$E A-5$	115

Military Technical College
CAIRO - FGYPI.

USE OF A RFSSISTIVE NETWORK
TO MEASTJRE: AND DISPLAY THE ANGIF: OF' A VARIABIE: CFORETRY INLET GUIDE VANFS OF A TURBOPROP ENGINE CCNPRESSOR

FAROUK HASSAN IN AILI.*

ABSTRACT

This paper explains an experimental application carried out in Engine factory Instrumentation Lab, to develop a pure resistive network and use it as a tram nsmitter converting angular displacement into a linear electrical signal that tracks the angle of the inlet guide vanes (IGV) of the first stage of a turboprop engine compressor. The mexsuring is to be achieved during test runding of the engine inour test cell. The transmitter seasitivity is first calculated and then used to estimate the other network paramoters. the setup is then construeted to cower a measuring span of (-99.99 to +99.99 deg.) with accuracy +/- O.I \% of F.S. The stability of the resulta under varing ambient temperature is studied and verified experimentally. Other figure of merit : repeatability was checked. Irumunity from noise and parasitic signals and durability ofthe eomponents wee also verified. The solocted digital indicator can display the results in the desired engineering units and can match any linearitation eq... It is showa that our system costed only $I / 3$ to $I / 5$ that of a similar comvertional imported system of the same class of precision.

[^0]EGYPT.
I. INTRODUCTION.

T.I. Objective :

General Flwctric Turboprop Engin (CT 64-820-4) is to be tested in Engine Factory test cells. The test procedure includes the check of the correct operation of a Variable Geometry Inlet Guide Vanes (IGV) system acting on the 4 Ist. stapes of the engine compressor. The check necessitates the continuous measuring and display of the relative ingular positions of the ICV, during engine test man in teat cell at different rotational speeds. Recause the motion of the 4 stagras IOV's is rigidlv interconnected, the mersuring of the position of the Ist. stage is sufficient.

Our trails axplained herelafter were directed to realize asimple locally constructed measuring and displayting setup tobe used instead of jmporting the exnensive longterm delivery setup used normally insuch situation, and keeping the sama degree of measurine precision and repeatability.
1.2. Variable Resimtace Dissmlacement Detectors : (VRDD)

VRPD were the first electromechanical trasmitters used since log time ago for a number of electromechaical measuremets e.g. : pressure, torque, force , etc.. . Abundance of circuits were developed either of the potemtial divifer tvpe or the Wheatstone bridge type, energized by either DC or AC voltage. As the potential divider circuits are not adequate for steady and quasi-sterdy sigmal cases owing to the presence of a large steady voltage at the transmitter terminals ; Wheatstone bridge networks ars in commen use, also due to its abilitv of sensing very small resistance chenges and producing either floating or grounded signals owing to its symetrical circuit comection.
Although lot of new displacement detectors have beer invented during thelast deeades implementing other circuit critera like : Synchro pairs, $A C$ rosolvers, Phase sensitive circuits; etc...; our trails were directed to the field of VRDD to wake use of their advantages namely : Robustness, simplicity, neod no special roltage or froquancy and having bettor normal and common mode rejection. On the other hard they are rery sensitive to energizing voltage variations and also change of ambient temp.may introduce errors, hence the reed for using high Erade resistors and/ or temp. compensation circuits.

IL．THF NHASUKING SYSTEM．
 motehir．pad at the input of the indientor。 The excitotion voltaeg ig drivenfrem s hichlv requlated power supply integrated with tho indicater sase．＇ieehnicel data af：the sustem corporents are fiven belew．

11．I．Transmitter ：

Type ：Kotary Io turns－linear wire wound．
Model ：Beckman－Hellopet is 8805.
Trilue ：30．25 Kehm at 25 def．Ü．
Telarance：＋／－ 0.03 \％reselution ；$+/-0.25$ \％Inearity。
tomp．ce口f．：TO O^{-5} per dog． l ．

11．2．Indicater ：

Trpe ：llgital programable tramadueer indieatore
Medel ：DORIC 420 －ENGHSUN ELLCLTTKLU UU．U．S．A．
Raxe ： 4 digets＋daad zere＋Eigk LEl
max．eounts 9999 with grosolution of one coust．
Ac＂uracy：Span ：$+/-0.03 \%$ of readirg $+/-0.02$ of F．S．\％
Offeet：＋／－0．02\％of set value．
Sovitivity ：I to I2 fr par active Rount（adjutable）．
Propram range：Gain ： 24 to $270 \mathrm{~V} / \mathrm{V}$ 。or $10.4 \mu \mathrm{p} /$ eount to $0.9 \mathrm{\mu v} / \mathrm{eount}$ ． Offact： 0 to IOIOO cousta．
Built－1ヵ pewer supply ： 4 eeleetable roltage valuea： 7.5 －Io－I5－20．VDC． Self protacter against short eircuit conditions．

1T．3．Nirime ：
Neaded one cable comasting of 3 stranded copper eonductore，each 5.5 mu．sq． cross－section＋eopper shiold＋outer plastic jasket．

1土．4．Matchiag pad ：

It composes of 3 hish wrade，low temp．cooff．resistors．Their value sud way of eqnection will be digeuseed in the rext paragraph．

Eng. 1. Schematic of the System.

Eig.2. Circuit Diagram

Fig. 3. Equivelant \& Simplified Circuit Diagram.

III . DESIGN CALCULATIONS.

IrT. T. Equivallint eireuit :

Refore te fig. If2\&z and te momenelature :
Fig. 2 ghow the equivaliat eireuit diagram of the sotup. Fie. 3 shows the same circuit aftor amplifisation by replacizg the nesh A B C bv ar equivabort star (Y) esproction :

GIver: $R(B C)=-\frac{R 1}{-R y} x^{x}=R_{e^{x}} \quad ; \quad R(C A)=R(B A)=R 0$
We got : $R(O A)=-\frac{R e^{2}}{R e+2 R e-m} \quad ; \quad R(O B)=R(O C)=-\frac{R}{R_{e}}+\frac{\pi}{\eta} \bar{R} \bar{R}$
Output Voltage $V=V(B C)=V(O B)=I \times R(O B)=-\frac{\pi(O B)}{R}+\bar{R}(\overline{O B})^{-} \mp R(\bar{O} \bar{A})^{--}$

S is dofired as eircuit semsitivity expreased in valt utput por volt ereiation Usiper the values: $R I=R p-R ; R e=\frac{R i-R}{R I+R^{-}}$

$$
\begin{equation*}
S=\frac{K R}{L+M R-N R^{2}} \tag{I}
\end{equation*}
$$

Where : $\left.\begin{array}{rl}K & =R \bullet R i ; \quad I=R e^{2} R i+2 R p R o R i ; \\ M & =R \rho^{2}+2 R p R \bullet+R p R i-R \bullet R i\end{array}\right\}$

The 2 terms $M R$ \& $N R^{2}$ intreduee nonlinearities in the $S-R$ relationship. We are going to make the necesmay amsumptions in order to raduse their eotributhon to the total net value of the demmixator of equation ($(\mathbb{L}$).

If : $|Q(R)|=\left|M R-N R^{2}\right|$; then the deneminetor $=L+G(R)$.
$G(R)$ could be maglectod if its max. mumerieal value satisfies the relation :

$$
\begin{equation*}
1000|Q(R)|_{\max }=L \tag{3}
\end{equation*}
$$

Te find the max. value of $Q(R)$:

$$
\begin{equation*}
\frac{d}{d}-\frac{Q(R)}{R^{\prime}}=M-2 N R=0 \quad \text { giving } \quad: R=-\frac{M}{2^{2} N} ; \quad Q(R)_{\max } \quad=\frac{M^{2}}{4 \bar{N}} \tag{4}
\end{equation*}
$$

Cubstitute ir ecuation (2) : $1000 \frac{M^{2}}{L^{2}}=250-\frac{N^{2}}{N^{2}}$
if we neplect $Q(R)$ in the derom. of equation (I), we car rewrite it as :

$$
\begin{equation*}
S=-\cdots \frac{K}{L} \quad \text { or } \quad S \quad=-\cdots \frac{R}{R_{1}} \quad \text { V. } / \mathrm{V} \tag{5}
\end{equation*}
$$

Te estimate the max. arror resultize due to thim linearization presedure ,w shall define the quaptity $\left(\sigma^{\sim}\right)$ expressed as :

$$
\begin{align*}
& \sigma=0.00 I \times K R / L .=0.00 I \times S \text { ipearized. } \tag{6}
\end{align*}
$$

Fiquation (6) show that the max. error of this approximatior $\leqslant 0.2 \%$ of the new value.
III. 2. Eatimation of Re, R1 \& S :

Te simplify ealculations we areing to use sone numerieal values selested on physical occurane bases : We azmune :
$R_{p}=30.25 \mathrm{~K}$ hn . (measured of the oxsisting petentioneter)

Substitutiak in equation (5) : $\quad \mathrm{S}=\mathrm{II} .0497 \mathrm{R} \quad \mathrm{mV} . / \mathrm{F}$.
Ri is ehogen unimg equation (4) by substitution of new valuse of : L, N \&N:

$R i^{2}+2 R \theta R i-750 R e^{2}=0$.
Solvise for the positive (Real) velues of Ri :

$$
R 1=I / 2 \quad\left(-2 R \theta+\sqrt{4 R \theta^{2}+3000 R \theta^{2}}\right) .
$$

Or $\quad R i=26.40444 \mathrm{Re}=792 . \mathrm{T}=\mathrm{Kolnn}$.
 $\mathrm{S}=\mathrm{II} .0497 \mathrm{R} \quad \mathrm{nV} . / \mathrm{V}$.

```
III.3 .Settick of digital ixdisator :
```

Equation(?) can now be modified to give a relation between sensitivity in mV./V. and the single of rotation θ.

Assuming a linear variation of pot. resistance, if $R(\theta)$ is the value of R in Kohm at any angle of rotation measured from the outer stop datum :

$$
\begin{equation*}
R(\theta)=(\mathrm{Rp} / \mathrm{IO}) \times(\theta / 360)=8.4027 \times 10^{-3} \theta \quad(\mathrm{deg}) \tag{8}
\end{equation*}
$$

Equation (6) is rewritten as :

$$
S(\theta)=I I .0497 \mathrm{R}(\theta)=92.84 .73 I 4 \theta \quad \mathrm{Deg} \cdot x I 0^{-3} \mathrm{mV} / \mathrm{v}
$$

III.3.I. Gain setting :

Equation (8) is the basis of calculating the gain getting of the indicator using basic indicator amplifier formula, ref [I], page 2-6 :
Display Counts.

If we consider the number of counts / deg. $=100$ representing $I .00$ deg., and if we choose $\mathrm{E}:=10$ volts, using equation (9) :

$$
\text { Preamp. Gain }(G)=\frac{100}{40 \times 92.847314 \times 10^{-3}=26.926 \mathrm{~V} \quad \mathrm{~V} / \mathrm{V} .}
$$

The required gain setting is (26.926) V/V or $9.2847 \mathrm{uV} /$ count . Using the table of ref [I]- page 2-6 ; choose the setting of the ind. row : (IOIOOOO). This setting gives a gain : $(29.52) \mathrm{V} / \mathrm{V},-\mathrm{IO} \%=26.568$. This value is fine tuned using internal adjustment pot. R49.

III.3.2. Offset Setting :

To allow for -live macle settings, the zero datum should be moved forward beyond the outer pot. stop. This means that equation (8) should be modified by using a transformation $=\varphi+20$. This means that for a value ${ }^{\theta} 20 \mathrm{deg} . \varphi=0$ and this will be the datum for measuring rotation angles , ie. : For all values of $\theta \geqslant 20: \varphi$ is +ive while for all: values $0 \leqslant \theta \leqslant 20: ~ \varphi$ is -ives.

Equation (8) becomes :

$$
\begin{equation*}
R(\theta)=8.4027 \times 10^{-3}(\varphi+20) \tag{IV}
\end{equation*}
$$

Trquation (9) becomes :

$$
\begin{align*}
S(\theta) & =92.8473 I 4 \times I C^{-3}(\phi+20) \\
& =\left[92.847314 \times 10^{-3} \varphi+1.8569463\right] \mathrm{mV} / \mathrm{V} \tag{IB}
\end{align*}
$$

Equation (9) \& (I3) represents a straight lino equation with the same slope, The st. line of eq. (9) passes through the origin while that of eq. (I3) intersects the S-axis at a value $=1.8569463$. This value represents an offset which should be tared using the tare (offset) adjustment.

To find the amount of taring needed in counts. : $20 \mathrm{deg} . \mathrm{x} I 00=2000$ counts. This is true since itcan be calculated by eq. (IO) :

```
Display Counts =G }\times4\times\textrm{E}\times\textrm{m}\mathrm{ offset value (mV/V)
    =26.926 < 4 xIO < I.8569463 = 2000 count.
```

Rofere to table $2-6$ page $2-9$ ref. [I]; choose the setting (OIOIII) giving the value of 1984 counts, the exact value can later be fine tuned using internal adjustmentpot. R33 \&F3I.

IV. THERMAL STABILITY.

If the ambient temperature changes from To to T, the resulting change in $R p$ \& R causes a change in the value of S as calculated before.

The following analysis shows how to estimate the value ($\mathrm{S}+\Delta \mathrm{S}$) when the temp. changes ir om To by an amount $\triangle T$ such that $: T=T O+\Delta T$.

The R-T relationship of the metal used in manufacturing the pot. resistor wire ($\mathrm{Rp} \& \mathrm{R}$), can be expressed by Callender-Van Dussen eq. Ref. [2\& 3]
$\alpha, \delta \& \beta$ are constants of the metal ; $\beta=0$ for all temp. $\geqslant 0$. IF we assume :

$$
\begin{equation*}
r(T)=\left(T-\delta\left(\left(\frac{T}{\bar{I} D O}\right)-I\right) \cdot \frac{T}{I O D}\right) \tag{I}
\end{equation*}
$$

$R(T) / R(T o)=I+\infty P(T)$.

Rewrite eq. (5) in the form $: \quad S=R 。(2 R p+R o)^{-I}$. Diff. w.r.t. $T:$

$\frac{d S}{d-T^{-}}=R \cdot(2 R p+R 0)^{-I} \cdot \alpha \cdot P^{\circ}(T) \cdot\left(\frac{R(T 0)}{-\infty}-\frac{2 R p(T 0)}{2 R 1+R 0}\right)$

Since $\quad R O=R p \therefore(R O / 2 R p)=0.5$

$$
\begin{equation*}
\frac{d S}{d-T^{-}}=-\frac{\alpha S}{3}-\quad . \quad D \tag{IF}
\end{equation*}
$$

From elementry calculus :

$$
\Delta S=\frac{d}{d}-\frac{S}{T}-\Delta T=I \% 3 \cdot \alpha S \Delta T \quad D
$$

If we define t ashe value of the $\%$ change in sensitivity S per deg. C. taro. change :

$$
\begin{equation*}
t=\Delta S \%\left(S_{s} \Phi\right) \quad I O O=I / 3 \propto D \cdot I O O \quad \% \tag{I7}
\end{equation*}
$$

4 good approximation can now be made if we consider the numerical values of α, δ where $\alpha=10^{-5} \& \delta=0$

$$
\begin{array}{ll}
\text { a. (I6) reduces to } & D \cong-\cdots \bar{I}+\bar{T} \\
\text { q. (I7) reduces to } & t \cong(I 00 \propto / 3)(I-\alpha T) \text {. } \tag{Iq}
\end{array}
$$

If $\alpha=10^{-5}$, higher power of α can be neglected and the value of t is very close to : $\quad t=2.33 \mathrm{ppm} . / \mathrm{deg} \cdot \mathrm{C}$.

Sou fig 5 for Experimental results.

$E A-5$	124

V. SYSTEM CALIBRATION.

An adjustment and calibration sequence was made to realize the relationship between calculatad data and physical (actual) performance. Firgt atatic check was made by using compressed air supply to actuate she VG mechanisim. The resulta taken are comparnd to that taken by s precise protiractor fixture (measurement resoiution 5 min.) This protractor was supplied by GE under PoN. (2ICI6642-po3) for ground check purposes. Our results were checked again during actual engine ran in test cell. The calibrationiselation is shown in fig. 4 , and the data taken waro usod to find the best st. line equation using the least squase method of linearination. [F the protractor reading ws $X(d o g) ; ~ D i g i t a]$ indicator reading $=Y$ counts.

$$
\text { I'he relation is stated as }: \quad Y=x-60.40
$$

VI. CCNCLUSIONS:

The getup discussed her was practically realized and used in Bngine Factory test cell facilities under actual field envirorments. Rough estimation of cost reduction could be made comparing the approximate cost of our system and one of the ready made systems proposed to be imported from abroad.
r'he cost of our system composed of the followitigs :
Beckman pot. \$ 30 .
DORTC indicator \$ 800 .

```
IVirine, hardware) $170.
```

Phe total cost amounts to about $\$ 1000$. On the other hand the cost of a system same

One main feature of our system is the use of prgrammable amplifier which make it easy to chock periodically the gain and offaet adjustments. Change of these values is done on the spot with no need to circuit-components replacement.

Sprious emisson isa sctumly negligable while common mode rejection is good and further improved by screenine. thermal stability in the temp. band ($0-70$) C_{0}^{0} can be assumed with fairly enough correct results.

Fig. 5 Temperature Satbility

RE FERENCES.

I. Doric-model 420 , Transducer indicator owner'm manual. I986.

Doric scientific, a division of Emerson Electric Co. , San Diego, U.S.A.
2. Temperature , its messurement and control in science and industry. volume Il1, part 2, Risinhold Publishing co. - New York. I962.
3. Platinum resistance thermometer , Bulletin 8622.

Roadrount fingineering co. Minnesota, U.S.A. I963.
4. Robarts , H.C. Mechanical Measuramonts by Flectrical Methods.

Instruments publishing, Co. I95I.

NONENCLATURF;

$F:=$ Excitation supply voltage in volta $D C$.
$\mathrm{G}=$ Indicator preamplifier gain is V / V 。
$I=$ The total curront drawn from the supply in amp.
$\mathrm{R}=$ Electrics resistance in Ohm.
next letters designates specific points as shown in Ifg $1,2 \& 3$.
$S=$ Network sensitivity in mV / V.
$T=$ Temperature in deg. centigrade ($\left.\mathrm{C}^{\mathrm{O}}\right)$ 。
$V=$ Voltage at mpecific points as shwo in fig $I, 2$ \& 3 .
$\Delta=$ Small change in $v a l u e s$ of S \& T.
α J $\delta=$ Resistance temp. coofficients.
$t=\%$ change of sensitivity S per deg. C^{0} temp. charge.
$\theta=$ Angle of pot shaft rotation mesured from outer stop in deg.
$\sigma=$ Max. percentage error in calculation of S due to linearization of eq. (I) i.e., using eq. (5) .
$\varphi=$ Angle of pot shaft rotation mesured from an arbitrary datum chosen to allow +ive \&-ive angle nesuremont.

[^0]: *INSTRUNFNTATION DFPARTMFNT MANAGFR. - ENGINE FACTORY, A.O.I. , HELLWAN ,

