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ABSTRACT 

It has been established that currently available adaptive control 
algorithms may become unstable in the presence of high frequency 
unmodeled dynamics and additive sinusoidal disturbances. In such 
nonlinear dynamic adaptive control system ,there exist two 
infinite-gain operators which can cause the loop gains to 
increase without bound. Such unbounded parameters would likely 
cause instability . 

These problems can be alleviated by using a proposed 
model reference adaptive algorithm with bounded gains. In this 
paper, the mechanism of disturbance instabilities is 
investigated. The modified algorithm uses a limiter for the 
controller gains to prevent the unbounded drift. The limiting 
values of the proposed limiter, can be estimated analytically by 
applying stability criteria for linear control systems,to the 
linearized model of the controlled plant. 

The proposed adaptive controller is tested by simulation. 
Simulation results show the algorithm to be capable of ensuring 
stability of the adaptive control system , in the presence of 
sinusoidal disturbances. 
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1. INTRODUCTION 

Stability proofs of currently available adaptive controllers 
require that the relative degree of the plant, and an upper bound 
on the order of the plant be known. These requirements can not be 
realized in practice. It was demonstrated (Rohrs, 1982), that 
there exist two mechanisms of instability in the available 
adaptive control systems. One candidate of the proposed solutions 
for the existing problems is presented in this paper. 

In section 2, the general structure of standard MRAC system is 
depicted . The infinite gain operators are discussed, briefly, in 
section 3. In section 4, a Lyapunov-based stability itralysis is 
derived. The modified algorithm with choice of its bounds, 	is 
presented in sections 5,apd 6. In section 7, effectiveness of the 
proposed controller is verified by simulation. Section 8 contains 
conclusioris. 

2. GENERAL STRUCTURE OF MRAC ALGORITHM 

The simplest prototype for a model reference adaptive control 
algorithm in continuous - time has its origins to at least as fitr 
back as 1974, in the paper by Monopoli (141. This algorithm has 
been proved asymptotically stable only for the case , when the 
relative degree of the plant is unity or at most two. The 
algorithms published by Narendra and Valavani (1] anc' Feuer and 
Morse (21 reduce to the same algorithm for the pertinent case,. 
This algorithm is referred to as CA1 ( continuous - time 
algorithm NO.1 ) in (151 , (171. 

The following equations summarize the dynamical equations th,Et 
describe it; see also Fig. 1. The presented equations pertain to 
the case where a unity relative degree has been assumed, r(t) is 
the command reference input, and the disturbance d(t) in Fig.1 is 
equal to zero. 

plant: 
gA B(s) 

y(t) - 	r 	 (11(t)] 
A(s) 

(1) 

auxiliary 
variables: Wui = 

Wyi 

[u(t)]; 	i=1,2,..,n -1 	l2) 

(y(t)1; 	i=1,2,..,n 	(3) 

r (t)1 	 Kr(t) 
W(t) Wu(t) ; K(t) 	Ku(t) 

W." (I-) 	 Ky (t) 
( 3a ) 
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model : 
g
M  BM

(s) 
YM(t)= 	[r(t)] 

AM  (s) 
(4) 

Control 
	

u (t)= K (t) W(t) 
input : 

4-1- 	„.... T  
= K (t)W(t) + K (t) W(t) 	(5) 

output 
error : 	e(t) 	= y(t) - y(t) 	 (6) 

M 
parameter 	 % 
adjustment 	K(t) 	= K(t) =i-W(t) e(t); r=r>o 	 (7)  

law: 

nominal 
controlled 

* 
g B (s) 

 

Kr gp  B(s) P(s) 

 

    

(8) 

    

plant : 	A(s) 
	

A(s) P(s) - A(s) Ku(s) -g B(s) Ky(s) 

error 
equation: 	e(t) 

* * 
g B (s) 

= 
gal BM(s)  

  

[r(t)] 

 

      

 

A (s) 

g * (s) 

  

AM(s) 
,T 
K (t) W(t) 

 

        

(9)  

 

A*(s ) 

  

Kr  

  

In the above equations the following definitions apply : 
P (s) is the characteristic polynomial for the state 

variable filters, 

K(t) 	A
= K + K (t) (10)  

where, 	K is a constant 2n vector 

K is a parameter misalignment 2n vector 
* * 

In (8) , [ 9 B (s) / A (s) ] represents the closed-loop plant 

CD transfer function that would result if K were identically zero, 
it 

i.e., if a constant control law K = K were used. 

In general, existing continuous - time algorithms [1] - [9) can 
be classified into four groups labeled in [15] as CA1, CA2, 
CA3, CA4, for continuons - time algorithms 1 , 2 , 3 , 4. Fig.3 
represents a generalized error structure which cal be 
particularized to describe the error loop of any on( the 
existing adaptive algorithms, both in continuous time aid ()y its 
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discrete analog) in discrete time as well. In Fig.3, the forward 
loop consists of a positive real transfer function, while the 
feedback path comprises the adaptation mechanism (parameter 
adjustment), which contains the infinite gain operotor(s). 

The above - mentioned four classes of adaptive algorithms have in 
common the error feedback loop structure and the basic 
ingredients of the parameter update mechanism, i.e., multipli-
cation - integration - multiplication, which forms the feedback 
part of the loop and is shown (15] to constitute the infinite 
gain operators present in all existing adaptive algorithms. 	The 
four mentioned classes differ in the specific parameterization 
that realizes the positive real transer function in the forward 
path, and in the particular details of the parameter adjustment 
laws (choice of C, D, M, F(s)]. 

3. THE INFINITE GAIN OPERATORS; 

The time • varying feedback operator, 	shown in Fil.2, is 
reproduced in Fig.4 for the case where w is a scalar and r=i. It 

can be represented by: 

u(t) = Ge.,01(e(t)] = 710  + W(t))(W(t) e(t) dz 	
(11) 

a 
In order to demonstrate the infinite gain nature of the feedback 
operator of the error system of CA1 , it is assumed that a 
component of W(t) has the form 

Wi (t) = b + c sin wo t 	 (12) 

and that the error has the form 

e(t) 	=.a sin (wo t + d ) 	 (13) 

if e(t) and a component of W(t) have distinct sinusoids at a 
common frequency, the operator G„Ao of (11) will have infinite 
gain. Rohrs demonstrated (15] two possibilities for e(t), w(t) 
to have the forms (12), (13) ; 

Case 	I: if the reference input consists of a sinusoid and 
constant. e.g., 

r(t) 	= r1 + r2 sin wo  t 
	

(14) 

Case II: if a sinusoidal disturbance, d(t), at frequency w, 
enters the plant output as shown in Fig.1, the sinusoid will 
appear in W(t) through the following equation, which replaces (3) 
in the presence of an output disturbance: 

i-1 

Wyi (t) - 	 ( y(t) + d(t) ] ; 	i=1,2,.., n 	(15) 
P(s) 

The following equation replaces (6) when an output disturbance is 
present 

L. 
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e(t) 	= 	y(t) + d(t) - 	 (16) 

Any sinusoid in d(t) will also enter e(t) through equation (16), 
so the signals e(t) and w(t) will contain sinusoids of the same 
frequency. 

Qualitative Explanation of the Infinite Gain of G and Ity: 

If w(t) and e(t) contain sinusoids of the same requency,and phase 
difference of a value (not exactly 90̀ ); the multiplication of 
w(t) and e(t) will produce a constant correlation term. The 
integration of this constant correlation produces the infinite 
gain. Since the integral of a constant is a ramp, the output 
signal of the integrator increases in amplitudes indefinitely 
with time. 

4. LYAPUNOV STABILITY ANALYSIS 

Assume that the plant is actually first order with the simple 
transfer function (for disturbance free case ), 

y 	(t) 	= 

Assume 	also 
with: 

gp 
[u(t)) 	; 	g 	>0 	 (17) 

the adaptive controller is designed 	using 	CA1 

' s+a 

that 

W(t) = r(t) K 	(t) 	= Kr 	(t) (18)  

Y(t ) 

gM 

[KY 	It] 

y 	(t) - g 	, 	a 	> 

a - an  

0 (19)  
s+aM 

	

0 	M 
 

	

Ir(t)I 	; 

* 	
gr4 	

* 
let 	r = If 	I ,Kr 	- 	, 	Ky 	= 

gP 13 1)  

Considering the existence of additive output disturbance (Fig.1) 

where, 	y(t) = Yip + d(t) 	 (20) 

a Lyapunov function of the form, 

	

2 	.... 7- 	- 
V (e,k) = e + KJ- K. 	 (21) r 

and 	deriving the time trajectory of the adaptive scheme ; 
following equations could be obtained, 
. 	.s. 	- 	. 
e(t) = -a

m e(t) +gP 
 Ilcr r(t) + Ky y(t)) + ad(t) + d(t) 	(22) 

Kr 	= - r r(t) 	e(t) 	 (23) 
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Ky 	= - if  y(t) 	e(t) 
	

(24) 

Substituting from (22), (23), (24) to get V (t) as, 

	

V (t) = -2 ame + 2e [ (ad+d ) - (1-9 ) (Krr + Kyy) l 	(25) 
• 	 2 

In order to have V negative (to ensure asymptotic Lyapunov 
stability); the second term of equation (25) has to be 	0 

Comments: 

a) From eqn. (25), to satisfy (V 	0), each parameter drift (Kr 
,Ky ) is related to : 

1. Input reference command r(t) 
2. Plant parameters (gp ,a ). 
3. Disturbance niagmitude and its time evolution td(t) , 

d(t)]. 

b) For sinusoidal disturbance (d(t) = d sin wo t), the error e(t) 
would always contain the sinusoid d(t) , so the term 2e(t) 
(a d (t) + d (t) ] would always contain positive 	quantity 
(Squares of sinusoids). This positive term in Lyapunov function 
derivative will have a destabilizing effect with 	increase of 
disturbance magnitude. 

5. MODIFIED ALGORITHM WITH BOUNDED GAINS 

Analysis of the previous results concerning study of MRAC 
systems, obtained by Rohrs and others (15-17), and carrying out 
further simulations for many different conditions, indicated the 
following: 
1. Adding sinusoidal disturbances, with any frequency, either to 
the input or to the 	output (which are extremely common in 
practice) would lead 	(much probable) to unstable response. 
2. In all cases of unstable response,such persistent 
disturbances will cause, after certain time, the controller 
adapted parameters to drift without bound very quick. This 
unbounded drift of parameters derives the system to instability. 
3. The proposed modified algorithm aims to prevent the 
undefinite drift ofcontroller parameters [K(t)], by assuming 
limiting bounds ( Kmin ,Kmax ), the parameters would not 
exeed. So a limiter is introduced in the adaptive scheme as 
shown in Fig.5. 

6. CHOICE OF LIMITING VALUES 

For estimating proper values for the limiters, an additional 
analysis 	(besides the original Lyapunov - based 	stability 
analysis) is performed using a linearization technique. The 
immediate consequence is a linear, time - varying system. By 
assuming further that the reference input and, therefore, the 
model output, are constant the system is transformed into a 
linear time - invariant (LTI) system. Thus, the well known 
analysis techniques for LTI systems, such as root -- locus, 
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Nyquist, Routh - Hurwitz, etc., can be used for the adaptive 
systems (15]. 

That the linearization analysis is valid only locally, is a fact 
of life that one must accept. This shortcoming can be dealt with, 
by performing a set of Linearizations around different operating 
conditions to gain more global insight. 

In most practical applications, the range of change of plant 
parameters are fairly known a priori, for different operating 
conditions. Performing set of Linearizations, especially for the 
limiting sets.of the typical plant parameters, and applying one 
of stability criteria, a set of values for the proposed limitei 
can be calculated. These calculated values can be tested 
simulations. However, exact computation is not so easy ;and the 
analyst must use his practical experience, and engineering 
Judgement to select the proper values of the proposed controller 
parameters bounds (Kmin ,Kmax ). 

7. SIMULATIONS OF THE BOUNDED ADAPTIVE CONTROLLER 

The proposed model reference adaptive controller with bounded 
gains was tested by simulation studies. The following situation 
is representative of the results obtained. The plant used in the 
simulations is represented by the following transfer function: 
(the same example used by Rohrs [151, [16], [17] ) . 

2 	229 
y(s) = s+1 

	s2 30s + 229 [u 
(5)) 
	

(26) 

The adaptive controller is designed using a reference model: 

gm  BM 	527 

   

(27) 

   

AM  

 

5
3 

+31s
2 
 +259s + 527 

which represents the transfer function of the controlled plant 
at nominal operating conditions. 

Simulations were run with a step reference input, r(t) .,- 0.1, a 
sinusoidal output disturbance, d(t)= 0.015 sin 8t, and adaptation 
gain r = 1. Simulations were made with all initial conditions 
set to zero. 

Applying the Routh - Hurwitz stability test, for the chosen case; 
the following condition was obtained : 
-17.03 < Ky < 0.5 . 	The limiter's values for the presented 

simulations were selected to be : 
Krmin = Kymin = -0.4, 
Krmax = Kymax = 0.4 . 

The simulations were made by converting the system to discrete 
time. A sampling period of T= 0.01 sec. is used. In this paper, 
the model was chosen of the same order of the plant to Ugh.light 

L. 
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the effect of output disturbance without unmodeled dynamics. 

Fig.6 displays the output error and Fig.7 displays the controller 
parameters, Kr (t) and Ky (t), for the standard adaptive system. 
Due to the infinite gain operator in the feedback loop of Fig.2 , 
and the persistant sinusoidal disturbance, d(t), the parameters 
drift without bounds deriving the system to instability. 	Fig. 

shows the output error and Fig. 9 shows the controller parameters 
for the bounded adaptive system. It is clear from Fig. 8, that 
output error approaches steady state value, and the system 
stability is ensured. 

8. CONCLUSIONS 

An adaptive controller with bounded gains has been developed. 
Such controller can provide increased robustness to high 
frequency pimodeled dynamics and additive output disturbances. 
The feasibility of the bounded controller has been demonstrated 
with simulation example. A bounded controller is a practically 
appealing issue. However, minimization of drawbacks of the 
adaptive performance, and theoritical establishment of the proper 
design of the limiter; are topics for further research. 
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Fig.6. Output error for the 	Fiy.8. Output error for the 

standard 	adaptive system. 	bounded adaptive systeri. 
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Fig.7.Controller parameters 
for standard adaptive 

system. 

Fig.9.Controller parameters 
for bounded adaptive 

system. 
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