# EFFECT OF *Meloidogyne incognita* ON GROWTH AND YIELD OF SUSCEPTIBLE AND RESISTANT TOMATO CULTIVARS AND EFFECT OF VARIOUS APPLIED ORGANIC MANURES ON NEMATODE CONTROL

EL-Shafeey, E.I. \* and N.A. Hassan\*\*

\* Agric. Bot. Dept., Fac. Agric., Kafr El-Sheikh, Tanta Univ.

\*\* Hort. Dept., Fac. Agric., Kafr El-Sheikh, Tanta Univ.

## ABSTRACT

Two pot experiments were simultaneously conducted during the early summer seasons of 1997 and 1998.

The first experiment studied the effect of four initial population ( $P_i$ ) densities of *Meloidogyne incognita* (0, 4 × 10<sup>3</sup>, 10 × 10<sup>3</sup> and 20 × 10<sup>3</sup> nematode eggs/pot) on growth and yield of susceptible (Castlerock) and resistant ( $F_1$  hybrid Heinz 2710) tomato cultivars. The susceptible cv. was greatly suppressed by *M. incognita* in most growth and yield parameters, viz., stem length, number of leaves, leaf fresh and dry weight, root fresh weight, chlorophyll and N, P, K content of leaves, fruit yield per plant and average fruit weight. Meanwhile, the resistant cv. was slightly affected. On the other hand, titratable acidity and vitamin C and T.S.S. content of fruits were higher in the susceptible cv. Final nematode population ( $P_f$ ), root gall index and reproduction factor ( $R_f$ ) were significantly higher in the susceptible cv. as compared with the resistant one.

A negative relationship was found between  $P_i$  and most vegetative growth parameters, where gradual decreases were observed with the increase in  $P_i$ . However, a positive relationship was found between root fresh weight and  $P_i$ . Fruit yield per plant decreased with the increase in  $P_i$ . Average fruit weight significantly decreased at  $P_i 20 \times 10^3$  as compared with the control. Fruit acidity and vitamin C content decreased at most  $P_i$  levels.  $P_f$  increased with the increase in Pi level. Root gall index ranged from 0.0 in the control to 5.0 in the various inoculum levels used.  $R_f$  increased with the increase in  $P_i$  up to  $10 \times 10^3$ .

The interaction between tomato cultivar and P<sub>i</sub> had a significant effect on leaf fresh weight, leaf chlorophyll content and fruit yield per plant, where the 0.0 level with the resistant cv. had the highest records. However, this treatment had the lowest root fresh weight. The lowest P<sub>f</sub> was obtained when the  $4 \times 10^3$  level was used with the resistant cv. Root gall index was only slightly affected by the P<sub>i</sub> level in the resistant cv., but was greatly affected in the susceptible one. The lowest R<sub>f</sub> was obtained when the  $20 \times 10^3$  level was used with the resistant cv.

The second experiment studied the efficacy of four organic manures (rabbit, pigeon, cow and poultry) in controlling *M. incognita* in tomato. All organic manures improved most plant growth and yield parameters, i.e., stem length, number of leaves, leaf fresh and dry weight, root fresh weight, leaf chlorophyll and N, P, K content, fruit yield per plant, average fruit weight, and fruit acidity and vitamin C and T.S.S content. Applying pigeon and poultry manures suppressed these parameters more than rabbit or cow manures. All organic manures suppressed P<sub>f</sub>, root gall index and R<sub>f</sub>. However, pigeon and poultry manures caused more suppression in root gall index and R<sub>f</sub> and pronounced increase in nematode reduction % as compared with cow and rabbit manures.

## INTRODUCTION

*Meloidogyne incognita* (Kofoid and White) Chitwood is a destructive pest of vegetable crops, including tomato, okra and chillies (Johnson and Fassulitis, 1984). Ogunfowora (1977) found that the marketable yield of 7 tomato cvs. was considerably reduced at all tested inoculum levels of *M. incognita*. A progressive decline in the growth and yield was observed with increasing nematode population (Chindo and Khan, 1988).

Vito and Lamberti (1976) studied the reaction of 1 susceptible and 4 resistant tomato cvs. to inoculation with 12 Italian populations of *Meloidogyne* spp. These populations showed different degrees of pathogenicity to susceptible cvs. and some growth reduction in resistant cvs.

Vito *et. al.* (1991) studied the relationship between initial population density of *M. incognita* race 1 and yield of susceptible and resistant tomato cvs. They found that fruit size and marketable yield of the susceptible cv. were negatively affected with nematode infestation. Inoculation of tomato with different inoculum levels of *M. incognita* at seedling stage reduced top and root growth more severely than inoculation later (Singh, 1975). Anwar and Van Gundy (1993) studied the relationship between *M. incognita* population densities and root and shoot growth parameters of susceptible and resistant tomato cvs. in a controlled environment. Root growth reduction of the susceptible cv. caused by nematode resulted in a reduction in shoot growth, whereas the slight root damage to the root system of the resistant cv. did not cause reduction in shoot growth.

Bird (1974), Ali *et al.* (1981) and Omar *et al.* (1985) stated that rootknot nematode infection significantly reduced total photosynsthetic pigments (Chlorophyll a, b and a + b).

Ogunfowora (1977) and Dwivedi and Pandey (1993) reported that rootgalling in tomato increased with increasing initial population levels. Also, Chindo and Khan (1988) found that the degree of damage associated with nematodes was correlated with root-gall index and nematode population.

Soil organic amendments have been used as an alternative method in the control of plant parasitic nematodes. Waste materials of animals and birds have been used effectively to control many species of economically important phytonematodes (Alam *et al.*, 1979; Muller and Gooch, 1983; Montasser, 1991; Ismail, 1997; Amin and EL-Shafeey, 1998). The beneficial effect of chicken manure amendment as a nematicide for controlling phytonematode has been also documented (Mian and Rodriguez Kabana, 1982; Amin and EL-Shafeey, 1998). Application of poultry, cow and sheep manures as soil organic amendments, significantly reduced populations of *M. javanica* and *M. incognita* and significantly increased yield of tomato and eggplant (Babatola, 1989; Stephan, 1995; Montasser, 1991; Ismail, 1997; Amin and EL-Shafeey, 1998).

Chavarria Carvajal and Rodriguez Kabana (1999) indicated that most organic amendements were effective in reducing root-galling and root-knot nematodes and increasing populations of non-parasitic nematodes. They

suggested that complex modes of action operating in amended soils are responsible for suppression of *M. incognita*.

The present study was conducted to determine the effect of different inoculum levels of *M. incognita* on growth and yield of susceptible and resistant tomato cvs. and to show the effectiveness of four common available organic manures in controlling *M. incognita* in tomato.

# MATERIALS AND METHODS

Two pot experiments were simultaneously conducted in the Faculty of Agriculture, Kafr EL-Sheikh, Tanta University during the early summer seasons of 1997 and 1998.

**Experiment A** aimed at studying the effect of initial population density levels ( $P_i$ ) of *M. incognita* on growth and yield of susceptible and resistant tomato cultivars. The experiment included two tomato cultivars (The susceptible Castlerock and the resistant  $F_1$  hybrid Heinz 2710) and four  $P_i$  levels of *M. incognita*, viz., 0,  $4 \times 10^3$ ,  $10 \times 10^3$  and  $20 \times 10^3$  nematode eggs/pot). Seeds of Castlerock were obtained from local sources, while seeds of Heinz 2710 were kindly provided by Heinz Co., U. S. A. Tomato seeds were sown under plastic cover on 15 January in the two seasons. Six weeks later, seedlings were transplanted into 20 cm pots (one seedling per pot) in the open. One week later, pots were inoculated with the four  $P_i$  levels, where each level was suspended in 10 ml of tap water and pipetted into the soil medium near the roots. Zero level served as control. Treatments were replicated four times and pots of various treatments were completely randomized. Each experimental unit consisted of 15 pots. Pots were irrigated and fertilized whenever it deemed necessary.

Fifty days after transplanting, plants (as samples of five per experimental unit) were carefully uprooted, washed and air dried. The following parameters were determined: stem length, number of leaves, leaf fresh and dry weight and leaf chlorophyll (a, b and a + b) and N, P, and K content. Chlorophyll content was estimated by a spectrocolorimeter, using N, N-dimethylformamide as described by Moran and Porath (1980) and Moran (1982). Leaf samples dried at 70°C were finely ground, wet digested and total N, P, and K contents were determined in the digestion product. Nitrogen was determined using the Micro-kjeldahl method (Piper, 1947). Phosphorus was estimated colorimetrically, using a spectrophotometer at 725  $\mu$ m. (King, 1951). Potassium was determined using a flame photometer (Jackson, 1967).

At harvest, total plant fruit yield, average fruit weight and fruit content of acidity, vitamin C and total soluble solids (T.S.S.) were determined. Acidity (citric acid%) and vitamin C (ascorbic acid as mg/100 ml fruit juice) were determined as recommended by Cox and Pearson (1962). T.S.S. was determined by a hand refractomater.

At the end of the harvesting period, the remaining plants were uprooted and the roots were carefully washed and air dried. Root fresh weight was determined. The total number of galls per root system was counted, and the

#### El-Shafeey, E.I. and N.A. Hassan

root gall index was rated on the 0-5 scale of Taylor and Sasser (1978). The final nematode population (P<sub>f</sub>) as  $J_2/250 \text{ cm}^3$  soil was estimated after extraction by modified Cobb's sieving and decanting method (Southey, 1986). Reproduction factor (R<sub>f</sub>) as (p<sub>f</sub>/P<sub>i</sub>) was calculated for each treatment. Nematode reduction % was calculated for each treatment according to the following formula:

 $\frac{P_{f} \text{ control} - P_{f} \text{ treatment}}{\text{Nematode reduction \%}} = \frac{1000 \text{ control}}{1000 \text{ control}} \times 1000 \text{ control}$ 

Data were statistically analyzed. A factorial in complete randomized design was applied. Duncan's multiple range test was used for the comparisons among treatment means (Duncan, 1965).

**Experiment B** aimed at studying the effect of some organic manures on growth and yield of tomato plants infested with the root-knot nematode *M. incognita.* Four organic manures, viz., rabbit, pigeon, cow and poultry were air dried and passed through 2 mm sieve before use. The amendments were mixed thoroughly with autoclaved loamy soil at the rate of 4% w/w and transferred into 20 cm pots. Unamended soil served as control. The pots were watered daily, and kept for 2 weeks to permit partial decomposition of the amendments.

Seedlings of cv. Castlerock. (6 weeks old) were transplanted into pots at the same date as mentioned above in experiment A. One week later, each pot was inoculated with approximately  $4 \times 10^3$  *M. incognita* eggs/pot. Each experimental unit consisted of 15 pots. Four replications were used for each treatment. Pots were arranged in a complete randomized design.

Plant growth parameters, fruit yield and nematode reproduction were measured as described above for experiment A, and at the same dates. Data were statistically analyzed. A complete randomized design was applied. Duncan's multiple range test was used for the comparisons among treatment means (Duncan, 1965).

# RESULTS

## **Experiment (A):**

#### 1. Response of tomato cultivars.

Results in Table 1 indicate that the resistant tomato cv. Heinz 2710 showed significantly higher values in most growth parameters, viz., stem length, number of leaves per plant, leaf fresh and dry weight and root fresh weight in the two seasons as compared with the susceptible cv. Castlerock. Also, chlorophyll (a, b and a + b) contents were significantly higher in the resistant cv. in both seasons. Differences in the N, P and K contents were mostly not significant between the two cvs. in both seasons.

Table (1):Response of tomato cvs. Heinz 2710 (resistant) and Castlerock (susceptible) to various inoculum densities of *M. incognita*, with respect to vegetative growth parameters and leaf chlorophyll and N, P and K content in the 1997 and 1998 seasons.

|            |                | -                 |               |               |               |           |        |      |      |                                   |      |  |
|------------|----------------|-------------------|---------------|---------------|---------------|-----------|--------|------|------|-----------------------------------|------|--|
| Cultivar   | Stem<br>length | No. of<br>leaves/ | fresh dry fr  |               | Root<br>fresh | Chl.<br>a |        |      |      | Total N,P and K<br>(% dry weight) |      |  |
| Guillya    | (cm)           | plant             | weight<br>(g) | weight<br>(g) | weight<br>(g) | I         | mg/dm² | 2    | Ν    | Ρ                                 | к    |  |
|            | 1997           |                   |               |               |               |           |        |      |      |                                   |      |  |
| Heinz 2710 | 42.84          | 20.28             | 57.21         | 9.54          | 47.85         | 5.14      | 4.05   | 9.19 | 4.52 | 0.76                              | 3.32 |  |
| Castlerock | 41.1           | 15.91             | 45.55         | 7.75          | 44.45         | 4.79      | 3.69   | 8.48 | 4.54 | 0.69                              | 3.15 |  |
| F. test    | *              | **                | **            | **            | *             | *         | *      | *    | N.S  | N.S                               | N.S  |  |
|            |                |                   |               |               | 1             | 998       |        |      |      |                                   |      |  |
| Heinz 2710 | 35.11          | 22.04             | 58.51         | 11.75         | 43.04         | 5.19      | 3.93   | 9.12 | 4.87 | 0.74                              | 3.31 |  |
| Castlerock | 33.76          | 17.58             | 46.42         | 9.92          | 42.43         | 4.79      | 3.77   | 8.47 | 4.36 | 0.73                              | 3.07 |  |
| F. test    | N.S            | *                 | *             | *             | N.S           | *         | *      | *    | *    | N.S                               | N.S  |  |

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test.

Data in Table 2 indicate that fruit yield per plant and average fruit weight were significantly higher in cv. Heinz 2710 in both seasons. However, fruit acidity and vitamin C and T.S.S. contents were significantly higher in the susceptible cv. Castlerock in most cases in both seasons. Final nematode population (P<sub>f</sub>) was significantly higher in Castlerock as compared with Heinz 2710. Similarly, large differences were observed between the two cvs. in root gall index and R<sub>f</sub> in both seasons.

Table (2):Response of tomato cvs. Heinz 2710 (resistant) and Castlerock (susceptible) to various inoculum densities of *M. incognita*, with respect to fruit yield and quality of plants and nematode reproduction in the 1997 and 1998 seasons.

| Cultivar   | Fruit<br>yield/<br>plant<br>(g) | Average<br>fruit<br>weight<br>(g) | Acidity<br>(%) | Vitamin C<br>mg/100 ml<br>fruit juice | Total<br>soluble<br>solids<br>(%) | Final nematode<br>population (P <sub>f</sub> )<br>J <sub>2</sub> / 250 cm <sup>3</sup> soil | Root gall<br>index<br>(0-5) | Reproduc-<br>tion factor<br>(R <sub>f</sub> )=P <sub>f</sub> / P <sub>i</sub> |  |  |  |
|------------|---------------------------------|-----------------------------------|----------------|---------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------|--|--|--|
|            | 1997                            |                                   |                |                                       |                                   |                                                                                             |                             |                                                                               |  |  |  |
| Heinz 2710 | 317.03                          | 49.01                             | 0.44           | 19.91                                 | 4.66                              | 98.94                                                                                       | 1.0                         | 0.0116                                                                        |  |  |  |
| Castlerock | 207.38                          | 40.29                             | 0.56           | 20.91                                 | 5.69                              | 1081.38                                                                                     | 5.0                         | 0.127                                                                         |  |  |  |
| F. test    | **                              | **                                | *              | *                                     | *                                 | **                                                                                          |                             |                                                                               |  |  |  |
|            |                                 |                                   |                |                                       | 1998                              |                                                                                             |                             |                                                                               |  |  |  |
| Heinz 2710 | 356.26                          | 47.95                             | 0.57           | 19.60                                 | 5.20                              | 104.07                                                                                      | 1.0                         | 0.0122                                                                        |  |  |  |
| Castlerock | 235.82                          | 42.74                             | 0.59           | 21.92                                 | 5.70                              | 1167.69                                                                                     | 5.0                         | 0.137                                                                         |  |  |  |
| F. test    | *                               | *                                 | N.S            | *                                     | N.S                               | **                                                                                          |                             |                                                                               |  |  |  |

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test.  $R_f$  = reproduction factor  $P_f$  = final population  $P_i$  = initial population.

#### 2. Effect of initial *M. incognita* population density level .

Data in Table 3 indicate that the control treatment (zero level) had significantly the highest values in most growth parameters, viz., stem length, number of leaves per plant, leaf fresh and dry weights and chlorophyll (a, b and a + b) and N, P and K contents. A negative relationship was found between  $P_i$  and these parameters, where gradual reductions were observed with each increase in  $P_i$ . However, the values of N, P and K at the levels 4 ×

 $10^3$  and  $10 \times 10^3$  were not significantly different. Meanwhile, a significant positive relationship was found between root fresh weight and P<sub>i</sub>.

Data in Table 4 show that fruit yield per plant decreased proportionally with the increase in P<sub>i</sub>, leading to yield loss of 7.2, 20.2 and 29.5% in the first season, and 10.0, 25.7 and 38.3% in the second one when inoculum levels were  $4 \times 10^3$ ,  $10 \times 10^3$  and  $20 \times 10^3$ , respectively. Average fruit weight was significantly lower at P<sub>i</sub> 20 × 10<sup>3</sup> inoculum level as compared with the control in both seasons. Fruit acidity and vitamin C content significantly decreased at all P<sub>i</sub> levels as compared with the control, but the differences of vitamin C values were not significant in the second season. T.S. S. was not affected by P<sub>i</sub> levels in both seasons.

Table (3): Effect of initial population density level (P<sub>i</sub>) of *M. incognita*, infesting tomato plants, on vegetative growth parameters and chlorophyll, N, P, and K contents of leaves in the 1997 and 1998 seasons.

| Initial population          | Stem<br>length | No. of<br>leaves/ | Leaf<br>fresh | Leaf<br>dry   | Root<br>fresh | Chl. Chl. Chl.<br>A b (a+b)<br>mg/dm <sup>2</sup> |       |        | ld K<br>ght) |        |        |  |
|-----------------------------|----------------|-------------------|---------------|---------------|---------------|---------------------------------------------------|-------|--------|--------------|--------|--------|--|
| density level<br>(Eggs/pot) | (cm)           | plant             | weight<br>(g) | weight<br>(g) | weight<br>(g) |                                                   |       | N      | Р            | к      |        |  |
|                             |                | 1997              |               |               |               |                                                   |       |        |              |        |        |  |
| 0 (control)                 | 45.75a         | 20.66a            | 54.98a        | 9.24a         | 40.71b        | 5.84 a                                            | 4.39a | 10.23a | 5.27a        | 0.77a  | 3.64a  |  |
| $4 \times 10^{3}$           | 44.49a         | 19.26b            | 52.46b        | 8.88ab        | 42.08b        | 5.08 b                                            | 4.14b | 9.22b  | 4.53b        | 0.72ab | 3.05bc |  |
| $10 \times 10^3$            | 40.46b         | 16.78c            | 50.23c        | 8.40bc        | 50.13a        | 4.73 c                                            | 3.65c | 8.38c  | 4.22b        | 0.70b  | 3.44ab |  |
| $20 \times 10^3$            | 37.20c         | 15.68c            | 47.86d        | 8.05c         | 51.68a        | 4.24 d                                            | 3.31d | 7.55d  | 4.10b        | 0.71b  | 2.81c  |  |
| F. test                     | *              | **                | **            | *             | *             | *                                                 | *     | *      | **           | *      | *      |  |
|                             |                |                   |               |               |               | 1998                                              |       |        |              |        |        |  |
| 0 (control)                 | 38.13a         | 21.96a            | 56.58a        | 11.75         | 38.69d        | 5.88a                                             | 4.38a | 10.26a | 5.09a        | 0.78a  | 3.67a  |  |
| $4 \times 10^3$             | 35.81a         | 20.55b            | 52.94b        | 10.77         | 41.75c        | 5.07b                                             | 4.12b | 9.19b  | 4.59b        | 0.75ab | 3.08b  |  |
| $10 \times 10^3$            | 31.35b         | 18.93c            | 49.39d        | 10.26         | 44.30b        | 4.14b                                             | 3.27d | 7.41d  | 4.51b        | 0.69c  | 3.29b  |  |
| $20 \times 10^3$            | 32.45b         | 17.79c            | 50.96c        | 10.57         | 46.20a        | 4.69c                                             | 3.63c | 8.32c  | 4.28b        | 0.72bc | 2.72c  |  |
| F. test                     | **             | *                 | *             | N.S           | **            | *                                                 | *     | *      | *            | *      | *      |  |

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test. Means followed by a letter in common are not significantly different at the 5% level according to Duncan's test.

Data in Table 4 reveales a significant increase in (P<sub>f</sub>) with each increase in P<sub>i</sub> in both seasons. Root gall index ranged from 0.0 (in control) to 5.0 (in the remaining inoculum levels). R<sub>f</sub> increased to 0.092 and 0.097 with the increase in P<sub>i</sub> up to  $10 \times 10^3$  in the first and second seasons, respectively.

#### Effect of the interaction between tomato cultivar and nematode initial population density level.

Data in Table 5 indicate that the highest values of stem length were obtained with the 0.0 (control) and  $4 \times 10^3$  inoculum levels in both cvs., while the shortest stems were obtained with  $20 \times 10^3$  level in the susceptible cv. However, stem length was not affected by the interaction in the second season. Number of leaves per plant and leaf dry weight were not significantly affected by the interaction in both seasons. The highest leaf fresh weight was obtained with the 0.0 (control) level in the resistant cv. Heinz 2710 in both seasons, while the least values were obtained with the  $10 \times 10^3$  and  $20 \times 10^3$ 

#### J. Agric. Sci. Mansoura Univ., 25 (8), August, 2000.

levels in the susceptible cv. Castlerock. Data also indicate that root fresh weight was significantly affected by the interaction, where the highest weights were obtained with the  $20 \times 10^3$  and  $10 \times 10^3$  inoculum levels in the susceptible cv. in both seasons, while the least weight was obtained with the 0.0 (control) level in the same cv. Concerning chlorophyll (a, b and a + b) data indicate that the highest leaf contents resulted from using the 0.0 (control) level in both cvs. in both seasons. Meanwhile, the least contents were obtained with the  $20 \times 10^3$  level in the susceptible cv. Castlerock in the first season and with the  $10 \times 10^3$  level in the same cv. in the second season. Data also show that leaf N, P and K contents were not significantly different between cvs. or inoculum density levels in both seasons.

|                                                      | nematode reproduction in the 1997 and 1998 seasons. |                                |                |                                             |                                |                                                                                      |                                |                                                                               |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------------|---------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Initial<br>population<br>density level<br>(Eggs/pot) | Fruit<br>yield/plant<br>(g)                         | Average<br>fruit<br>weight (g) | Acidity<br>(%) | Vitamin C<br>(mg/<br>100 ml<br>fruit juice) | Total<br>soluble<br>solids (%) | Final<br>nematode<br>population<br>(Pf) J <sub>2</sub> / 250<br>cm <sup>3</sup> soil | Root<br>gall<br>index<br>(0-5) | Reproduction<br>factor (R <sub>f</sub> )<br>(P <sub>f</sub> /P <sub>i</sub> ) |  |  |  |  |
|                                                      |                                                     | 1997                           |                |                                             |                                |                                                                                      |                                |                                                                               |  |  |  |  |
| 0 (control)                                          | 305.65 a                                            | 46.94 a                        | 0.54 a         | 20.99 a                                     | 5.57                           | 0.00 d                                                                               | 0.0                            | 0.00                                                                          |  |  |  |  |
| $4 \times 10^3$                                      | 283.63 b                                            | 46.09 a                        | 0.49 b         | 20.10 b                                     | 5.01                           | 219.38 c                                                                             | 5.0                            | 0.055                                                                         |  |  |  |  |
| $10 \times 10^{3}$                                   | 243.94 c                                            | 43.33 b                        | 0.49 b         | 20.30 b                                     | 5.07                           | 924.75 b                                                                             | 5.0                            | 0.092                                                                         |  |  |  |  |
| $20 \times 10^{3}$                                   | 215.61 d                                            | 42.25 b                        | 0.48 b         | 20.26 b                                     | 5.04                           | 1216.50 a                                                                            | 5.0                            | 0.061                                                                         |  |  |  |  |
| F. test                                              | **                                                  | **                             | *              | *                                           | N.S                            | **                                                                                   |                                |                                                                               |  |  |  |  |
|                                                      |                                                     |                                |                | 1                                           | 998                            |                                                                                      |                                |                                                                               |  |  |  |  |
| 0 (control)                                          | 363.25 a                                            | 47.08 a                        | 0.65 a         | 21.38                                       | 5.61                           | 0.00 d                                                                               | 0.0                            | 0.00                                                                          |  |  |  |  |
| $4 \times 10^{3}$                                    | 326.81 b                                            | 46.36 a                        | 0.55 b         | 20.48                                       | 5.61                           | 255.63 c                                                                             | 5.0                            | 0.064                                                                         |  |  |  |  |
| $10 \times 10^3$                                     | 269.86 c                                            | 54.20 a                        | 0.54 b         | 20.59                                       | 5.29                           | 971.13 b                                                                             | 5.0                            | 0.097                                                                         |  |  |  |  |
| $20 \times 10^{3}$                                   | 224.24 d                                            | 42.75 b                        | 0.57 b         | 20.58                                       | 5.29                           | 1316.75 a                                                                            | 5.0                            | 0.066                                                                         |  |  |  |  |
| F. test                                              | *                                                   | *                              | *              | N.S                                         | N.S                            | **                                                                                   |                                |                                                                               |  |  |  |  |

Table (4): Effect of initial population density level (P<sub>i</sub>) of *M. incognita,* infesting tomato plants on fruit yield and quality and nematode reproduction in the 1997 and 1998 seasons.

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test. Means followed by a letter in common are not significantly different at the 5% level according to Duncan's test.

 $R_f$  = reproduction factor;  $P_f$  = final population;  $P_i$  = initial population.

Data presented in Table 6 show that the highest fruit yield resulted from applying the 0.0 level (control), followed by the  $4 \times 10^3$  level in the resistant cv. in both seasons, while the lowest fruit yield resulted from using the  $20 \times 10^3$  level with the susceptible cv. Data also indicate that the highest average fruit weights were obtained with the 0.0,  $4 \times 10^3$  and  $20 \times 10^3$  levels in the resistant cv. in both seasons. Meanwhile, the lowest values resulted from applying the  $20 \times 10^3$  level to the susceptible cv. in both seasons. However, differences were not significant in the first season. Fruit acidity and vitamin C and T.S.S. contents showed no significant differences in both seasons.

#### El-Shafeey, E.I. and N.A. Hassan

Table (5): Effect of interaction between tomato cultivars and initial population density levels (P<sub>i</sub>) of *M. incognita* on some vegetative growth parameters of tomato plants and leaf chlorophyll, N, P, and K contents in the 1997 and 1998 seasons.

|                      | contents in the 1997 and 1998 seasons. |        |               |               |               |        |          |        |      |         |        |  |
|----------------------|----------------------------------------|--------|---------------|---------------|---------------|--------|----------|--------|------|---------|--------|--|
| Interaction          | Stem                                   | No. of | Leaf          | Leaf          | Root          | Chl.   | Ch       | _      |      | al N, P |        |  |
| Cultivars            |                                        | leaves | fresh         | dry           | fresh         | а      | b        | (a+b   | ) (% | dry we  | eight) |  |
| × Pi                 | (cm)                                   | /plant | weight<br>(g) | weight<br>(g) | weight<br>(g) |        | (mg/dm²) |        | Ν    | Р       | к      |  |
|                      |                                        | 1997   |               |               |               |        |          |        |      |         |        |  |
| Heinz 2710           |                                        |        |               |               |               |        |          |        |      |         |        |  |
| 0 (control)          | 45.47a                                 | 22.55  | 59.93a        | 10.13         | 45.45b        | 5.90a  | 4.35ab   | 10.25a | 5.06 | 0.79    | 3.64   |  |
| $4 \times 10^3$      | 43.73ab                                | 21.63  | 58.38b        | 9.89          | 45.60b        | 5.15b  | 4.21bc   | 9.36b  | 4.70 | 0.76    | 3.08   |  |
| $10 \times 10^{3}$   | 41.70bc                                | 18.80  | 56.00c        | 9.20          | 49.33a        | 4.90b  | 3.91de   | 8.81c  | 4.24 | 0.73    | 3.41   |  |
| $20 \times 10^{3}$   | 40.48c                                 | 18.15  | 54.55c        | 8.93          | 51.02a        | 4.63c  | 3.74e    | 8.37d  | 4.08 | 0.76    | 3.14   |  |
| Castlerock           |                                        |        |               |               |               |        |          |        |      |         |        |  |
| 0 (control)          | 46.03a                                 | 18.78  | 50.03d        | 8.36          | 35.97c        | 5.78a  | 4.43a    | 10.21a | 5.48 |         |        |  |
| $4 \times 10^3$      | 45.25a                                 | 16.90  | 46.55e        | 7.87          | 38.55c        | 5.00b  | 4.07cd   | 9.07bc | 4.35 | 0.68    | 3.01   |  |
| $10 \times 10^{3}$   | 39.23c                                 | 14.75  | 44.45f        | 7.60          | 50.93a        | 4.55c  | 3.40f    | 7.95d  | 4.20 | 0.66    | 3.48   |  |
| $20 \times 10^{3}$   | 33.93d                                 | 13.20  | 41.18g        | 7.17          | 52.35a        | 3.85d  | 2.88g    | 6.73e  | 4.13 | 0.67    | 2.47   |  |
| F. test              | *                                      | N.S    | *             | N.S           | *             | *      | *        | *      | N.S  | N.S     | N.S    |  |
|                      |                                        |        |               |               |               | 1998   |          |        |      |         |        |  |
| Heinz 2710           |                                        |        |               |               |               |        |          |        |      |         |        |  |
| 0 (control)          | 38.58                                  | 23.90  | 61.55a        |               | 40.97d        | 5.91a  | 4.30ab   | 10.21a | 5.31 | 0.77    | 3.70   |  |
| $4 \times 10^{3}$    | 34.98                                  | 22.98  | 58.60b        | -             | 42.47cd       | 5.25b  | 4.04c    | 9.29b  | 4.84 | 0.75    | 3.17   |  |
| 10 × 10 <sup>3</sup> | 34.45                                  | 21.08  | 56.65c        | -             | 43.83bc       |        | 3.73d    | 8.31e  | 4.84 | 0.71    | 3.29   |  |
| $20 \times 10^3$     | 32.45                                  | 20.20  | 57.25c        | 11.71         | 44.90b        | 5.01bc | 3.66d    | 8.67d  | 4.51 | 0.73    | 3.08   |  |
| Castlerock           |                                        |        |               |               |               |        |          |        |      |         |        |  |
| 0 (control)          | 37.68                                  | 20.03  | 51.60d        | 10.67         | 36.40e        | 5.84a  | 4.46a    | 10.30a | 4.86 | 0.79    | 3.64   |  |
| 4 × 10 <sup>3</sup>  | 36.65                                  | 18.13  | 47.27e        | 10.58         | 41.03d        | 4.89c  | 4.20bc   | 9.09c  | 4.35 | 0.76    | 3.00   |  |
| $10 \times 10^{3}$   | 28.25                                  | 16.78  | 42.13g        | 9.01          | 44.78b        | 3.71e  | 2.81e    | 6.52g  | 4.18 | 0.68    | 3.29   |  |
| $20 \times 10^{3}$   | 32.45                                  | 15.38  | 44.68f        | 9.44          | 47.50a        | 4.38d  | 3.59d    | 7.97f  | 4.05 | 0.71    | 2.36   |  |
| F. test              | N.S                                    | N.S    | *             | N.S           | *             | *      | *        | *      | N.S  | N.S     | N.S    |  |

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test. Means followed by a letter in common are not significantly different at the 5% level according to Duncan's test.

Data in Table 6 also show that P<sub>f</sub> increased with the increase in P<sub>i</sub> level within each cv. The lowest P<sub>f</sub> was obtained with the 4 × 10<sup>3</sup> level in the resistant cv. in both seasons. Root gall index was only slightly affected by the P<sub>i</sub> levels in the resistant cv., but was much affected by such levels in the susceptible one. The highest R<sub>f</sub> resulted from applying the 10 × 10<sup>3</sup> level, followed by the 20 × 10<sup>3</sup> level to the susceptible cv. in both seasons. Meanwhile, the lowest R<sub>f</sub> resulted from using the 20 × 10<sup>3</sup> level with the resistant cv. in both seasons.

#### **Experiment (B):**

Results in Table 7 indicate that all organic manure treatments improved plant growth as compared with unamended soil. The increase in stem length, number of leaves per plant, leaf fresh and dry weight and root fresh weight of Castlerock tomato plants varied according to the sort of organic manure used. Amending soil with pigeon or poultry manure significantly increased these growth parameters more than using rabbit or cow manure in both seasons. Also, pigeon and poultry manures significantly increased chlorophyll (a, b and a + b) and total N, P and K contents as compared with unamended soils in the two seasons.

| Interaction<br>Cultivars<br>× P <sub>i</sub> | Fruit<br>yield/plant<br>(g) | Average<br>fruit<br>weight<br>(g) | Acidity,<br>% | Vitamin C<br>(mg /<br>100 ml. fruit<br>juice) | Total<br>soluble<br>solids<br>(%) | Final nematode<br>population (P <sub>f</sub> )<br>J <sub>2</sub> / 250 cm <sup>3</sup> soil | Root<br>gall<br>index<br>(0-5) | Reproduction<br>factor (R <sub>f</sub> )<br>(P <sub>f</sub> /P <sub>i</sub> ) |
|----------------------------------------------|-----------------------------|-----------------------------------|---------------|-----------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|
|                                              |                             |                                   |               |                                               |                                   |                                                                                             |                                |                                                                               |
| Heinz 2710                                   |                             |                                   |               |                                               |                                   |                                                                                             |                                |                                                                               |
| 0 (control)                                  | 343.65 a                    | 50.43                             | 0.51          | 20.40                                         | 5.10                              | 0.00 g                                                                                      | 0.0                            | -                                                                             |
| $4 \times 10^3$                              | 324.88 b                    | 49.85                             | 0.43          | 19.68                                         | 4.25                              | 79.25 f                                                                                     | 1.0                            | 0.019                                                                         |
| $10 \times 10^{3}$                           | 305.70 c                    | 48.35                             | 0.42          | 19.80                                         | 4.32                              | 123.25 e                                                                                    | 1.0                            | 0.012                                                                         |
| $20 \times 10^3$                             | 293.90 c                    | 47.40                             | 0.42          | 19.77                                         | 4.27                              | 193.25 d                                                                                    | 1.0                            | 0.009                                                                         |
| Castlerock                                   |                             |                                   |               |                                               |                                   |                                                                                             |                                |                                                                               |
| 0 (control)                                  | 267.65 d                    | 43.45                             | 0.58          | 21.58                                         | 5.70                              | 0.00 g                                                                                      | 0.0                            | -                                                                             |
| $4 \times 10^3$                              | 242.38 e                    | 42.33                             | 0.55          | 20.53                                         | 5.40                              | 359.50 c                                                                                    | 5.0                            | 0.089                                                                         |
| $10 \times 10^{3}$                           | 182.18 f                    | 38.30                             | 0.56          | 20.79                                         | 5.52                              | 1726.25 b                                                                                   | 5.0                            | 0.172                                                                         |
| $20 \times 10^3$                             | 137.33 g                    | 37.10                             | 0.54          | 20.75                                         | 5.47                              | 2239.75 a                                                                                   | 5.0                            | 0.111                                                                         |
| F. test                                      | **                          | N.S                               | N.S           | N.S                                           | N.S                               | **                                                                                          |                                |                                                                               |
|                                              |                             |                                   |               | 19                                            | 98                                |                                                                                             |                                |                                                                               |
| Heinz 2710                                   |                             |                                   |               |                                               |                                   |                                                                                             |                                |                                                                               |
| 0 (control)                                  | 411.50 a                    | 48.50a                            | 0.64          | 20.12                                         | 5.51                              | 0.00 g                                                                                      | 0.0                            | -                                                                             |
| $4 \times 10^{3}$                            | 373.03 b                    | 48.18ab                           | 0.54          | 19.35                                         | 5.06                              | 89.75 f                                                                                     | 1.0                            | 0.0224                                                                        |
| $10 \times 10^{3}$                           | 336.08 c                    | 48.65a                            | 0.53          | 19.46                                         | 5.10                              | 131.25 e                                                                                    | 1.0                            | 0.0131                                                                        |
| $20 \times 10^3$                             | 304.45 d                    | 46.47abc                          | 0.56          | 19.46                                         | 5.12                              | 195.25 d                                                                                    | 1.0                            | 0.009                                                                         |
| Castlerock                                   |                             |                                   |               |                                               |                                   |                                                                                             |                                |                                                                               |
| 0 (control)                                  | 315.00 d                    | 45.65 bc                          | 0.66          | 22.65                                         | 5.70                              | 0.00 g                                                                                      | 0.0                            | -                                                                             |
| $4 \times 10^3$                              | 280.60 e                    | 44.55 c                           | 0.56          | 21.62                                         | 6.16                              | 421.50 c                                                                                    | 5.0                            | 0.105                                                                         |
| $10 \times 10^3$                             | 203.65 f                    | 41.75 d                           | 0.55          | 21.72                                         | 5.48                              | 1811.00 b                                                                                   | 5.0                            | 0.181                                                                         |
| $20 \times 10^3$                             | 144.03 g                    | 39.03 e                           | 0.58          | 21.70                                         | 5.47                              | 2438.25 a                                                                                   | 5.0                            | 0.122                                                                         |
| F. test                                      | *                           | *                                 | N.S           | N.S                                           | N.S                               | **                                                                                          |                                |                                                                               |

 Table (6): Effect of interaction between tomato cultivar and initial population density levels (P<sub>i</sub>)of *M. incognita* on fruit yield and quality of tomato plants and nematode reproduction in the 1997and 1998 seasons.

\*, \*\* and N.S. indicate P<0.05, P<0.01 and not significant, respectively, according to F. test. Means followed by a letter in common are not significantly different at the 5% level according to Duncan's test.

 $R_f$  = reproduction factor;  $P_f$  = final population;  $P_i$  = initial population.

Table (7):Effect of soil organic manure on vegetative growth parameters and leaf chlorophyll, N, P, and K contents of Castlerock tomato plants infested with *Meloidogyne incognita* in the 1997 and 1998 seasons.

|                    |                   |                    | Leaf             | Leaf           | Root              | Chl.            | Chl.             | Chl.             | Total            | NPan           | N, P and K      |  |
|--------------------|-------------------|--------------------|------------------|----------------|-------------------|-----------------|------------------|------------------|------------------|----------------|-----------------|--|
| Organic            | Stem<br>length    | No. of<br>leaves/p | fresh            | dry            | fresh             | a               | b                | (a+b)            | (% dry weight)   |                |                 |  |
| manure             | (cm)              | lant               | weight<br>(g)    | weight<br>(g)  | weight<br>(g)     |                 | (mg/dn           | 1²)              | Ν                | Ρ              | к               |  |
|                    |                   | 1997               |                  |                |                   |                 |                  |                  |                  |                |                 |  |
| Control<br>Rabbit  | 50.45c<br>55.05bc | 17.60c<br>19.55bc  | 41.08c<br>43.18c | 7.15b<br>7.30b | 38.15d<br>43.53bc | 4.75c<br>5.46b  | 4.13c<br>4.31b   | 8.88d<br>9.77b   | 3.98d<br>4.58bc  | 0.69d<br>0.73c | 2.83c<br>3.30ab |  |
| Pigeon             | 64.40a            | 22.20a             | 53.38a           | 8.88a          | 47.45a            | 5.88a           | 4.49a            | 10.37a           | 5.08a            | 0.77a          | 3.39a           |  |
| Cow<br>Poultry     | 53.68bc<br>57.70b | 18.25c<br>21.30ab  | 42.48c<br>47.58  | 7.23b<br>8.10a | 41.18c<br>45.50ab | 5.32b<br>5.78a  | 4.26bc<br>4.40ab | 9.58c<br>10.18ab | 4.26cd<br>4.89ab | 0.72c<br>0.75b | 3.23b<br>3.35ab |  |
| F. test            | **                | **                 | *                | *              | +5.50ab<br>*      | 3.70a<br>*      | *                | *                | 4.03ab<br>**     | **             | 5.55ab<br>**    |  |
|                    |                   |                    |                  |                |                   | 1998            |                  |                  |                  |                |                 |  |
| Control<br>Rabbit  | 48.85c<br>50.05bc | 20.83c<br>22.58b   | 43.83c<br>45.63c | 5.70e<br>6.13d | 40.23c<br>48.03b  | 4.94d<br>5.65bc | 4.25b<br>4.35ab  | 9.19d<br>10.00b  | 4.19c<br>4.83b   | 0.71b<br>0.72b | 2.85d<br>3.24bc |  |
| Pigeon             | 61.58a            | 26.58a             | 56.35a           | 9.05a          | 52.30a            | 5.89a           | 4.51a            | 10.40a           | 5.22a            | 0.78a          | 3.39a           |  |
| Cow                | 52.75bc           | 22.83bc            | 48.30            | 6.77c          | 49.03ab           | 5.18c           | 4.35ab           | 9.53c            | 4.60b            | 0.72b          | 3.17c           |  |
| Poultry<br>F. test | 58.20ab<br>*      | 24.63ab<br>*       | 50.28<br>**      | 7.55b<br>**    | 49.68ab<br>*      | 5.30c<br>*      | 4.39ab<br>*      | 9.69c<br>*       | 5.11a<br>*       | 0.76a<br>*     | 3.30ab<br>*     |  |

\* and \*\* indicate P<0.05 and P<0.01, respectively, according to F. test.

Means followed by a letter in common are not significantly different at the 5% level according to Duncan's test.

#### El-Shafeey, E.I. and N.A. Hassan

Organic manure treatments improved tomato fruit yield and quality (Table 8). Use of Pigeon or poultry manure resulted in significantly higher fruit yield per plant and average fruit weight than using rabbit or cow manure. Also, applying pigeon and poultry manures led to significant increases in acidity, vitamin C and T.S.S contents.

Table (8): Effect of soil organic manures on plant fruit yield and quality, and nematode reproduction in castle rock tomato plants infested with *Meloidgyne incognita* in the 1997 and 1998 seasons.

| Organic<br>manure | Fruit<br>yield/plant<br>(g) | Average<br>fruit<br>weight (g) | Acidity<br>(%) | Vitamin C<br>(mg / 100<br>ml fruit<br>juice) | Total<br>soluble<br>solids (%) | Final<br>nematode<br>population<br>(P <sub>f</sub> ) J <sub>2</sub> / 250<br>cm <sup>3</sup> soil | Root<br>gall<br>index<br>(0-5) | Reproduc<br>tion factor<br>(R <sub>f</sub> )<br>(P <sub>f</sub> /P <sub>i</sub> ) | Nematode<br>reduction<br>(%) |  |  |  |
|-------------------|-----------------------------|--------------------------------|----------------|----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|------------------------------|--|--|--|
|                   | 1997                        |                                |                |                                              |                                |                                                                                                   |                                |                                                                                   |                              |  |  |  |
| Control           | 240.50 d                    | 42.20 c                        | 0.55 e         | 18.33 d                                      | 4.99 c                         | 285.25 a                                                                                          | 3.0                            | 0.057                                                                             | -                            |  |  |  |
| Rabbit            | 269.50 bc                   | 44.73 ab                       | 0.61 c         | 21.05 b                                      | 5.29 ab                        | 195.50 c                                                                                          | 2.0                            | 0.039                                                                             | 31.46                        |  |  |  |
| Pigeon            | 303.50 a                    | 47.00 a                        | 0.64 b         | 21.60 b                                      | 5.46 a                         | 85.75 e                                                                                           | 1.0                            | 0.017                                                                             | 69.64                        |  |  |  |
| Cow               | 251.00 cd                   | 43.38 bc                       | 0.58 d         | 19.98 c                                      | 5.14 bc                        | 236.75 b                                                                                          | 2.0                            | 0.047                                                                             | 17.01                        |  |  |  |
| Poultry           | 288.50 ab                   | 45.53 ab                       | 0.67 a         | 22.43 a                                      | 5.38 a                         | 121.00 d                                                                                          | 1.0                            | 0.024                                                                             | 57.69                        |  |  |  |
| F. test           | **                          | **                             | *              | *                                            | *                              | **                                                                                                |                                |                                                                                   |                              |  |  |  |
|                   |                             |                                |                |                                              | 1998                           |                                                                                                   |                                |                                                                                   |                              |  |  |  |
| Control           | 278.25 d                    | 43.83 d                        | 0.56 c         | 17.48 d                                      | 4.83 c                         | 300.75 a                                                                                          | 4.0                            | 0.060                                                                             | -                            |  |  |  |
| Rabbit            | 292.75 cd                   | 45.33 cd                       | 0.57 bc        | 19.73bc                                      | 5.01 bc                        | 215.25 b                                                                                          | 3.0                            | 0.043                                                                             | 28.43                        |  |  |  |
| Pigeon            | 349.25 a                    | 48.53 a                        | 0.61 b         | 20.53 b                                      | 5.43 a                         | 94.75 e                                                                                           | 2.0                            | 0.018                                                                             | 68.50                        |  |  |  |
| Cow               | 302.00 c                    | 46.13 bc                       | 0.57 bc        | 19.20 c                                      | 5.14 b                         | 180.75 c                                                                                          | 3.0                            | 0.036                                                                             | 39.91                        |  |  |  |
| Poultry           | 322.00 b                    | 47.75 ab                       | 0.66 a         | 21.70 a                                      | 5.35 a                         | 147.50 d                                                                                          | 2.0                            | 0.029                                                                             | 50.95                        |  |  |  |
| F. test           | *                           | *                              | *              | *                                            | *                              | **                                                                                                |                                |                                                                                   |                              |  |  |  |

\* and \*\* indicate P<0.05 and P<0.01, respectively, according to F. test.

Means followed by the same letter are not significantly different at the 5% level according to Duncan's test.

 $R_f$  = reproduction factor,  $P_f$  = final population;  $P_i$  = initial population.

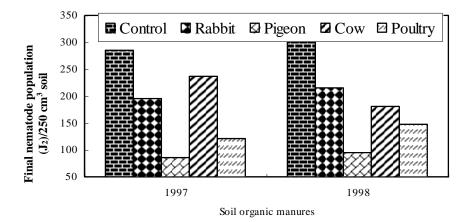



Fig. (1):Effect of soil organic manures on final population of *M. incognita* Infecting tomato plants (1997 & 1998).

Results in Table 8 and Figure 1 indicate that all soil organic manures greatly suppressed the final nematode population ( $P_f$ ) and decreased root gall index. Reproduction factor ( $R_f$ ) and galls index significantly decreased with applying pigeon or poultry manure, whereas rabbit and cow manures caused less suppression as compared with the unamended treatment in both seasons. Using pigeon or poultry manure led to pronounced reductions in percentage of nematode populations (69.64 &57.69 and 68.50 &50.45 for the two manures in the first and second seasons, respectively). However, less reduction was observed with rabbit and cow manures (31.46 &17.01 and 28.43 & 39.91).

## DISCUSSION

Results obtained indicate that the susceptible tomato cv. Castlerock was greatly suppressed by *M. incognita* in most growth and yield parameters measured, whereas the resistant cv. Heinz 2710 was only slightly affected. Also, P<sub>f</sub>, root gall index and (R<sub>f</sub>) markedly increased in the case of susceptible cv. These results are in agreement with those of Anwar and Van Gundy (1993). They postulated that the high response of susceptible cvs. to nematode infection suggests a degree of aggressiveness of M. incognita which lead to growth retardation and death of plant more than in the resistant cvs. Also, our results support those of Taylor (1975) who reported that in susceptible cvs. all the infection sites were galled and contained giant cells and larvae in large numbers and that mature females were found within 30 days. It seems that mechanisms of resistance to root-knot nematodes are complex as reported by Khan and Khan (1991). In some incompatible reactions with plants *M. incognita* may fail to penetrate, penetrate only for a short period, penetrate in low numbers or penetrate in numbers equal to those in compatible plants but fail to develop. They added also that root exudates of susceptible cvs. may be different from those of resistant ones.

The present results indicate that the damage in all plant growth parameters was correlated with the increase in (P<sub>i</sub>) level of *M. incognita*. This is in accordance with those of Sharma and Swarp (1968). They found in tomato seedlings infested with *M. incognita* and *M. javanica*, that the reduction in shoot growth was proportional to the reduction in root growth and both were highly correlated

Data show that the weight of roots proportionally increased with the increase in  $(P_i)$  level. This may be attributed to the higher numbers and weights of galls formed on infested roots.

Infestation of *M. incognita* significantly decreased chlorophyll content (a, b and a + b). These data confirm the finding of Ali *et al.* (1981) and Omar *et al.* (1985). Data also show that N, P, and K contents, in plant leaves, decreased as a result of nematode infection. These results are similar to those reported for nitrogen (Shaffiee and Jenkins, 1963), phosphorus (Dropkin and King, 1956) and; potassium (Oteifa, 1952; Ibrahim *et al.*, 1982 and Fatemy and Evans, 1986) contents in nematode infected plants.

Fruit yield and average fruit weight decreased with the increase in  $(P_i)$  levels. The reduction in fruit yield could be ascribed to modification of plant

physiological functions like photosynthesis, transpiration, mineral uptake and translocation following infection. A similar suggestion was reported by Chindo and Khan (1988).

Results indicate that there was a significant increase in (P<sub>f</sub>) with each increase in (P<sub>i</sub>). Root gall index ranged from 0.0 to 5.0 (with the different inoculum levels). R<sub>f</sub> increased with the increase in (P<sub>i</sub>) up to  $10 \times 10^3$ . These results agree with those reported by Abwai and Barker (1984) and Chindo and Khan (1988).

Soil organic manures significantly improved most vegetative growth parameters, chlorophyll and N, P and K contents in plant leaves and fruit yield and quality. Also, all soil organic manures suppressed the final nematode population ( $P_f$ ), root gall index, reproduction factor ( $R_f$ ) and increased nematode reduction %. These results are in agreement with those reported by Chindo and Khan (1986); Montasser (1991); Ismail and Yossif (1997) and Chavarria Carvajal and Rodriguez Kabana (1999). Such beneficial effects of organic manures may be partially due to their serving as soil amendments and partially due to their nematicidal activity.

The reduction in nematode population can be attributed to stimulation of soil microorganisms that are capable of parasitizing eggs or producing toxic substance which prevent egg hatching or destroy nematodes. Similar mechanisms were suggested by Heald and Burton (1968) and Muller *et al.*, (1982).

Meanwhile, results of the present study indicate that organic manures with narrow C/N ratio (pigeon and poultry) were more effective against nematode than those with broad C/N ratio (cow and rabbit). These results are in agreement with those of Mian and Rodriguez Kabana (1982) who reported that the relative effectiveness of organic amendments depended on their nitrogen content and C/N ratio. Badra and Shafiee (1979), Rodriguez Kabana and King (1980) and Rodriguez Kabana et al. (1981) suggested that the action of organic amendments against phytonematodes may be due to the release of volatile organic acids and ammonical nitrogen during microbial decomposition of the organic materials in soil. As a result of microbial activity the pH value increases, stimulating processes of nitrification and production of nitrates, which can convert into ammonia and nitrates. Such compounds are toxic to nematodes, and also become toxic to plants at high levels of accumulation. They concluded also that the nematicidal action of ammonia may result from its capacity to generate higher osmotic pressures, which are lethal even in low concentration. Abdel-Rahman (1977) reported that the presence of certain amino acids such as alanine, argenine, aspartic, glutamic, glycine, histidine, isoleucine, leucine and phenylalanine in the decomposed manures is responsible for its toxic effect on nematode stages.

However, the involvement of other control mechanisms of organic manures against nematodes can not be excluded. Alam *et al.* (1980) suggested that the roots of plants grown in amended soil undergo physiological changes which make the roots unfavorable for nematode penetration and feeding; thus, inducing certain degrees of resistance against nematode attack.

## REFERENCES

- Abawi, G.S. and K.R. Barker (1984). Effect of cultivar, soil temperature, and population levels of *Melodogyne incognita* on root necrosis and fusarium of tomatoes. Phytopathology 74 (4): 433-438.
- Abdel-Rahman, T. (1977). Role of organic and inorganic soil amendments in nematode control. Ph.D. Thesis, Fac. Agric., Cairo Univ.
- Alam, M.M., A.M. Khan and S.K. Saxena (1979). Mechanism of control of plant-parasitic nematodes as a result of the application of organic amendments to the soil. V: Role of phenolic compounds. Indian Journal of Nematology 9: 136-142.
- Alam, M.M., M. Ahmed and A.M., Khan (1980). Effect of organic amendments on the growth and chemical composition of tomato, eggplant and chili and their susceptibility to attack by *Meloidogyne incognita*. Plant and Soil 57: 231-236.
- Ali, M.A., L.Y. Trabulsi and M.E. Abdel-Samea (1981). Antagonistic interaction between *Meloidogyne incognita* and *Rhizobium leguminosarum* on cowpea. Plant Dis. 65: 432-434.
- Amin, A.W. and E.I. El-Shafeey (1998). Effect of certain soil organic amendments and nematicides on citrus nematodes *Tylenchulus semipenetrans.* Egypt. J. Agronomentol. 2 (2): 229-244.
- Anwar, S.A. and S.D. Van-Gundy (1993). Effect of *Meloidogyne incognita* on root-knot and shoot growth parameters of susceptible and resistant varieties of tomato. Afro-Asian Journal of Nematology 3 (2): 152-160.
- Babatola, J. O. (1989). Effects of some organic manures on nematodes in tomato cultivation. Pak. J. Nematol. 7 (1): 39-46.
- Badra, T. and M.F. Shafiee, (1979). Effect of nitrogen source and rate on the growth of lime seedlings and control of *Tylenchulus semipenetrans*. Nematol. Medit. 7:191-194.
- Bird, A.F. (1974). Plant response to root-knot nematode. Ann. Rev. Phytopatholgy 12: 69-85.
- Chavarria Carvjal, J.A. and R., Rodriguez Kabana. (1999). Changes in soil enzymatic activity and control of *Meloidogyne incognita* using four organic amendments. Nematropica 28, Iss, pp. 7-18.
- Chindo, P.S. and F.A. Khan (1986). Effect of soil organic amendement with poultry manure on damage caused by the root-knot nematode, *Meloidogyne incognita* on tomato. Int. Nematol. Network Newsl. 3: 30-33.
- Chindo, P.S. and F.A. Khan (1988). Relationship between initial population densities of *Meloidogyne incognita* race and growth and yield of tomato. Pakistan Journal of Nematology 6(2): 93-100.
- Cox, H.E. and D. Pearson (1962). The chemical analysis of foods. Chemical Publishing Co., Inc., New York, N.Y.P. 136-144.
- Dropkin, V.G. and R.C. King (1956). Studies on plant parastic nematodes homogeneously labelled with radio-phosphorus. Experimental Parasitology 5: 469-480.

- Duncan, B.D. (1965). Multiple Range and Multiple F. Tests. Biometrics 11: 1-42.
- Dwivedi, B. K. and G. Pandey (1993). Effect of root-knot nematode on the growth of *Lycopersicon esculentum* in an Indian sub-humid region. Current Nematology 4: (2) 225-228.
- Fatemy, F. and K.Evans (1986). Effects of *Globodera rostochiensis* and water stress on shoot and root growth and nutrient uptake of potatoes. Revue de Nematology 9: 181-184.
- Heald, C.M. and G.W. Burton (1968). Effect of organic and inorganic nitrogen on nematode populations feeding on turf. Plant Dis. Rept. 52: 46-48.
- Ibrahim, I.K.A.; M.A. Rezk and H.A.A. Khalil (1982). Effects of *Meloidogyne* incognita, Fusarium axysporum and F. vasinfectum on plant growth and mineral content of cotton, Gossypium barbadense L. Nematologica 28: 298-302.
- Ismail, A. E. and M. M. A. Youssif (1997). Influence of some organic manures as soil amendments on development and reproduction of *Rotylenchulus reniformis* infecting eggplant and *Hirschmanniella oryzae* infecting rice. Anziger für Schädlingskunde Pflanzenschutz Umweltschutz Band 70 (3): 58-61.
- Jackson, M.L. (1967). Soil Chemical Analysis. Prentice-Hall of India Private Limited, New Delhi, P. 115.
- Johnson, A. w. and G. Fassuliotis (1984). Nematode parasites of vegetable crops. In: Plant and Insect Nematodes, pp. 324-370. (ed. W. R. Nickle). New York, USA: Marcel Dakker, Inc.
- Khan, A.A. and M.W. Khan. (1991). Penetration and development of *Meloidogyne incognita* race and *Meloidogyne javanica* in susceptible and resistant vegetables. Nematropica 21(1): 71-77.
- King, E.J. (1951). Micro-analysis in medical biochemistry. 2<sup>nd</sup>Ed. Chuchill, London.
- Mian, I.H. and R. Rodriguez Kabana (1982). Soil amendments with oil-cakes and chichen litter for control of *Meloidogyne arenaraia*. Nematropica 12: 205-220.
- Montasser, S. A. (1991). The efficacy of some organic manures in controlling of root-knot nematode of okra. Pak. J. Nematol. 9:139-143.
- Moran, R. and D. Porath (1980). Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiol. 65: 478-479.
- Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 69: 1376-1381.
- Muller, R. and P. S. Gooch (1983). Organic amendments in nematode control. An examination of literature. Nematropica 12: 319-326.
- Ogunfowora, A. O. (1977). The effect of different population levels of *Meloidogyne incognita* on the yield of tomato (*Lycopersicon esculentum*) in south-western Nigeria. Niger. J. Plant Prot. 3: 61-67.
- Omar, R.A.; E.A. Zayed; S.F. Mashaal and M.A. Abdel-Hadi (1985). Morphological and physiological responses of soybean to growth regulator TIBA and root-knot nematode. J. Agric. Sci., Mansoura Univ. 10 (3): 815-821.

- Oteifa, B.A. (1952). Potassium nutition of the host in relation to infection by a root-knot nematode, *Meloidagne incognita*. Proceedings of the Helminthological Society of Washington 19:99-104.
- Piper, C.S. (1947). Soil and plant analysis. The university of Adelaide (Australia) pp. 59-74.
- Rodriguez Kabana, R. and P.S. King (1980). Use of mixtures of urea and black-strap molasses for control of rot-knot nematodes in soil. Nematropica 10:38-44.
- Rodriguez Kabana, R., P.S. King and M.H. Pope (1981) Combination of anhydrous ammonia and ethylene dibromide for control of nematodes parasitic soybean, Nematropica 11:22-41.
- Shafiee, M. F. and W.R. Jenkins (1963). Host-parasite relationships of *Capsicum frutescens* and *Praylendus penetrans*, *Meloidogyne incognita acrita* and *Meloidogyne hapla*. Phytopathology 53: 325-228.
- Sharma, R.A. and G. Swarup (1968). Relation between population levels of *Meloidogyne javanica* and *Meloidogyne incognita var. acrita* and root and shoot growth of tomato seedlings. Compres Renduis du Huitieme Symposium International de Nematologie, Artibes, 83.
- Singh, N. D. (1975). Effect of inoculum level and plant age on pathogenicity of *Meloidogyne incognita* and *Rotylenchulus reniformis* to tomato and lettuce. Plant Disease Reporter. 59 (11): 905-908.
- Southey, J.F. (1986). Laboratory methods for work with plant and soil nematodes. Min. Agr. Fish. Food, HMSO, London.
- Stephan, Z.A., (1995). The efficacy of nematicides and horse manure in controlling root-knot nematodes on tomato and eggplant. Nematol. Medit. 23: 29-30.
- Taylor, D.P. (1975). Observations on a resistant and a susceptible variety of tomato in a field heavily infested with *Meloidogyne* in Senegal. Cahiers. O.R.S.T.O.M., Serie-Biologiene-matologic 10 (3): 239-245.
- Taylor, A.L. and J.N. Sasser (1978). Biology, identification and control of root-knot nematode (*Meloidogyne* spp.) Coop. Publ., Dept. Plant Pathology, North Carolina State University, Raleigh. N.C. 111.pp.
- Vito, M. Di, V. Cianciotta; G. Di. Zaccheo and M. Vito (1991). The effect of Population densities of *Meloidogyne incognita* on yield of susceptible and resistant tomato. Nematologia-Mediterranea 19 (2): 265-268.
- Vito, M. Di and F. Lamberti (1976). Reactrion of tomato varieties to populations of *Meloidogyne spp* in the glasshouse. Nematologica-Mediterranea 4 (2): 211-215.

# ت أثير نيماتودا تعقد الجذور (ميلويدوجيني إنكوجنيتا) على النمو والمحصول لأصناف الطماطم القابلة للإصابه والمقاومة وتأثير أنواع مختلفة من الأسمدة العضوية على مكافحة النيماتودا

الشافعي ابراهيم على الشافعي\* و نبيل عبدالمنعم أحمد حسن \*\* \* قسم النبات الزراعي – كلية الزراعة بكفرالشيخ – جامعة طنطا

\*\* قسم البساتين – كلية الزراعة بكفر الشيخ – جامعة طنطا

أجريت تجربتي أصص- في نفس الوقت- خلال الموسم الصيفي المبكر لعامي 1997، 1998.

فى التجربة الأولى – تمت دراسة تأثير أربعة مستويات من العدوى الأولية بنيماتودا تعقد الجذور ميلويدوجيني إنكوجنيت (صفر، 4 × 10 <sup>3</sup> ، 10 × 10 <sup>3</sup> و20 × 10 <sup>3</sup> بيضه/أصيص) على النمو والمحصول لصنفى الطماطم كاسل روك (القابل للإصابه) وهجين Heinz 2710 (المقاوم).

أوضحت النتائج أن النيماتودا قد تسببت فى أحداث تثبيط كبير فى معظم صفات النمو والمحصول للصنف القابل للإصابه مثل طول الساق، و عدد الأوراق، والوزن الطازج والجاف للأوراق، والوزن الطازج للجذور، ومحتوى الأوراق من الكلوروفيل والعناصر الأولية (النتروجين والفوسفور والبوتاسيوم)، والمحصول الثمرى لكل نبات، ومتوسط وزن الثمرة – هذا وقد كان التأثير بسيطاً للنيماتودا على الصنف المقاوم0 ومن ناحية أخرى فإن قيم الحموضه، وفيتامين ج، والمواد الصلبه الذائبه الكلية فى الثمار كانت أعلى فى الصنف القابل للإصابه0 وأظهرت النتائج أن كلاً من العدد النهائي للعشيرة النيماتودية، ودليل العقد الجذرية ومعامل التكاثر قد ازداد معنوياً فى الصنف القابل للإصابه بالمقارنة بالصنف المقاوم.

وتبين من النتائج وجود علاقه سالبه بين مستويات العدوى الأولية ومعظم صفات النمو الخضرى حيث لوحظت زيادة تدريجية فى كل منها بزيادة مستوى العدوى. ومن ناحية أخرى فقد لوحظ وجود علاقه موجبه بين كل من الوزن الطازج للجذور ومستوى العدوى. هذا وقد تناقص المحصول الثمرى لكل نبات مع زيادة مستوى العدوى. أما بالنسبة لمتوسط وزن الثمرة فقد تناقص معنوياً عند مستوى العدوى 20 × 10 <sup>3</sup> مقارنة بالكنترول. وقد انخفض محتوى الثمار من الحموضه وفيتامين ج عند معظم مستويات العدوى. وقد مستخدمه. وأوضحت النتائج أيضاً أن العدد النهائى للعشيرة النيماتودية قد زرد بريادة مستوى العدوى. وقد تراوحت قيمة دليل العقد الجذريه بين (صغر) فى حالة الكنترول الى (خمسة) فى باقى مستويات العدوى. وقد تراوحت قيمة دليل العقد الجذريه بين (صغر) فى حالة الكنترول الى (خمسة) فى باقى مستويات العدوى. وقد

أظهرت النتائج وجود تأثير معنوى للتفاعل بين صنف الطماطم ومستوى العدوى الأولية على كل من الوزن الطازج للأوراق، ومحتوى الكلوروفيل فى الأوراق، والمحصول الثمرى لكل نبات حيث أعطى المستوى (صفر) مع الصنف المقاوم أعلى القيم ؛ ومن ناحية أخرى فقد أعطت نفس هذه المعاملة أقل وزن طازج للجذر. وقد تم الحصول على أقل عدد من العشيرة النيماتودية عند مستوى 4 × 10 <sup>3</sup> مع الصنف المقاوم. أما بالنسبة لدليل العقد الجذرية فقد تأثر بدرجة بسيطة بمستويات العدوى الأولية في الصنف المقاوم، وبدرجة كبيرة بهذه المستويات في الصنف المقابل للإصابة. هذا وقد نتجت أقل قيمة لمعامل التكاثر عند مستوى العدوى 20 × 10 <sup>3</sup> مع الصنف المقاوم.

وفى التجربة الثانية تمت دراسة تأثير أربعة أنواع من الأسمدة العضوية (مخلفات الأرانب، والحمام، والأبقار، والدواجن) فى مكافحة نيماتودا تعقد الجذور ميلويدوجيني إنكوجنينا التى تصيب نبات الطماطم. وقد أوضحت النتائج أن كل أنواع الأسمدة العضوية المستخدمة أحدثت تحسناً ملحوظاً فى معظم صفات النمو والمحصول للنباتات مثل طول الساق، وعدد الأوراق، والوزن الطازج والجاف للجذر، ومحتوى الأوراق من الكلوروفيل والعناصر الأولية (النيتروجين والفوسفور والبوتاسيوم)، والمحصول الثمرى لكل نبات، ومتوسط وزن الثمرة، والحموضه، وفيتامين ج، والمواد الصلبة الذائبه الكلية. هذا وقد أدى استخدام الحمام والدواجن الى زيادة قيم هذه الصفات المختلفة بدرجة أكبر منه عند استخدام سمادى الأرانب والأبقار.

وقد أحدثت كل الأسمدة العضوية المستخدمة نقصاً ملحوظاً فى كل من العدد النهائى للعشيرة النيماتودية, ودليل العقد الجذرية، ومعامل التكاثر. هذا وقد أحدث استخدام سمادى الحمام والدواجن خفضاً أكبر فى كل من دليل العقد الجذرية، ومعامل التكاثر، مع زيادة واضحة فى النسبة المئوية لتناقص أعداد النيماتودا، وذلك بالمقارنة بسمادى الأرانب والأبقار.