| | A MILITARY TECHNICAL COLLEGE
AR-2 h161 -—-—“‘““SAT‘-"-")' CAIRO - EGYPT

A METHOD FOR ESTIMATING THE OXDER
OF CERTAIN CLASS OF SYSTEM.NONLINEARITIES
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ABSTRACT

System nonlinearities are one of the characteristic features of Avionics
systems , Desirable nonlinearities appear currently in automatic flight
control , assemblies , regulated power supplies , power control of transm-
itters , mixers , detectors + ««o etc . Undesirable nonlinearities receivers
transmitters , ... etc v Yield signal distortion » intermodulation,spurious
interference signal of amnoying effects on board of a/c that is normally
crowded with plenty of transceivers using normally crowded spectral band ,
It is , therefore , essential to identify the Avionics system nonlinearities
and’ supply " good ! models for flight control Airborme system designers .

Ideﬂ%ification of system nonlinearities involves practically two steps ;
estimation of the nonlinearity order and determination of the coefficients

of the assumed describing polynomial .
In this work , we give a method for estimating the nonlinearity order for

a class of the above-mentioned nonlinearities o Utility of the method is

proven through several examlpes .
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I- INTRODUCTION

Some classes of nollinear systems are assumed to work according to
certain models , like Wiener , Volterra , bilinear or the memoryless one
[6}]. With an order taken as the highest order of the incorporated non-
linearity, During operation of the system , it appears to work at lower
order than its real one . As the apparent order depends on the input
power level , then for determination of the system .order, we must take
into account the corresponding operating conditions .

Bad estimation of the system order leads to certain problems in system
identification . If the estimated order is higher than the real one , it
leads to complication of the model structure besides the un-necessary
calculations of unimportant parameters . This is frequently encountered
in practice , specially for complicated systems having Wiener or Volterra
models . On the other hand , if the estimated order is lower than the
real one , it leads to over-simplification of the model structure , and
it will yield great errors in estimation of the system parameters [3,9].

We introduce a method for estimating the order of nonlinear system
under test using the relative change of power gain ratio . We measure
the relative change of output and input power , the estimated system
order equals the ratio between these two relative changes.

In section II , the previous methods for estimating the system order
are mentioned , In section III , analysis of the proposed method is given
for memoyless system characterized by a power series of finite order N .
Using different input signals ; D€ , sinusoidal,and bandlimited noise ,
Chosen signal parameters ; e.g. the DC level , amplitude of the first
harmonic , ..etc , is measured and used to find N . In section IV the
method is described for the bilinear , Wiener,and Volterra models,

In section V examples are given through computer simulation showing the

potential of the method .
11~ METHODS FOR ESTIMATING THE NONLINEARITY ORDER

There are different methods for estimating the nonlinearity order
utilizing some special characteristics of nonlinear systems . The most
used characteristics are the harmonic generation or the intermodulation
distortion,and the broading or whiting effect of the nonliear system for
bandlimited input signal , We mention here some known methods for estim-

ating the system order .
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1 - Harmonic excitation [1]

If a nonlinear system of order N is excited by a sinusoidal signal of
frequency £ , the response will be composed of the corresponding harmonics
up to the N-th one as shown in Fig.(1l). Thus the system order can be found
through spectrum analyzer-measurements, In case of bandlimited systems ,
the higher harmonics may not be detected at the output, This occurs,fer
example, in systems belonging to simplified Wiener classes [6 ]and the
method fails, To overcome the problem of out-of-band components the folli-

ing method is used .
2 - Two-tone method (2]

In this case, the system is excited by two near tones of frequencies f,
and f,. A system of order N , will have a response composed of all poss-
ible frequencies : (:n,f,: n f,),such that |n‘]+ |n2] =N (ni,nzara integers)
As an example,system of order 3 , will have frequencyssombinations at the
output as shown in Fig.(2) .

The order estimation can be done by measuring these possible frequency
combinations by a spectrum analyzer of high resolution to distinguish
between different intermodulation components , speéially for systems of
high order .

3 - Bandlimited noise excitation [3]

The broading effect of the nonlinear system is used to estimate its
order., Measurement of the relative increase of the output bandwidth com-
pared to that of bandlimited noise input gives an estimate of the system

order, (see Fig.(3)).
In some cases,the output spectrum is recorded, and the effective band-

width B. is evaluated as :

B, =\ [ psm df [fo , §0) is he psd (1)
This measure idicates the system order , for example, a third order sys-
tem ( y = 13 ) , its effective bandwidth of the output spectrum is higher

than the input one by a ratio 1.34 .
4 - Noise-Power-Ratio (NPR) (4]

The noise-loading-method is well known for FDM system characterization.
Shown in Fig.(4) , the output power-spectrum-density(psd) measured at a
frequency f for two cases of input signal:first for a continuous band-
limited input spectrum at the frequency fo;then with a removed band of
the input around the same frequency fo. Ratio between these two psd in dB
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is known as the noise-power-ratio NPR given by :

NPR(fo) = 10 Sog [Output psd at f for notched input band at fo

(2)
The NPR varies with input power level G %as shown in Fige(5) « The

relative change of NPR w.r.t. G'Zhas a maximum value related to the sys-—

output psd at fD for continuous input spectrum ]

tem order N by :
ANPR/(a6in dB) = N-A1 (3)

This relatien has been found by computer simulation in the auther prev-
ious study le ],(see Fig.(6)). This method,despite usefulness for system
with weak nonlinearity,fails for pure and strong nonlinearities,as the
relative change is always zero , This motivates the research for a measure
of the system order using the ratio of the relative changes in input and
output as reported in this paper. We present a simple method that can be

applied to a wider class of nonlinear systems ,

III - ORDER ESTIMATION FOR MEMORYLESS NONLINEAR SYSTEM

Memoryless nonlinear system may be characterized (around a chosen ope-

rating point) by a power series of finite order N in the form :
N
”
= a X

To find N , the system response to D.C , sinusoidal and bandlimited Gau=-

ssian signals is tsed as will be seen in the folling :

1 - Using D.C signal excitation

Although the system is of order N,for small values of input signal x
it appears to exhibit lower order than N , The range of these values of
x" considered to be small depends on the magnitude of nonlinear coeff-
icients {an}. If ,for a certain range of input signal ,the nonlinear term
unxn is the dominant term , and the other terms is relatively small wr$.
it ,the corresponding system order will appear to be n, it means we ass-

ume that :

g o= a,x" (5

The change of the output to the input is the derivative of y w,r.t. x,

\ n-1

M ~ na_ X (6)

n

the relative change is

,3\/5‘ ~ n/x (7"
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then S
° M/y/x) =« N (8)

In the measurement, the small change is denoted by Ax anday , let z
be the ratio between relative change of output(ty/y) to relative change
of input (8x/x), then from eq.(8) we have :

2 = (894) fax/x) = n (9

If in a certain range of input , there are more than one nonlinear
dominant terms of apnroximately the same magnitude , we may assume for

this range that :

¢

N x> amxm+apx , €o>m (10)
let aé’ = X am (11)
then ¥y ~ a, (xm+o< xe ) (12)

3 m-1 é-1
and 3 = &, (m x™"; 2 x ) (13)
then , ratio of relative changes z will be :
l-m Copm

2 ¥ (maxl x 7)/(1+xx ) (14)
and

2 o~ m + (€-m)/(1+ 1/ xp"") (15)

If the two terms of the same magnitude ,i.e. for :

bm 1

.
o< X ~ or X = (1/0()"”" (16)

th
" 2 x(m +¢)/2 a”)

It is easy to show that the value of z changes from its minimum value m
to its maximum value ¢ as x changes from zero to o0 or as oX changes
from zero to ©© as shown in Fig.(7) and Fig.(8) .

So for system described by eq.(10),its order appears to be m at the
beginging of a range around x given by eq.(16) and ¢ at the end of that

range., It means that :
m < 2 ¢ ¢ (18)

]
Thus it is necessary to measure the retative changes ( i.e. the ratio 2z)
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at the two limits of operating range of the system under test . These
two values of z help us in system identification through the assumption
that the system has the lowest order m and the highest order ¢ , i,e,
the characteristic will Eﬁ limited to :
n
Y(x)y = 2 a, X (19)

n=m

2 = Using sinusoidal signal excitation

Let the input to the system characterized by eq.(4) , to be :

x(t) = Acos (wt) (20)
the nEE power of x(t) will be :
n n ‘wt —j."’{ n
x (t) = (_’s.) ( ej + e )
n '(l’l-Zi)wi
_ 4y ny o
=4y (D) e (21)

The first harmonic component of that term is found for n-zt=2%1,
it is taken only from odd values of n,then from eq.(21), the total ampl-
itude of first harmonic component B1 at the output of the nonlinear sys-

tem will be :

o n
Bi = n>_=:4,3,._dn an_ A , n..odd (22)
w here dn - n!/(%__,)! (%u)' Zn-i (23)

Eqe.(22) is a power series of odd terms,then we can apply the same method

for evaluation the ratio z of the two relative changes , but the measured
parameter here is the amplitude of the first harmonic instead of the total
output value for the d.c input case. If we suppose that the dominant term

of eq.(22) is the an order one, then let :

n
B, = d, a4, A (24)

then
(AB,/BJ:: n(snA/A) (25)

and

2 ~ n (26)
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The even order terms do not contribute to the first harmonic,so for
an even order system the value of z will indicate a lower order by 1 .
To check the exact order we have to measure the amplitude of the second
ﬂarmcn;c component or the d.c component if it is possible,i.e. for z2,=n,
(n1 odd) , then for the second harmonic B, :

22 = (ABZ /Bz)/(ﬁﬁ/ﬂ) =z N4 1 27
and for the d.c component B, :

2, = (8B, /B,) /(bAIR) =~ Ny+1 (28)

If both the d.c and the second harmonic components are not possible to

be measured , we propose to multiply the input by %the output scaled by

factors X, X, as shown in Fig.(9) , the output 31_w111 be :
-
(ot X ) (o 5oz K™
ﬂ“ = (&4 X 2Y) = %40(2”1&“)( (29)

For this system , the amplitude of first harmonic component C1 will be:

N n+4
Ci = 0(40(2 Z, dn+4 8n H » n-- evén (30)
n.:QJl,,.
and for this case the value of z will be :
2, = (oG4 /¢.)/(bA/A) =~ n+2 (31)

For example, a 435 order system, will have zl=3, z°£z2= 4 , and zc1=5

and for a third order system ; zl=3, Z =2, 2 , and Z,= -

3 - Using bandlimited Gaussian signal excitation

For many reasons it is better for some systems to be excited by a band-
limited Gaussian process, Let x(t) be Gaussian with variance a'ithe output

y of a system characterized by eq.(4#) will be expressed as [5] ’

N

. = 53 )glc "{,((X/S‘) (32)

where }Jk(X) is the Hermite polynomial of order k , éi is related to
the coefficient {an}'by :

L k+2m pon
z@k = 2O (kezm)! yom® /k!m! 2 (33)

M=o
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where
L = integer ( N;’e) (34)

The output power spectral density is related to input one by [6] :

N 2 *k
SH=L2 £ k!'¥ (f/F) (35)

F k=0 A
» ke
where F is the cut-off frequency of the input spectrum,and J (M)is the
k -fold convolution of the normalized input power spectral density at

normalized frequency M= ( £/F ) .
If the system appears to have an order n for certain input power s'i

then the dominant term will be the n-!;--}1 one ,S0 we may assume :

2 ‘n
S = L & nt ¥ ) (36)

at the same input power,the term ﬂh will also have a dominant term of

order n, this is obtained for m=0 in eq.(33),so

xn
S, = 4 ni 2, 62" §(#/r) (57)

The relative changes of output psd and input one,gives the measure =z

as follows :

e = [aS0/s0]/(86/6?) ~ N (38)

Measurement using dB instrument

From the previous,the measure z can be generalized to be defined as the
ratio between the relative change of output power to the relative change
of input power, This is true in all cases of different excitation signals

d.cysinusoidal and random one .
The order estimated depends on our assumption that the system relates

the measured output parameter U/ to the input parameter . around

certain operating point as follows :

n
v o> AU (39)

taking log of both sides of eq.(39) for two different values of input

parameter around the operating point , we have :

jo:; by = /ty /Q 3+ I ,/05 W, (40)
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and
1%3 v, = -éag R +n bog U, (41)
then
n = &_q(ifi/(&)/gqg(uz/uﬂ (42)

Eq.(42) gives us the possibilty to use the dB scale of the measuring
intrument., It gives us directly the order N as ,for example , the corr-
esponding change of output parameter in dB due to a change of input

by one dB (see examples 3 and 4 ) .
IV - ORDER ESTIMATION FOR NONLINEAR SYSTEMS WITH MEMORY

Let us consider the bilinear model shown in Fig.(10) where the system
is represented by a memoryless nonlinearity preceded and followed by
linear filters H(f) and K(f) respectively . The output power spectrum
(psd) is given , analogous to Sy(f) in eq.(35),by :

N
& 9 +n
S, = Lkl 2o ntoe, 7 (fr) (43)
n=o F
The n-fold convolution is done for the filtered noise by H(f).Making
the same reasoning following eq.(35),we can apply the same method for

estimating the system order .
Now, let us consider the nonlinear systems modelled by the Volterra and

Wiener models [?] .The output signal y(t) is given by :

N
vt = ré Gy Lkn; x(t)] (44)

where the functional Gn(.,.) is given by :

G, Lk sxto] = [t ky(7,,0,,..,T,) X(4-7).cxt6-T,) I, . 4T,
T (45)

and K,(%,..,7,) is the model kernel that depends exclusively upon the
system parameters and not upon x(t) . Evidently any scaling factor G~

for x(t) ylelds & in G_[ k,;xit)] ,i.e.
n
Golknyext) = & G, ka, xt)] (46)

2
G is interpreted as the input power if x(t) is a unit power signal and

y(t) may be written as :
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N

N n
¥(t) = 2 Glkyex(b) = 3 & G, [ky;xit)] (47)
n=d

nzh

As expression (47) is a power series of the parameter 6 ,we can apply
the same method using the corresponding measure z for estimating the
system nonlinearity order .

Separability of different output components Gn is insured by choosing
x(t) to be white Gaussian process , as usually done for the system iden-
tification [ 7]

V - EXAMPLES

We apply the described approach for 4 examples in the following :
Ex, 1

T 3

2
For the polynomial y= X + 0.1 X~ + 0.0l Xx
the measure z is evaluated for both D.,C and sinusoidal excitation and

plotted in Fig.(11) and Fig.(12) for both cases respectively .
Ex, 2

tively (see Fig.(13)). The measure z is plotted in Pig.(14) for the case
of sinusoidal excitation.

Ex, 3

A "Linear " amplifier with gain 10 is excited by bandlimited noise with
power Sjénd.the output spectrum (psd) is measured, The measure z is dis-
played in Fig.(15) .

Ex. 4

A squarer y = o.l x2 is excited by a bandlimited noise as in Ex.3,and
the output psd is measured ., Display of the psd and z is given in Fig.(16).

Comments on results and conclusions

Examination of Pig.(1l1l) to Fig.(16) shows that z, which should approximate
the integral order N , varies in quasicontinuous manner . This reflects
certain sensitivity aspects to the accuracy of the measuring device .

Sensitivity analysis , noise effects and specific measurement mechaniz-
ation are considered for future extension of the work .

As to limitations relevant to different excitation signals , the separ-
ability of the system nonlinearity is of decisive importance ., If the non-
linearity is separable , it is possible =—at least in principle - to apply

any excitation signal , otherwise suitable excitation is to be utilized .



SECOND A.S.A.T. CONFERENCE
AR«ZF}71 21-23 April 1987 ,CAIRO

Finally , it is noteworthy to mention that we gave a method allowing
quick determination of the system order but not the identification of the
individual coefficients . Identification of these coefficients (see eg.
[6,9)) is a different problem that is not aimed at this work .
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