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ABSTRACT

It has been established that currently available adaptive control
algorithms may become unstable in the presence of high frequency
unmodeled dynamics and additive sinusoidal disturbances. In such
nonlinear dynamic adaptive control system ,there exist two
infinite-gain operators which can cause the 1loop gains to
increase without bound. Such unbounded parameters would 1likely
cause instability .

These problems can be alleviated by using a proposed
model reference adaptive algorithm with bounded gains. In this
paper, the mechanism of disturbance instabilities is
investigated. The modified algorithm uses a limiter for the
controller gains to prevent the unbounded drift. The 1limiting
values of the proposed limiter, can be estimated analytically by
applying stability criteria for linear control systems,to the
linearized model of the controlled plant.

The proposed adaptive controller is tested by simulation.
gimulation results show the algorithm to be capable of ensuring
stability of the adaptive control system , in the presence of
sinusoidal disturbances.
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1. INTRODUCTION

Stability proofs of currently available adaptive controllers
require that the relative degree of the plant, and an upper bound
on the order of the plant be known. These requirements can not be
realized in practice. It was demonstrated (Rohrs, 1982), that
there exist two mechanisms of instability in the available
adaptive control systems. One candidate of the proposed solutioas
for the existing problems is presented in this paper. '

In section 2, the general structure of standard MRAC :ystem is
depicted . The infinite gain operators are discussed, briefly, in
section 3. 1In section 4, a Lyapunov-based stability aralysis is
derived. The modified algorithm with choice of its bcunds, is
presented in sectlons 5,apd 6. In section 7, effectiveness of the
proposed controller is verified by simulation. Section 8 contains
conclusions.

2. GENERAL STRUCTURE OF MRAC ALGORITHM

The simplest prototype for a model reference adaptive control
~algorithm in continuous - time has its origins to at least as far
back as 1974, 1in the paper by Monopoli [14). This algcrithm hus

been proved asymptotically stable only for the case . when the

relative degree of the plant is unity or at most two. The
algorithms published by Narendra and Valavani (1] and Feuer and
Morse [2]) reduce to the same algorithm for the per“inent case.
This algorithm 1is referred to as CAl ( continucus - time
algorithm NO.1 ) in [15]1 , (17].

The following equations summarize the dynamical equations th:t
describe it; see also Fig. 1. The presented equations pertain to
the case where a unity relative degree has been assumed, r(t) is
the command reference input, and the disturbance d(t) in Fig.l is
equal to zero.

W gPB(s)
plant: Yit) = <o-=-- [u(t)] (1)
A(s)
i-1
auxiliary S
variables: Wal 2 - (u(t)]; 1 M R o | (3)
P(s)
i~
S .
Wyl = ~-ew-- [y(t)]; i=1,2;+x;0 (3)
P(s)
a IE (L) . 5 Kr(t)
W(t) = |wu(t)] ; K(t) = Ku(t) (3a)
Wy (F) Ky (¢t)
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‘ g. B (5]
model : Y (t)= -B-M_C (r(t)] (4)
M e B (8]
™M
.
Control . {Ci= K (€] WI(C)
input ¢
T ¥y
= K (t) w(t) + K (t) W(t) (5)
output
error : e(t) = y(t) - {;t) (6)
pérameter . P ‘
adjustment K(t) = K(t) =l w(t) e(t); M= >0 (7)
law:
~ Y ko
nominal g B (s) Krge B(s) P(s)
controlled ------- e et (8)
* x - ;
plant : A(s) . A(s) P(s) - A(s) Ku(s) —%’B(s) Ky(s)
L
error g B (s) gnBM(s)
equation: e(t) A S 1 [xlti]
A (s) A . (s)
M
o ~T
g B (s) K (t) w(t)
+'—*——- [ = 1 (9}
A (s) K,
In the above equations the following definitions apply
P (s) 1is the characteristic polynomial for the state
variable filters,
E 4 —~
K(t) 2 K+K (t) (10)
* .
vhere, K 1is a constant 2n vector
~
K 1s a parameter misalignment 2n vector
* #*
SRy ot ;.B (s) / A (s) ] represents the closed-loop plant
transfer function that would result if K were identically =zero,
9
i.e., if a constant control law K = K were used.
In general, existing continuous - time algorithms [1] - (9] can
be classified 1into four groups labeled in [15] as CAl, CA2,
CA3, cCa4, for continuons - time algorithms 1 , 2 , 3, 4. Flg.3
represents a generalized error structure which can be
particularized to describe the error loop of any ont. o3 the
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discrete analog) in discrete time as well. In Fig.3, the forward
loop consists of a positive real transfer function, while the
feedback path comprises the adaptation mechanism (parameter
adjustment), which contains the infinite gain operotor(s).

The above - mentioned four classes of adaptive algorithms have in
common the error feedback 1loop structure and the basic
ingredients of the parameter update mechanism, i.e., multipli-
cation - integration - multiplication, which forms the feedback
part of the loop and is shown [15] to constitute the tinfinite
gain operators present in all existlug adaptive algor.thas. The
four mentioned classes differ in the speclfic paraneterization
that realizes the positive real transer function in the forward
path, and in the particular detalls of the parameter adjustment
laws I[choice of C, D, M, F(s)l].

9. THE INFINITE GAIN OPERATORS;

The time - varying feedback operator, shown in Fijy.2, is
. reproduced in Fig.4 for the case where v is a scalar and M=1. It
can be represented by:

~

t
Q(t) = G . le(t)l = u + w(t)/w(t) e(7) daz (11)
o

() ®

In order to demonstrate the infinite gain nature of the feedback
operator of the error system of CAl , it is assumed that a
component of W(t) has the form

Wi (t) = b + c sin wet (12)
and that the error has the form
e(t) =.a sin (w.t + 9P ) (1.3

if e(t) and a component of W(t) have distinct slinusolds at a
common frequency, the operator G,e of (11) will have Infinite
gain. Rohrs demonstrated [15] two possibilities for e(t:, w(t)
to have the forms (12), (13) ;

Case 1: if the reference input consists of a sinusoid and &
constant. e.qg.,

r(t) =rx + r, sin vt (14)

Case II: 1if a sinusoidal disturbance, d(t), at frequency W,
enters the plant output as shown in Fig.l, the sinusold will
appear in W(t) through the following equation, which replaces (3)
in the presence of an output disturbance: ‘

1—1
Wyl (t) = ---—-—- [ y(t) +d(t) 1 ; 1i=1,2,.., n (15)

‘The following equation replaces (6) when an output disturbance is
present

L | _
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Bl wiE) w . yit) b d(e) - , (t) (16)
Any sinusoid in d(t) will also enter e(t) through equation (16),
C) so the signals e(t) and w(t) will contain sinusoids of the same
frequency.

Qualitative Explanation of the Infinite Gain of Gwénd Qv:

If w(t) and e(t) contaln sinusolds of the same requency,and phase
difference of a value (not exactly 90°); the multiplication of
w(t) and e(t) will produce a constant correlation term. The
integration of this constant correlation produces the infinite
gain. Since the integral of a constant is a ramp, the output
slgnal of the integrator increases in amplitudes indefinitely
vith time.

4. LYAPUNOV STABILITY ANALYSIS

Assume that the plant is actually first order with the simple
transfer function (for disturbance free case ),

%
" s+a

[u(t)] i 9,0 (1i1)

Y, (£) =

Assume also that the adaptive controller is designed using Cal

with:
wit) = [xee)] K (t) = [kr (6)] (18)
y(t) Ky (¢t
(t) o (
Y = [x(t)] i 9 , a>0 (19)
M s+a 4 "
M
* g ¥ a - a
let 1? =¥1 Kr =-J1, Ky = cenint
gP gla
Considering the existence of additive output disturbance (Fig.1)
where, y(t) = y, + d(t) | (20)
Cj a Lyapunov function of the form,
¢ ~ 2- NT Ead
| V (e,k) = e + 5.%:_5 ; (21)
g and deriving the time trajectory of the adaptive scheme ;
f‘ following equations could be obtained,
: e(t) = -a, e(t) +%>[Kr r(t) + Ky y(t)l + ad(t) + d(t) (22)
Kx Bk s LR e(t) (23)
L \ &)
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Ky = -9 y(t) e(t) (24)
Substituting from (22), (23), (24) to get V (t) as,

L 2 . ~ ~ “
V(t) = -2ae+ 2e [ (ad+d ) - (1-g9,) (Ker + Kyy) | (23)
In order to have V negative (to ensure asymptotic Lyapunov
stability); the second term of equation (25) has to be K 0

Comments:

a) From eqn. (25), to satisfy (V  0), each parameter drift (Kr
+Ky ) is related to

1. 1Input reference command r(t)

2. Plant parameters (g, ,a ).

3. Disfurbance magmitude and its time evolution [d(t) i
d(t})]. '

b) For sinusoidal disturbance (d(t) = d sin w,t), the exror e(t)
would always contain the sinusoid d(t) , so the term 2e(t)

fad (t) + d (t) 1 would always contain positive guantity
(Squares of sinusolds). This positive term in Lyapunov function
derivative will have a destabilizing effect with increase of

disturbance magnitude.

5. MODIFIED ALGORITHM WITH BOUNDED GAINS

Analysis of the previous results concerning study of MRAC
systems, obtained by Rohrs and others [15-17], and carrying out
further simulations for many different conditions, 1indicated the

following:

1. Adding sinusoidal disturbances, with any frequency, e¢lther to
the input or to the output (which are extremely common in
practice) would lead (much probable) to unstable response.
2 In all cases of unstable response,such persistent

disturbances will cause, after certain time, the ccntroller
adapted parameters to drift without bound very quick. This
unbounded drift of parameters derives the system to instability.
i = The proposed modified algorithm aims to prevent the
undefinite drift of controller parameters [K(t)], by assuming
limiting bounds: ( Kmin ,Kmax ), the parameters would not
exeed. So a limiter is introduced in the adaptive scheme " as
shown in Fig.5.

6. CHOICE OF LIMITING VALUES

For estimating proper values for the limiters, an additional

analysis (besides the original Lyapunov - based stability
analysis) 1is performed wusing a 1llinearlzation technlique. The
immediate consequence 1s a linear, time - varylng system. By

assuming further that the reference input and, therefore, the
model output, are constant the system is transformed 1into a
linear time - invariant (LTI) system. Thus, the well Kknown
analysis techniques for LTI systems, such as root - locus,

L o
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b Nyquist, Routh - Hurwitz, etc., can be used for the adaptive
R systems [15].
C) That the 11nearization analysis is valid only locally, 1is a fact
of life that one must accept. This shortcoming can be dealt with,

by performing a set of Linearizations around different operating
conditions to gain more global insight.

In most practical applications, the range of change of plant
parameters are falrly known a priori, for different operating
conditions. Performing set of Linearizations, especially for the
limiting sets of the typical plant parameters, and applying one
of stability criteria, a set of values for the proposed limiter
can be calculated. These calculated values can be tested by
simulations. However, exact computation is not so easy ;and the
analyst must use his practical experience, and engineering
judgement to select the proper values of the proposed controller
parameters bounds (Kmin ,Kmax ). :

7. SIMULATIONS OF THE BOUNDED ADAPTIVE CONTROLLER

The proposed model reference adaptive controller witii bounded
gains was tested by simulation studies. The following situation
ls representative of the results obtained. The plant used in the
simulations 1is represented by the following transfer function:
(the same example used by Rohrs [15], [161], [17)] ) ;

Y(s) B ememiem s T e i i s e e [u (S)} (26)

----- = B aassd: AR Rl (27
AH s +31s +259s + 527

which represents the transfer function of the controlled plant
-at nominal operating conditions.

Simulations were run with a step reference input, r(t) = 0.1, a

sinusoidal output disturbance, d(t)= 0.015 sin 8t, and adaptation

gain ¥ = 1. Simulations were made with all initial conditions
7 set to zero. :

Applying the Routh - Hurwitz stability test, for the chosen case;
the following condition was obtained ]

SR1N00 =Ky ¢ Dul <. The limiter's values for the presented
simulations were selected to be :

Krmin Kymin -0.4,

Krmax Kymax Gl ol

_The simulations were made by'converting the system to discrete
time. A sampling period of T= 0.01 sec. is used. In Lhis paper,
the model was chosen of the same order of the plant to . kighlight

o — | i
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the effect of output disturbance without unmodeled dynamics.

Fig.6 displays the output error and Fig.7 displays the controller
parameters, Kr (t) and Ky (t), for the standard adaptive systen.
Due to the infinite gain operator in the feedback loop ¢f Fig.2 ,
and the persistant sinusoidal disturbance, d(t), the parameters
drift without bounds deriving the system to instability. Fig. 8
shows the output error and Fig. 9 shows the controller parameters
for the bounded adaptive system. It is clear from Fig. 8, that
output error approaches steady state value, and "the systen
stability is ensured.

8. CONCLUSIONS

An adaptive controller with bounded gains has been developed.
Such controller can provide increased robustness to high
frequency unmodeled dynamics and additive output disturbances.
- Phe feasibility of the bounded controller has been demonstrated
with simulation example. A bounded controller is a practically
appealing 1issue. However, minimization of drawbacks of the

adaptive performance, and theoritical establishment of the proper .

design of the limiter; are topics for further research.
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Fig.6. Output error for the
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