from the Beam and Warming Scheme. The boundary 
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conditions include the solid body conditions; ur  = vr  = wr  = 0, 1I  = 0, 

aP 0, the plane of symmetry reflection condition and the inflow-outflow 

Riemannlnvariant conditions normal to the computational boundary. 

Computational Results 

A sharp-edged delta wing of aspect ratio, AR, of one, at a mean angle of 

attack, 5n, of 20.5°  and in a free stream Mach number, M., of 0.3 is 

considered for the computational application of the implicit three-dimensional 

vectorized program. The body conformed grid consists of 80x38x48 cells in.  

the E,t and n directions, respectively; and its size is one root-chord ahead 

of the wing vertex, two root-chords behind the trailing edge and one root-

chord radius in the cross flow planes. The outer boundary consists of a hemi-

spherical surface with its center at the wing vertex and a cylindrical surface 

with its axis coinciding with the wing axis. The grid is generated in cross-

flow planes using a modified Joukowski transformation which is locally applied 

at the grid chord stations with exponential clustering at the wing surface. 

Steady Flow-Euler Equations: 

The implicit program is used to solve for the steady flow at 20.5° angle 

of attack with two levels of numerical dissipation; a low dissipation (ID) 

with £2  = 0.05, 	£4  = 00.0025 and em  = 0.25 and a high dissipation (HD) 

with £2  = 0.25, e4  = 0.0025 and cm  = 0.25. 	Figure 1 shows the solutions 

at two chord stations of 0.52 and 0.81 on the wing. The figures from left to 

right show the surface pressure coefficient (Figures 1.1), the static pressure 

coefficient contours (Figures 1.2) and the cross-flow velocity directions 

(Figures 1.3). Here, we compare the surface pressure of the Implicit-Scheme 

with low dissipation with that of the experimental data of Humme122. Other 

comparisons are given by the authors in ref. 19. 
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At X'/C = 0.52, the computed surface pressure with low dissipation is in 

excellent agreement with the experimental data. The computed static pressure 

contours with low dissipation show higher pressue levels than those computed 

contours with high dissipation, particularly in the vortical core region. 

With low dissipation, the highest pressure contour is 1.6, while with high 

dissipation the highest pressure contour (at the same location) is 1.1. 

Comparison of the computed surface pressure with high dissipation with that of 

the experimental data (given in ref. 19) shows that the computed peak suction 

pressure is underpredicted by 18% although the remainder of the surface 

pressure is in good agreement with the experimental data. 

At X'/C = 0.81, the computed surface pressure with low dissipation is 

higher than that of the experimental data, particularly under the primary 

vortex core. The computed peak suction pressure is about 25% higher than that 

of the experimental data. Comparison of the computed static pressure contours 

with low dissipation shows higher pressure levels than those computed contours 

with high dissipation, particularly in the vortical core region. The cross 

flow velocities of both dissipation levels (Figures 1.3) show almost identical 

shapes and directions. 

Figure 2 shows the experimental static pressure contours of Hummel22  in 

planes perpendicular to the wind direction (Figures 2.1), the computed static 

pressure contours in planes perpendicular to the wing surface (Figures 2.2) 

and the cross-flow velocity directions (Figures 2.3). The computational 

results along with the experimental data are shown for two cross flow planes 

in the wake; X'/C = 1.02 and X'/C = 1.25. At X'/C = 1.02, the computed outer 

contours are in excellent agreement with the experimental contours. For the 

most inner static pressure contours, the experimental data show higher level 

than those of the computed results. On the other hand, the implicit results 
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with low dissipation show higher level than those of the higher dissipation. 

Similar results are seen at X'/C = 1.25. At this location, it is seen that 

the trailing-edge vortex core is captured using the low-dissipation implicit 

scheme. 

The discrepancies between the experimental data and the computed results 

with low dissipation level are attributed to the grid coarseness in the 

vortical core and to the viscous effects in the vortex core as well as on the 

wing upper surface. The discrepancies between the computed results with low 

and high dissipation are obviously due to the low and high value of the 

explicit second-order damping coefficient. This case is being solved for the 

thin-layer N-S Equations. 

Unsteady Flow (Pitching Oscillation about the 
Quarter-Chord Axis)-Euler Equations 

The steady results with low dissipation level are used as the initial 

conditions for calculating the unsteady flow around the same wing which is 

undergoing a pitching oscillation about the quarter chord ax-s. The angle of 

attack a(t) is given by 

a(t) . am  + ao  sin 2,1  M.  kt 

k C 
where a

o 
is the amplitude, and k is the reduced frequency (k = 17, k 

dimensional frequency and c E wing chord length). 	In this application am  = 

20.5°, ao  = 2°, M. = 0.3 and k = 3 which corresponds to a period of 2.95 per 

cycle. 	Each cycle of oscillation takes about 1,475 time steps and the solu- 

tion covers 5,000 time steps which correspond to 3.39 cycles of oscillation. 

Figure 3 shows a vz t motion at the top, which is followed by the surface 

pressure variation, static pressure contours and cross-flow velocity in each 

row of figures. 	The numbers 1-15 on the a-t curve and on the other figures 
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show the instants at which the computational results are shown. Here, we show 

the computations at X I /C = 0.52 and the computed surface pressures are shown 

every 200 time steps starting from the 2,200 time step, which corresponds to 

point 1 on the a-t curve. 	The static pressure contours and the cross-flow 

velocity directions are given at the 3,000; 4,000 and 5,000 time steps which 

correspond to points 5, 10 and 15, respectively; on the a-t curve. Compari-

son of the surface pressure at points 7 and 14, corresponding to 2.31 and 

3.25, cycles respectively, shows that periodic oscillation has already been 

reached. 	This case is being solved for the thin-layer Navier-Stokes Equa- 

tions. 

The full length paper covers comparisons of the steady and unsteady 

results with the thin-layer Navier-Stokes equations using fine grid of 

80x48x58 in the .E, ; and n directionsirespectiVely. 
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Figure 2. Comparison of the static pressure contours and cross-flow velocity 
at two chord stations in the wake of a sharp-edge delta wing, 
8008;(118 cell, M = 0.3, CI = 20.50, Ar = 1; 	1. Experimental static 
pressure contours, 2. Computed static pressure contours, 3. 
Cross-flow velocity. (EviCf) 
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FIGURE 3. PITCHING MOTION, VARIAT 
CONTOURS AND CROSS-FLOW 
UNDERGOING PITCHING OSC 
a = 20.50, a 	200, k 

6m 
0"25* ( Euler) 

ION OF SURFACE PRESSURE, STATIC-PRESSURE 
VELOCITIES FOR A SHARP EDGED DELTA WING 
ILLATION; 80X38X48 CELL. H. = 0.3. 
= 3, AR = 1, c2  = 0.05, c4  = 0.0025, 
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