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A METHOD FOR ESTIMATING THE ORDER 
OF CERTAIN CLASS OF SYSTEM.NONLINEARITIES 

A M . HAMAD 

ABSTRACT 

System nonlinearities are one of the characteristic features of Avionics 

systems . Desirable nonlinearities appear currently in automatic flight 

control , assemblies , regulated power supplies , power control of transm-
itters , mixers , detectors , ... etc . Undesirable nonlinearities receivers 

transmitters , ... etc , yield signal distortion , intermodulation,spurious 

interference signal of annoying effects on board of a/c that is normally 

crowded with plenty of transceivers using normally crowded spectral band 

It is , therefore , essential to identify the Avionics system nonlinearities 

and supply good models for flight control Airborne system designers . 

Identification of system nonlinearities involves practically two steps ; 

estimation of the nonlinearity order and determination of the coefficients 

of the assumed describing polynomial . 

In this work , we give a method for estimating the nonlinearity order for 

a class of the above-mentioned nonlinearities . Utility of the method is 

proven through several examlpes . 

•■••■••■•••••■•••••• 

Dr. A.M.HANAD , chair of AVIONICS ,Military Technical Colleise (MTC.) 
Cairo, Egypt . 
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I- INTRODUCTION 

Some classes of nollinear systems are assumed to work according to 

certain models , like Wiener , Volterra , bilinear or the memoryless one 

[6,1]. With an order taken as the highest order of the incorporated non-

linearity. During operation of the system , it appears to work at lower 

order than its real one . As the apparent order depends on the input 

power level , then for determination of the system order, we must take 

into account the corresponding operating conditions . 

Bad estimation of the system order leads to certain problems in system 

identification . If the estimated order is higher than the real one , it 

leads to complication of the model structure besides the un-necessary 

calculations of unimportant parameters 	This is frequently encountered 

in practice , specially for complicated systems having Wiener or Volterra 

models . On the other hand , if the estimated order is lower than the 

real one , it leads to over-simplification of the model structure , and 

it will yield great errors in estimation of the system parameters [8,9]. 

We introduce a method for estimating the order of nonlinear system 

under test using the relative change of power gain ratio . We measure 

the relative change of output and input power , the estimated system 

order equals the ratio between these two relative changes. 

In section II , the previous methods for estimating the system order 

are mentioned , In section III , analysis of the proposed method is given 

for memoyless system characterized by a power series of finite order N . 

Using different input signals ; De , sinusoidal,and bandlimited noise , 

Chosen signal parameters ; e.g. the DC level , amplitude of the first 

harmonic , ..etc , is measured and used to find N . In section IV the 

method is described for the bilinear , Wiener,and Volterra models. 

In section V examples are given through computer simulation showing the 

potential of the method . 

II- METHODS FOR ESTIMATING THE NONLINEARITY ORDER 

There are different methods for estimating the nonlinearity order 

utilizing some special characteristics of nonlinear systems . The most 

used characteristics are the harmonic generation or the intermodulation 

distortion,and the broading or whiting effect of the nonliear system for 

bandlimited input signal . We mention here some known methods for estim-

ating the system order . 
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1 - Harmonic excitation_111 

If a nonlinear system of order N is excited by a sinusoidal signal of 

frequency f , the response will be composed of the corresponding harmonics 

up to the N-th one as shown in Fig.(1). Thus the system order can be found 

through spectrum analyzer-measurements. In case of bandlimited systems , 

the higher harmonics may not be detected at the output. This occurs,for 

example, in systems belonging to simplified Wiener classes (6 land the 

method fails. To overcome the problem of out-of-band components the foil-

ing method is used . 

2 - Two-tone method [21 

In this case, the system is excited by two near tones of frequencies 11  

and f2. A system of order N 	will have a response composed of all poss- 

ible frequencies : (±n,f,± nt fd,such that Intl+ laj = N (non2 are integers) 

As an example,system of order 3 , will have frequencyseombinations at the 
output as shown in Fig.(2) . 

The order estimation can be done by measuring these possible frequency 

combinations by a spectrum analyzer of high resolution to distinguish 

between different intermodulation components , specially for systems of 

high order 

3 - Bandlimited noise excitation [31 
The broading effect of the nonlinear system is used to estimate its 

order. Measurement of the relative increase of the output bandwidth com-

pared to that of bandlimited noise input gives an estimate of the system 

order, (see Fig.(3)). 

In some cases,the output spectrum is recorded, and the effective band-

width B
e 

is evaluated as : 

Be  = 1cf 2 5(1) df .  SY (r) is 11'e psd (1) 

This measure idicates the system order , for example, a third order sys-

tem ( y = x3 ) , its effective bandwidth of the output spectrum is higher 

than the input one by a ratio 1.34 • 

4 - Noise-Power-Ratio (NPR) PI) 

The noise-loading-method is well known for FDM system characterization. 

Shown in Fig.(4) , the output power-spectrum-density(psd) measured at a 

frequency fo  for two cases of input signal:first for a continuous band-

limited input spectrum at the frequency fo;then with a removed band of 

the input around the same frequency fo. Ratio between these two psd in dB 
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is known as the noise-power-ratio NPR given by : 

NPR fo)= 10 log 
output psd at fo for continuous input spectrum 

output psd at fo  for notched input band at fo  

(2)  
The NPR varies with input power level G'2as shown in Fig.(5) . The 

relative change of NPR w.r.t. G2  hasa maximum value related to the sys-

tem order N by : 

_ AMARALEr 2 n. dB) = A/-1 

This relation has been found by computer simulation in the auther prev-

ious study [6 1,(see Fig.(6)). This method,despite usefulness for system 

with weak nonlinearity,fails for pure and strong nonlinearities,as the 

relative change is always zero . This motivates the research for a measure 

of the system order using the ratio of the relative changes in input and 

output as reported in this paper. We present a simple method that can be 

applied to a wider class of nonlinear systems 

III - ORDER ESTIMATION FOR MEMORYLESS NONLINEAR SYSTEM 

Memoryless nonlinear system may be characterized (around a chosen ope-

rating point) by a power series of finite order N in the form : 

0 
_9(X) = 	a n  X 	 (4) 

To find N , the system response to D.0 , sinusoidal and bandlimited Gau-

ssian signals is used as will be seen in the foiling : 

1 - Using D.0 signal excitation -_--  

Although the system is of order N,for small values of input signal x 

it appears to exhibit lower order than N The range of these values of 
n considered to be small depends on the magnitude of nonlinear coeff-

icients {ant. If ,for a certain range of input signal,the nonlinear term 

anx
n is the dominant term , and the other terms is relatively small wrt. 

it,the corresponding system order will appear to be n, it means we ass-

ume that : 

= a n  x ̀l 
	

(5) 

The change of the output to the input is the derivative of y w.r.t.x, 

O. a, x r7-1. 	
(6) 

the relative change is 

/x 	 (7) 

(3)  
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then 	
./(9/x) = n. 	 (8) 

In the measurement, the small change is denoted by Ax and Ay , let z 

be the ratio between relative change of output(Ly/y) to relative change 

of input (hx/x), then from eq.(8) we have : 

2  = 69M AAx/x ) = rt 	(9) 

If in a certain range of input , there are more than one nonlinear 

dominant terms of .--roximately the same magnitude , we may assume for 

this range that : 

let 

then 

and 

— a x +a x
e 

) prt 
rrt 

ae  =a am 

= cZm  (X 	x
e 

) 

a 	rn. x '11 
-1

4.QOC x 
e- 4 

) 

then , ratio of relative changes z will be : 

m. 	x 'P-/")/(1+0( X e-i" ) 

and 

a 	m_ + (e_fio/(1+ 1/c< 17 „̀  ) 

If the two terms of the same magnitude ,i.e. for : 

tm 
o< x 	— I 	or 	x c (1  /D() e--"%-  

then 	
2 = (rn- + e)/2 

It is easy to show that the value of z changes from its minimum value m 

to its maximum value e as x changes from zero to 00  or as o< changes 
from zero to 00 as shown in Fig.(7) and Fig.(8) 

So for system described by eq.(10),its order appears to be m at the 

beginning of a range around x given by eq.(16) and e at the end of that 
range. It means that : 

trL < 2 
	e 	 (18) 

(14)  

(15)  

(16)  

(17)  

Thus it is necessary to measure the relative changes ( i.e. the ratio z) 
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at the two limits of operating range of the system under test . These 

two values of z help us in system identification through the assumption 

that the system has the lowest order m and the highest order e , i.e. 
the characteristic will be limited to : 

A (x) = 21 an x 	 ( 19) 
n= M. 

2 - Using sinusoidal signal excitation 

Let the input to the system characterized by eq.(4) , to be : 

x(t) 	= /I cos (wt) 

nth  the n-- power of x(t) will be : 

	

n / iwt 	4"4 )" 
X (t) 	= (r.1) ( e 	e 	) 

	

A 	(n) e j(n-zi)wi 

	

2 	o t  

The first harmonic component of that term is found for n.-2i= t i , 
it is taken only from odd values of n,then from eq.(21), the total ampl-

itude of first harmonic component B1  at the output of the nonlinear sys-

tem will be : 
N 

B 1  = 	d an  A 	n odd 

	

n = 
	 (22) 

where 	

do 
	tt-4)! (n;.1.4) 1  2.n-1 

	
(23) 

gq.(22) is a power series of odd terms,then we can apply the same method 
for evaluation the ratio z of the two relative changes , but the measured 

parameter here is the amplitude of the first harmonic instead of the total 

output value for the d.c input case. If we suppose that the dominant term 
t 

of eq.(22) is the n--
h  
 order one, then let : 

Bd a An 
— n o 

then 

(b.131 /B,) 	n_ (EA/A) 

and 
rt 	 (26) 

(20)  

(21)  

(24)  

(25)  
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The even order terms do not contribute to the first harmonic,so for 

an even order system the value of z will indicate a lower order by 1 . 

To check the exact order we have to measure the amplitude of the second 

harmonic component or the d.c component if it is possible,i.e. for z11 
(nl  odd), then for the second harmonic B2  

z = 	/ 8 ) / P 
	

rt 
	(27) 

and for the d.c component B.: 

20  = (6B./E0 /(AA/A) = 114 +1 	(28) 

If both the d.c and the second harmonic components are not possible to 

be measured , we propose to multiply the input by the output scaled by 

factors o(, o'2  as shown in Fig.(9) , the output
i 
 will be : 

= (°(4 X )( 0<2 	0c4  0(2  E an  x 
ncl 

For this system , the amplitude of first harmonic component C1  will be: 

N 	n+Y 
- C1  , 	c< a E 0(n.+4 an  A 	n.- even 	(30) - 4  n.2,4, . 

and for this case the value of z will be : 

2ci = (ACA /C4 )/(A A/A) i + 	 (31) 

For example, a 4th  order system, will have z1=3, zo=z2= 4 , and zol=5 

and for a third order system ; z1=3, zo=z2= 2 , and zol= 3 6, 

3 — Using bandlimited Gaussian signal excitation 

For many reasons it is better for some systems to be excited by a band-

limited Gaussian process. Let x(t) be Gaussian with variance cs-  the output 

y of a system characterized by eq.(4) will be expressed as [5 ] 

L 	H (x/6-) 	(32) 
/qv° 

where Hk(x) is the Hermite polynomial of order k 	is related to 

the coefficient fan/ by : 

= : 	 a‘ (z_f2m)/ 
• K.2m 

k.2m 
6 	

,
-* 	2 (33) 

m.0 

(29) 
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where 

	

L = inie3e r 	1,c- k  ) 	 (34) 

The output power spectral density is related to input one by [6] : 

	

) = 	l2 k! 	(f/F) 

	

Aro k 
	 (35) 

*k 
where F is the cut—off frequency of the input spectrum,and '(N)is the 

k —fold convolution of the normalized input power spectral density at 
normalized frequency h4  = ( f/F ) . 

If the system appears to have an order n for certain input power 6'2; 

then the dominant term will be the nth  one ,so we may assume : 

	

S (r) •ze 	 6 (fIr) 
F 

	2 	
(36) 

at the same input power,the term en  will also have a dominant term of 

order n, this is obtained for m=0 in eq.(33),so 

n 

	

2 	n 

	

,Sj̀(f)::: 	n! 	6 " 	6 (f/r) 	 (37) 

The relative changes of output psd and input one,gives the measure z 

as follows : 

2 	(n/S3(F)) / (66'2/6-z  ) = n 	(38) 

Measurement using dB instrument 

From the previous,the measure z can be generalized to be defined as the 

ratio between the relative change of output power to the relative change 

of input power. This is true in all cases of different excitation signals 

d.c,sinusoidal and random one . 

The order estimated depends on our assumption that the system relates 

the measured output parameter V to the input parameter U. around 

certain operating point as follows : 
rL 

p bc 	 (39) 

taking log of both sides of eq.(39) for two different values of input 

parameter around the operating point , we have : 

( 40 ) 
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and 
Jog 1/2  = .61 /3 4 rt. 43 1,42. 	(41) 

then 

( / 	/ eos  ( i 2/ u ) 	 (42) 

Eq.(42) gives us the possibilty to use the dB scale of the measuring 

intrument. It gives us directly the order N as ,for example , the corr-

esponding change of output parameter in dB due to a change of input 

by one dB (see examples 3 and 4 ) . 

IV - ORDER ESTIMATION FOR NONLINEAR SYSTEMS WITH MEMORY 

Let us consider the bilinear model shown in Fig.(10) where the system 

is represented by a memoryless nonlinearity preceded and followed by 

linear filters H(f) and K(f) respectively The output power spectrum 

(psd) is given , analogous to S (f) in eq.(35),by : 

2 W  2 
S3  (r) 	= I k(01 	n! 	r(f/F) 	 (43) 

nea 

The n-fold convolution is done for the filtered noise by H(f).Making 

the same reasoning following eq.(35),we can apply the same method for 

estimating the system order . 

Now, let us consider the nonlinear systems modelled by the Volterra and 

Wiener models [71 .The output signal y(t) is given by : 

(t) 	G, [ 	)1 	(44) n..4 

where the functional Gn(.,.) is given by : 

Gn [kn3 A(n] =1..1 k,(T 	dr," 

(45) 
and kn(t,-27;,) is the model kernel that depends exclusively upon the 

system parameters and not upon x(t) . Evidently any scaling factor 6 

tot x(t) yields 5'n  in Gni k,)  AM] ,i.e. 

	

G,,[kno— x(t)) = T r' G,[ fr„ x(t)] 
	

(46) 

2 
cr is interpreted as the input power if x(t) is a unit power signal and 
y(t) may be written as : 
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N 	N r 

3 	= 2 G„[14,; 6x (t)] = L_ 	G,[kmo(i)] 
nr1 

(47) 

As expression (47) is a power series of the parameter 6',we can apply 

the same method using the corresponding measure z for estimating the 

system nonlinearity order . 

Separability of different output components Gn  is insured by choosing 

x(t) to be white Gaussian process , as usually done for the system iden-

tification 

V - EXAMPLES 

We apply the described approach for 4 examples in the following : 

Ex. 1 

For the polynomial y= x + o.1 x2  + o.ol x
3 

the measure z is evaluated for both D.0 and sinusoidal excitation and 

plotted in Fig.(11) and Fig.(12) for both cases respectively . 

Ex. 2 

A TWT with amplitude and phase nonlinearities A(r) and P (r) respec-

tively (see Fig.(13)). The measure z is plotted in Fig.(14) for the case 

of sinusoidal excitation. 

Ex. 3 

A "Linear " amplifier with gain 10 is excited by bandlimited noise with 

power Cr aand the output spectrum (psd) is measured. The measure z is dis-

played in Fig.(15) 

Ex. 4 

A squarer y = o.1 x
2 is excited by a bandlimited noise as in Ex.3,and 

the output psd is measured . Display of the psd and z is given in Fig.(16). 

Comments on results and conclusions 

Examination of Fig.(11) to Fig.(16) shows that z, which should approximate 

the integral order N , varies in quasicontinuous manner . This reflects 

certain sensitivity aspects to the accuracy of the measuring device . 

Sensitivity analysis , noise effects and specific measurement mechaniz-

ation are considered for future extension of the work 

As to limitations relevant to different excitation signals , the separ-

ability of the system nonlinearity is of decisive importance . If the non-

linearity is separable , it is possible -at least in principle - to apply 

any excitation signal , otherwise suitable excitation is to be utilized . 
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Finally , it is noteworthy to mention that we gave a method allowing 

quick determination of the system order but not the identification of the 

individual coefficients . Identification of these coefficients (see eg. 

[6,9)) is a different problem that is not aimed at this work . 
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Fig.(13) a TWT characteristics 

Fig.(14) The measure Z for the above TWT characteristics 
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