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  Abstract- This paper aims to treat the analytical solution of the truncated inter-arrival 

hyper-exponential machine interference queue : 𝐻𝑟/𝑀/2/𝑘/𝑁 in case of 𝑟 branches 

with two heterogeneous repairmen . Our research treats the general case for the value of 

𝑟, 𝑘 and 𝑁 considering the discipline FIFO with a more general condition . In the end we 

study some special cases. 
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1- Introduction : 

 The truncated inter-arrival hyper-exponential machine interference queue: 𝐻𝑟/𝑀/𝑐/𝑘/𝑁 

with balking and reneging treated by Shawky [ 9 ], George et al. [ 3 ] considered multi-

server system of the type 𝐺𝐼/𝑀/𝑟  where the coefficient of variation of inter-arrival times 

is greater than 1, and derived two simple approximations for the steady state average 

queueing time. Gupta [ 5 ] treated numerically the inter-arrival hyper-exponential queue: 

𝐻𝑟 /𝑀/1/𝑚 with state dependent arrival and service rates, and Abou-AlAta  [1] treated 

the analytical solution of the truncated inter-arrival hyper-exponential machine 

interference queue : 𝐻2/𝑀/𝑐/𝑚/𝑚 with both balking and reneging in case homogeneous 

servers. The present paper treats the analytical solution of the truncated inter- arrival 

hyper-exponential  machine interference queue:  𝐻𝑟 /𝑀/2/𝑘/𝑁 with two heterogeneous 

repairmen using a recurrence relation. Also some special cases are obtained.  

 

2 - Model Description:  

As in Goyal [4 ] , the arrival channel consists of 𝑟 independent branches. A machine arriving for 

service joins the 𝑖𝑡𝑕   branch with a fraction 𝜍𝑖  of the time on the average, so that  𝜍𝑖
𝑟
𝑖=1 = 1. 

Only one machine can occupy any one of the branches at a time and if a machine is present in 

any one of the branches, the arrival channel is busy and no other machine can enter any other 

branch. The machine in the 𝑖𝑡𝑕branch joins the system ( queue or service) with rate 𝜆𝑖  per unit 

time. Finite source ( population) of 𝑁 machines, finite space with capacity 𝑘 machines (𝑘 < 𝑁), 

and  two heterogeneous servers( repairmen) are assumed. The service times are identical 

exponential random variables with rates𝜇1 , and  𝜇2  𝜇1 > 𝜇2 .  

An arriving machine may find :  

  (i) All repairmen engage, then it waits in a line in order of arrival, the machine at the 

top of the queue occupied the repairman that falls vacant first.  

  (ii) Only one of the repairmen free , so it occupies the free repairman. 
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  (iii) All repairmen free, thus it chooses repairman I with probability 𝜋1 , repairman II 

with probability 𝜋2, such that, 𝜋1 + 𝜋2 = 1. The classical queue discipline assumes that 

𝜋1 = 𝜋2 =
1

2
. Saaty [ 12 ] took 𝜋1 to be 𝜇1(𝜇1 + 𝜇2)−1 and  𝜋2 to be 𝜇2(𝜇1 + 𝜇2)−1. 

Gumble [ 6 ] has studied the many server ( heterogeneous) queue but under the classical 

queue discipline and Krishnamoorthi [ 8 ] has studied Poisson- queue with two 

heterogeneous servers with different queue disciplines. 
 

3-The Steady- State equations and their solution  

 
               Define the equilibrium probabilities: 

 𝑝0,0,𝑠= prob.  there  is no machine in the system and  𝑠𝑡𝑕    arrival branch 

occupied the next arriving  machine , 

 𝑝1,0,𝑠= prob.  there  is one machine in repairman 𝐼and 𝑠𝑡𝑕  arrival branch 

occupied the next arriving  machine ,  

𝑝0,1,𝑠= prob.  there  is one machine in repairman 𝐼𝐼and 𝑠𝑡𝑕  arrival branch  

occupied the next arriving  machine , 

𝑝𝑛,𝑠= prob.  there  are 𝑛  machines in the system and 𝑠𝑡𝑕  arrival branch occupied 

the next arriving  machine  , 𝑛=2.,3,..k;  s =1,2,… 𝑟 . 

Also, 𝑝0,𝑠 = 𝑝0,0,𝑠    ,   𝑝1,𝑠 = 𝑝1,0,𝑠 + 𝑝0,1,𝑠 and  𝑝2,𝑠 = 𝑝1,1,𝑠 .  

Consequently, the steady-state probability difference equations are:  

  𝑁 𝜆𝑖𝑝0,0,𝑖 = 𝜇1𝑝1,0,𝑖 + μ2𝑝0,1,𝑖                                                                                                             (1)                                                                                                                            

{ (𝑁 − 1)𝜆𝑖 + μ1 𝑝1,0,𝑖 = σ𝑖𝜋1  𝑁 𝜆𝑠𝑝0,𝑠
𝑟
𝑠=1 + μ2𝑝1,1,𝑖    , 𝑖 = 1 1 𝑟                                     (2) 

 {(𝑁 − 1)𝜆𝑖 + μ2 𝑝0,1,𝑖 = σ𝑖𝜋2  𝑁 𝜆𝑠𝑝0,𝑠
𝑟
𝑠=1 + μ1𝑝1,1,𝑖    , 𝑖 = 2 1 𝑟                                           (3) 

                             {(𝑁 − 𝑛)𝜆𝑖 + μ 𝑝𝑛,,𝑖 =  𝑁 − 𝑛 + 1 σi  𝜆𝑠𝑝𝑛−1,𝑠
𝑟
𝑠=1 + μ 𝑝𝑛+1,i,𝑛 = 2,3, . . , 𝑘 − 1                     (4) 

 {(𝑁 − 𝑘)𝜆𝑖 + μ 𝑝𝑘,i =  𝑁 − 𝑘 + 1 σ𝑖  𝜆𝑠𝑝𝑘−1,𝑠
𝑟
𝑠=1 +  𝑁 − 𝑘 σ𝑖  𝜆𝑠𝑝𝑘,𝑠

𝑟
𝑠=1                           (5)                    

where : 𝜇 = 𝜇1 + 𝜇2 . 

Summing up equations (1) –(5)over i, and adding the results obtained for 𝑛 = 1,2, …𝑘 − 1 , we 

get 

  𝑝
𝑛+1,𝑠

𝑟
𝑠=1 =  𝑁 − 𝑛 + 1  𝜌𝑠  𝑝𝑛,𝑠 

𝑟
𝑠=1 , 𝑛 = 1,2, … , 𝑘 − 1                                   (6)                                        

where  𝜌𝑠 =
𝜆𝑠

𝜇
 .         

From (5) and (6) for 𝑛 = 𝑘 − 1 , we have 

 [ 𝑁 − 𝑘 𝜌𝑖 + 1]𝑝𝑘,𝑖 = 𝜍𝑖  [ 𝑁 − 𝑘 𝜌𝑠 + 1] 𝑝𝑘,𝑠 
𝑟
𝑠=1 ,                                          (7)                                         
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It is easy to verify that the determinate formed by the coefficients of   𝑝𝑘,𝑖 ,𝑖 = 1,2, . . 𝑟 is 

zero and therefore we can solve equation(7) for any 𝑟 − 1 probabilities involved in 

terms of 𝑝𝑘,𝑟  . Leaving out the 𝑟𝑡𝑕  equation, we have the matrix representation of (7) as  

𝑪 𝑹 = −   𝑁 − 𝑘 𝜌𝑟 + 1 𝐆𝑝𝑘,𝑟 , 

 where 𝑪 is the  𝑟 − 1 × (𝑟 − 1) matrix 

𝑪 = [𝑐𝑖𝑗 ] 

 such that  

𝑐𝑖𝑗 = 𝜍𝑖  𝑁 − 𝑘 𝜌𝑗 + 1 , 𝑖 ≠ j 

𝑐𝑖𝑖 =  𝜍𝑖 − 1   𝑁 − 𝑘 𝜌𝑖 + 1 , 

 where  

𝑅𝑇 =  𝑝𝑘,1 ,𝑝𝑘,2 ,…,𝑝𝑘,𝑟−1    , 

                                                  𝐆𝑇 = [𝜍1, 𝜍2 , … , 𝜍𝑟−1]. 

Now, 𝐶−1 is given by 

                                                𝐶−1 = [𝑐𝑖𝑗
∗ ] 

such that  

𝑐𝑖𝑗
∗ =

−𝜍𝑖

𝜍𝑟 [ 𝑁 − 𝑘 𝜌𝑖 + 1]
, 𝑖 ≠ 𝑗, 

                                             𝑐𝑖𝑖
∗ =

−(𝜍𝑖+𝜍𝑟)

𝜍𝑟[ 𝑁−𝑘 𝜌 𝑖+1]
, 

and 

                                           𝑝𝑘,𝑖 =
𝜍𝑖 [ 𝑁−𝑘 𝜌𝑟+1]

𝜍𝑟 [ 𝑁−𝑘 𝜌 𝑖+1]
 𝑝𝑘,𝑟 , 𝑖 = 1,2, … , 𝑟 − 1 .                      (8) 

From (4) and (6) we obtain  

 {(𝑁 − 𝑛)𝜌
𝑖
− 𝜍𝑖 + 1 𝑝𝑛,,𝑖 − σ𝑖  𝑝

𝑛,𝑠
𝑟
𝑠≠𝑖 =  p𝑛+1,𝑖 , 𝑛 = 2,3, … 𝑘 − 1; 𝑖 = 1,2,… , 𝑟            (9) 

which can be written in the matrix form as: 

                                                             𝐴 𝑃 = 𝐵                                                          (10) 

 where  

𝐴 = [𝑎𝑖𝑗 ] 

 such that        

                                                            𝑎𝑖𝑗 = −σ𝑖 , 𝑖 ≠ 𝑗 



4 
 

                                              𝑎𝑖𝑖 =  {(𝑁 − 𝑛)𝜌𝑖 − 𝜍𝑖 + 1 , 

                                              𝑃𝑇 = [𝑝𝑛,1, 𝑝𝑛,2 , … , 𝑝𝑛,𝑟 ], 

 and  

𝐵𝑇 =  𝑝𝑛+1,1 , 𝑝𝑛+1,2, … , 𝑝𝑛+1,𝑟 , 

where T denotes the transpose of a matrix. Now, 𝐴−1 is given by  

                                          𝐴−1 = [𝑎𝑖𝑗
∗ ], 

where  

                                          𝑎𝑖𝑗
∗ =

𝜍𝑖

𝐷𝑛   𝑁−𝑛 𝜌 𝑖+1  [ 𝑁−𝑛 𝜌 𝑗 +1]
, 𝑖 ≠ 𝑗, 

                                                 𝑎𝑖𝑖
∗ =

1

  𝑁−𝑛 𝜌 𝑖+1 
+  

𝜍𝑖

𝐷𝑛   𝑁−𝑛 𝜌 𝑖+1 2, 

and                               𝐷𝑛 = 1 −  
𝜍𝑖

[ 𝑁−𝑛 𝜌 𝑖+1]
, 𝑛 = 2,3, … , 𝑘 − 1𝑟

𝑖=1 . 

Using this value of 𝐴−1 in (10), we get  

                                         𝑝𝑛,𝑖 =  
𝑝𝑛 +1,𝑖

  𝑁−𝑛 𝜌 𝑖+1 
+

𝜍𝑖

𝐷𝑛   𝑁−𝑛 𝜌 𝑖+1 
 

𝑝𝑛 +1,𝑠

 [ 𝑁−𝑛 𝜌𝑠+1]

𝑟
𝑠=1  , 

                                                                          𝑛 = 𝑘 − 1, 𝑘 − 2, … ,2; 𝑖 = 1,2, … , 𝑟 (11) 

From (1)-(3),we have                                                                                                                                                             

                       𝑝1,0,𝑖 = 𝑙𝑖𝜂 + 𝑔𝑖  𝑝1,1,𝑖  ;                    𝑖 = 1 1 𝑟  , 

                                                         𝑝0,1,𝑖 = 𝑒𝑖𝜂 + 𝑓𝑖𝑝1,1,𝑖  ;              𝑖 = 2 1 𝑟 , 

                                                        𝑝0,0,𝑖 =
μ1

𝑁 𝜆𝑖
𝑝1,0,𝑖 +

μ2

𝑁 𝜆𝑖
𝑝0,1,𝑖 ;  𝑖 = 1 1 𝑟, 

          where 

                                                           𝑔𝑖 =
𝜇2

(N−1)𝜆𝑖+μ1
,      𝑙𝑖 =

σ i𝜋1

(N−1)𝜆𝑖+μ1
, 

                                                       𝑓𝑖 =
𝜇1

(N−1)𝜆𝑖+μ2
   ,    𝑒𝑖 =

σ i𝜋2

(N−1)𝜆𝑖+μ2
  , 

          and 

                                                              𝜂 =
 (𝜇1𝑔𝑠+ 𝜇2𝑓𝑠) 𝑝2,𝑠

𝑟
𝑠=1

1− 𝜇1   𝑙𝑠+𝜇2  𝑒𝑠
𝑟
𝑠=1

𝑟
𝑠=1  

 . 

Thus, we have expressed all probabilities for 𝑛 = 0,1,2, … , 𝑘; 𝑖 = 1,2, … , 𝑟 in terms of 

one unknown probability, namely 𝑝𝑘,𝑟 . This unknown probability may now be computed 

by using the normalizing condition:   𝑝𝑛,𝑖 = 1𝑟
𝑖=1

𝑘
𝑛=0 , 

and hence all the probabilities are completely known in terms of the queue parameters. 
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4-The main performance measures characteristic of machine interference problem 

are mentioned: 

1-The expected number of down machines is  

                                                             𝐿 =   𝑛 𝑝𝑛,𝑠
𝑟
𝑠=1

𝑘
𝑛=1  . 

2-Machine efficiency ( the fraction of total production time on all machines) is  

𝑈𝑚 = 1 − 
𝐿

𝑘
. 

3-Average operator utilization  

                                                            𝑈𝑠 =   
𝑛 𝑝𝑛,𝑠

𝑐

𝑟
𝑠=1 +    𝑝𝑛,𝑠

𝑟
𝑠=1

𝑘
𝑛=𝑐+1

𝑘
𝑛=0  

  or 

                                                        𝑈𝑠 = 1 −   (1 − 𝑛

𝑐
 )𝑝𝑛,𝑠.

𝑟
𝑠=1

𝑘
𝑛=0   

     

 5-Numerical Work 

The following example illustrates the method discussed above. 

Example: In the system: 𝐻𝑟  /𝑀/2/𝑘/𝑁 letting 𝑟 =2, 𝑘 =3 and 𝑁 = 4, i.e., the queue ∶

      𝐻2  /𝑀/2/3/4, the results are: 

                                                𝑝3,1 = 𝑎 𝑝3,2 ,           𝑝2,1 = 𝑏1  𝑝3,2 , 𝑝2,2 = 𝑏2 𝑝3,2,     

                                              𝑝0,1,1 = 𝑒1 𝑝3,2,        𝑝0,1,2 = 𝑒2 𝑝3,2, 

                                               𝑝1,0,1 = 𝑑1 𝑝3,2 ,       𝑝1,0,2 = 𝑑2 𝑝3,2  

                                                𝑝0,0,1 = 𝑕1 𝑝3,2 ,     𝑝0,0,2 = 𝑕2 𝑝3,2 , 

                                               𝜂 = 𝛾 𝑝3,2 ,   𝛾 =
 𝜇1𝑔1+𝜇2  𝑓1  𝑏1+ 𝜇1𝑔2+𝜇2 𝑓2   𝑏2

1−{𝜇1 𝑙1+𝑙2   + 𝜇2   𝑙1+𝑙2 }
, 

where  

                                                                𝑔𝑖 =
𝜇2

3𝜆𝑖+μ1
,      𝑙𝑖 =

σ i𝜋1

3𝜆𝑖+μ1
, 𝑖 = 1,2 

                                                                𝑓𝑖 =
𝜇1

3𝜆𝑖+μ2
   ,    𝑒𝑖 =

σ i𝜋2

3𝜆𝑖+μ2
  ; 𝑖 = 1,2, 

                                                 𝑎 =
𝜍1(𝜌2+1)

𝜍2(𝜌1+1)
,   𝑏1 =

1

2𝜌1+1
  𝑎 +  

𝜍1

𝐷2
(

𝑎

2𝜌1+1
+

1

2𝜌2+1
) ,  

                                                𝑏2 =
1

2𝜌2+1
  𝑎 +  

𝜍2

𝐷2
(

𝑎

2𝜌1+1
+

1

2𝜌2+1
) , 
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                                                𝑑1 =  𝑔1𝑏1 + 𝑙1 𝛾 ,    𝑑2 =  𝑔2𝑏2 + 𝑙2 𝛾 , 

                                                𝑐1 = (𝑓1𝑏1 + 𝑒1 𝛾),     𝑐2 =  𝑓2𝑏2 + 𝑒2 𝛾 , 

                                               𝑕1 =
𝜇1𝑑1+𝜇2 𝑒1

4 𝜆1
,            𝑕2 =

𝜇1𝑑2 +𝜇2  𝑐2

4 𝜆2
. 

From the normalizing condition:   𝑝𝑛,𝑖 = 1,2
𝑖=1

3
𝑛=0  we have  

                                      𝑝3,2 =  1 + 𝑎 +  𝑏1 + 𝑏2 + 𝑑1 +  𝑑2 +  𝑐1 + 𝑐2 + 𝑕1 +  𝑕2  −1. 

The expected number of machines in the system  is 

𝐿 =   𝑛 𝑝𝑛,𝑠

2

𝑠=1

3

𝑛=1

 

=  𝑑1 +  𝑑2 + 𝑐1 + 𝑐2 + 2 𝑏1 + 𝑏2  +  3 (𝑎 + 1 )  𝑝3,2, 

Machine efficiency ( the fraction of total production time on all machines) is  

𝑈𝑚 = 1 − 
𝐿

3
. 

Average operator utilization  

                                                            𝑈𝑠 =   
𝑛 𝑝𝑛 ,𝑠

2

2
𝑠=1 +   𝑝3,𝑠

2
𝑠=1

2
𝑛=0  

                                                           𝑈𝑠 = 1 −   𝑕1 +  𝑕1 +  1

2
 (𝑑1 +  𝑑2 + 𝑐1 + 𝑐2 ) 𝑝3,2  . 

6- special Cases   

                   Some queuing systems can be obtained as special cases of this model:  

(i)  If 𝑟 = 1 we get the model : M/M/2/ 𝑘 /N, which was studied by Shawky [10]                     

at  α= 0   and  𝛽 = 1 

(ii) If . 𝑘 = 𝑁 → ∞, 𝑟 =1 ,𝜋1 = 1  , and 𝜋2 = 0 we obtain the queue  M/M/2 which was 

studied by Singh[11]. 

(iii) If  𝑘 = 𝑁 = 𝑚, 𝜇1 = 𝜇2 , 𝑟 =1 and  𝜋1 = 𝜋2 = 1 2 ,we get the homogeneous repairmen 

model : M/M/2/ 𝑚 / 𝑚 which was discussed by White et al. [13], Gross and Harris [7] 

and Bunday [2]. 

7-Conclusion  
 In this paper, the machine interference model: 𝐻𝑟  /𝑀/2/𝑘/𝑁  is studied with two 

heterogeneous repairmen . The recurrence relations that give all the probabilities in terms 

of Ρ𝑘,𝑟  are derived. We illustrated the method by a numerical example and deduced the 

expected number of units in the system and machine efficiency, also the average operator 

utilization are derived. Some special cases are obtained. 
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