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ABSTRACT 

The accuracy of modern multisensor integrated inertial navigation systems 

(INS) is affected by various noise sources, such as accelerometer and gyro 

instabilities. These error sources are often modeled as Gauss-Markov ran-

dom processes and their effects on navigation system accuracy are determi-

ned by covariance simulation. Environmental error sources such as gravity 

uncertainties have been treated similarly. In this paper, the error equa-

tions for a local-level INS are derived. In order to apply covariance err-

or analysis to the system, the linear dynamic error equations in their 

state-space representation are presented. The error sources considered are 

gyro drift, accelerometer error, and gravity uncertainties. 

We have obtained finally a general case model representing error propaga-

tion equations including three dimensional free vehicle motion . 
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I.INTRODUCTION 

INS have found universal application both militarily and commercially. 

They are self-contained, nonradiating, nonjammable, and sufficiently 

accurate to meet the requirements of users in most satisfactory manner. 

The mechanization and error analysis of INS is not entirely new. 

Simplified analyses of such systems can be found, for example, in 

[1] - [3] . 

INS utilize inertial elements (i.e., accelerometers and gyros) to sense 

vehicle acceleration in a known direction and then integrate this 

acceleration to determine velocity and position. These sensors are 

conventionally mounted on gimbaled platforms which isolate them from 

vehicle motion and physically locate them in the desired coordinate 

reference frame. 

In analyzing INS, three coordinate frames are usually defined. The refe-

rence (or true), the platform (or instrumented), and the computer (or 

indicated) coordinate frames. In local-level north-pointing systems, 

the reference frame is the local geographic (north-east-down) frame ; 

it is desired that the platform should be forced to remain in as close 

coincidence as possible with the geographic frame. If this is achieved, 

physical indication will always be available of the direction of north 

and east, and of the vertical too. The platform coordinate frame has a 

gyro and an accelerometer input axes along each of its axes; three 

gyros to establish the rotation of the platform frame, and three acce-

lerometers to sense acceleration in that frame . 

The Kalman filter is used frequently for mixing data in modern, integ-

rated, aided INS. For the design of such a filter, state-space (Gauss-

Markov) models are needed for all error sources. 

In this paper, the appropriate dynamics of the INS are presented in 

differential equations form. The error sources considered are gyro drift, 

accelerometer error, and gravity uncertainties. The linear dynamic 

error equations are presented in their state-space representation. This 

will be useful for designing optimal estimation software to infer ins-

trument and environmental errors from INS outputs . 
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1[. THE SPECIFIC-FORCE EQUATION AND ITS RESOLUTION IN THE 

LOCAL GEOGRAPHIC FRAME 	 0 

The components of the angular space rate 

of a moving local geographic frame 

(fig.1) about its three axes(north, 

east,and down) are expressed in 

terms of longitude X, geographic 

latitude L, the rate of change of 

these quantities, and the earth 

rate 11 as follows: 
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where 

Ilh  = 11 cos L , 

11 = 11 sin L , 	 (2) 

wn = L 	• 
• 

w
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= X cos L . 

The components of the specific force, which is defined as the sum of 

kinematic acceleration plus gravity, for the moving local geographic 

frame along its axes are given by 
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where V , V , and V are the ground velocities in the north, east, and 
x y 	z  

down directions, respectively, and go 
is the nominal value of gravity. 

The ground velocities are related to the longitude and geographic 

latitude by 

V
x
= LR 	= w

n
R , 

V =(XcosL)R 	= w R , 	(4) 

V
z
= -R 

where R is the radial distance to the earth's center. The computer of an 

INS implements the set of equations relating position and velocity info-

rmations to the sensed specific-force components. It is deiiired that the 

platform frame (ix, iy, iz) should be forced to remain in as close coin-

cidence as possible with the local geographic frame(x,y,z). The axes of 

the platform frame are almost never aligned perfectly with the local 

geographic frame; the actual directions of the axes of the platform 

depend on the interaction of the navigation system with its error sources. 

DI. DERIVATION OF VELOCITY ERROR EQUATIONS 

The uncertainty of gravity (or gravity disturbance vector) is that portion 

of the gravity field not accounted by the formula used to calculate 

gravity [4]. In other words, the gravity disturbance vector at a point is 

the difference between the true value of gravity and a reference value 

based on some model of the earth.(In an error analysis, it is generally 

assumed that the earth is a perfect sphere of radius Re  ). In local-level 

geographic frame, this vector is normally expressed as 

Ag 

where g
o 

is the nominal value of gravity. The quantities 

called vertical deflections and Ag is called the gravity 

specific-force components given by (3) will be corrected 

disturbance vector . Therefore , 

(5) 

t and t are 

anomaly.So, the 

for the gravity 
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Now, consider a platform frame misaligned from the local geographic frame 

by the vector y/ . The specific-force components associated with the mov-

ing local geographic frame, given by equation(6), along the misaligned 

(tilted) axes are, therefore, for small misalignment angles 

(6) 
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The platform frame has an accelerometer input axis along each of its axes 

to sense specific-force components in this frame. The outputs of the 

accelerometers can be written as : 

[
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where e
ax , eay, and eaz are the accelerometer errors . 

The computer of an INS implements the accelerometer outputs (eq.8) to 

determine the vehicle position in the local geographic frame. The posi-

tion and velocity information are computed from 
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where the 'prime' denotes the computed (indicated) quantities and R 

is the radial distance to the earth's center,(R=Re+h, h is the altitude). 

Using Taylor's series expansion of the computed (primed) quantities about 

their true values, they may be expressed as follows : 
/ 

V = V + SV 
x 	x 	x  
/ 	• 
V = V + &V 
Y 	Y ./ 
V V +5V 
z 	z 	z  
1 
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x 	x 	x  

V =V + SV 
Y 	Y 

V = V + SV 
z 	z 	z  

X = X + SX 

L = L +5L 

Therefore 

sinL = sinL + SLcosL 

cose= cosL - 6LsinL 	, 	(12) 

tanL = tanL + 5Lsec
2
L . 

For cos SI, t' 1 , sin SL 	SL , and neglecting products of errors . 

Replacing the corresponding terms in equation(9) by notations and 

approximations given in equations (11) and (12), and neglecting products 

and powers of S's higher than the first ; substituting for fix' 
 f. , 

x iy 
and f.iz using equations (8), (7), and (6); and making use of equation (3) 

gives : 2 
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N. DERIVATION OF LATITUDE AND LONGITUDE ERROR EQUATIONS 

The latitude error is given by 
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V
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The longitude error is given by 
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V. DERIVATION OF TILT RATE EQUATIONS 

Considering the instrumented rotating platform frame misaligned from the 

geographic rotating frame by the vector y/ , the components of the geog-

raphic rotating platform frame along the misaligned axes are, therefore, 

for small misalignment angles 
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but Yx=107
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where w. , w. , and w. are the instrumented space rate components of 
ix iy 	1Z 

the platform about the instrumented platform. These components are obtai-

ned by torquing the gyros with the rates required to maintain the plat-

form local level , 

w
i 
 = D'cosL% vf+ egx  

/ 

w. = 	- w
n 	

+ egy  , iy  

w. = -n sinL - w/tanL
/
+ egz . 1Z 	e  

where egx' 
egy' and  egz 

are the gyro drift rates . 

Using equations (1), (16), (17), and (18) , the set (17) gives 
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Finally, the sets (13), (14), (15), and (19) reprsent eight differential 

equations containinavariables,which can be written directly in matrix form. 

VI. CONCLUSION 

We have obtained an 8
th order linear dynamical system model with the 

gyro errors, accelerometer errors, and gravity uncertainties as the 

driving functions. Depending upon vehicle manoeuvre, users have a wide 

variety of simplifications of the time varying matrix depending on 

their particular interest . 

VII. REFERENCES 

[1] C.Broxmeyer, Inertial Navigation Systems. New York : McGraw-Hill, 

1964 . 

[2] A.Gelb, "Synthesis of a very accurate inertial navigation system", 

IEEE Trans. Aerospace and Navigational Electronics,vol.ANE-12, 

pp. 119-128, June 1965 . 

(18)  

(19)  



SECOND A.S.A.T. CONFERENCE 

21-23 April 1987 , CAIRO (NAV-311061j 

[3] S.K. Jordan, "Effects of geodetic uncertainties on a damped inertial 

navigation system", IEEE Trans. Aerospace and Electronic Systems, 

vol. AES-9, no.5 , pp. 741-752, September 1973. 

[4] R.A. Nash, Jr. and S.K. Jordan, "Statistical geodesy- An engineering 

perspective", Proc. IEEE, vol.66, no.5, pp. 532-550, May 1978. 

[5] R.A. Nash,Jr., "Effect of vertical deflections and ocean currents 

on a manoeuvring ship", IEEE Trans. Aerospace and Electronic systems, 

vol. AES-4, no.5, pp. 719-727, September 1968 . 

[6] S.K. Jordan and G.N. Sherman, "Spatial Gauss-Markov models of ocean 

currents", IEEE Trans. Aerspace and Electronic Systems, vol.AES-15, 

no. 6 , pp. 874-880, November 1979 . 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

