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Abstract: This paper surveys the evolution of word embeddings along with the methodologies used in Community Question 
Answering (cQA), and how these methodologies use word embeddings to achieve higher performance metrics. The paper first 
discusses vector modelling and how it affected Natural Language Processing (NLP) as a whole, then it details some of the approaches 
used like the one-hot-encoding, word2vec and others. The paper then discusses contextualized embeddings and how they improve on 
the previous techniques. The paper then sheds some light on language modelling along with new attention-based architectures 
(Transformers), discussing briefly how they work and how they affected not only cQA but NLP in general. Then the paper discusses 
in brief the shift in the field from model-based AI where most of the focus is on producing a model with high performance metrics 
to Data Centric AI where the focus is on trying to have a systemic way of labelling the data to ease the generation of a high-
performance model. 
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1 INTRODUCTION 
Many of the systems that handle language focus on the downstream task performance metrics while turning a blind eye to 
other aspects a Machine Learning based system should include, such as training time, inference time and ease of 
operationalization. So, the paper explores how state of the art methods can improve NLP tasks in general and cQA 
specifically. 
An appropriate pipeline design handles both functional requirements reflected in getting the agreed-upon score in a specific 
performance metric, such as the metric used in ranking: Mean Average Precision (MAP), while maintaining a design that 
is easily operationalized. However, most of the state-of-the-art approaches in cQA only focus on getting high MAP 
disregarding the other aspects of a balanced system such as maintainability and ease of operationalization, rendering the 
model incapable of being easily deployed on production environments. 
The problem in the state-of-the-art approaches stems from the increasing number and/or complexity of the models used to 
classify relevant documents/answers or rank them, as well as from the increasing number and complexity of features being 
generated to be fed to said models. In a production environment, a system of such complexity will be very exhausting to 
run efficiently and maintain. 
These approaches were inevitable when it comes to cQA for Arabic language, because of the scarcity of Arabic data and 
specifically the scarcity of data that could be used in cQA. However, what is proposed in this paper is: instead of focusing 
on extracting multiple features (typically sentences or embeddings) and feeding them to the potentially – multiple - models, 
we focus on properly representing the sentences in cQA and feed these representations (embeddings) to a single high-
performance model.  

The motivation behind choosing cQA as a downstream task is due to two main reasons: the first is that it is very important 
to have a system that can answer questions in our daily lives, and that could be seen by how virtual assistants developed 
by google, apple and amazon became successful on their launch. The systems developed by these three companies (and 
several others) have been used extensively in our everyday chores, however, systems that are good in specialized tasks, 
such as law, health and history are lacking and, in some fields, non-existent such as religious casuistry (الافتاء). The second 
reason for choosing cQA is simply because it is very interesting. Artificial Intelligence (AI) – especially deep neural models 
- has exceeded expectations in pretty much every field it was introduced to, now with researchers taking interest in
“Explainability” it would be enlightening to know why deep learning-based models answers the way they do. The end goal
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is to take a step towards having a pretrained model fit in a variety of domains with little to no effort, keeping in mind 
performance measures like storage and speed. 
Choosing Community Question Answering task over a Question Answering task is due its practical potential – especially 
in the middle east and Arabian community – where communities are a lot scarcer and much less maintained than that in 
English; Not to say that that Question Answering has no potential, but people nowadays are more reliant to find answers 
to their questions on communities rather than searching through books or references. 
 
 

2 LITERATURE REVIEW 
Since a typical pipeline makes use of several technologies, the paper will review multiple fields. This review will be talking 
about Vector Space Modelling, a brief history of Word Embeddings, why NLP became stale as well as brief introductions 
to Contextualized Embeddings, Transfer Learning, Transformers and Data Centric AI. Where in each section, only the 
techniques with the highest impact are discussed. 
 
 

A. Vector Space Modelling 

Machines by default cannot understand text natively, they only understand numbers. That is why many approaches have 
been developed to turn words into Vectors that machines can understand and process. In this section, we will begin with 
the simplest approach “One-Hot encoding” to get the intuition of how words are represented to the computer, then we will 
jump to word2vec to get the intuition of embeddings and how they are generated. 

 
1) One-Hot Encoding: 

The first approach that comes to mind, is to have a Vocabulary vector V ϵ 𝑅𝑅𝑣𝑣where ‘v’ is the size of the vocabulary, and 
have each word in the text (Sentence, document, etc..) be represented in a certain index (or dimension) within that vector 
by a number (0 or 1) as shown in Figure 1. This approach is called “One Hot Encoding”, and even though it is simple to 
implement, it has the following main caveats: - 
 

• The average vocabulary size used by current systems averages around 35,000, meaning the vector size would also 
be of the same size, which is huge and will cause unnecessary processing overhead. 

• More importantly, each word in the vocabulary is orthogonal to each other word, hence it does not capture 
relationships between words. (i.e., dog is similar to fox as it is similar to lazy) 

 

 
Figure 1: Illustration of one-hot-encoding scheme 

 
2) Word2Vec: 

 
Developed at Google in 2013 [1], Word2Vec is a neural approach to create dense vectors (embeddings) for word 
representations, and it is based on the distributional assumption that words having similar meanings are found in similar 
contexts. Word2Vec uses one of two architectures: Continuous Bag of Words (CBoW) or Skip grams. 
 
CBoW is achieved by moving a sliding window of arbitrary size (N) through the training text, the training data is generated 
by having inputs be the words surrounding our target output within the sliding window. For example, given the sentence 
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“A fool thinks himself to be wise, but a wise man knows himself to be a fool” and N=3, the dataset should be as shown 
in TABLE I 

 

TABLE I 

EXAMPLE OF THE CBOW APPROACH 

Input1 Input2 Output 
A Thinks Fool 
Fool Himself Thinks 
Thinks To Himself 
Himself be To 
To wise Be 

 

Each of the words are turned into embeddings and then passed to a shallow feed forward neural network, which in turn 
generates a probability distribution on what the next word might be. In short, the goal of the CBoW architecture is to predict 
a word by using its surrounding context. 

 
The second architecture is the skipgram, where the goal is to predict the words surrounding the input word (or context), for 
simplicity, it could be thought of as the inverse of what the CBoW is doing. 
Given the same sentence “A fool thinks himself to be wise, but a wise man knows himself to be a fool” the dataset will 
look as shown in TABLE II 

 
 

TABLE II 

EXAMPLE OF THE SKIPGRAM APPROACH 

Input1 Input2 Are Neighbors? 
Fool A 1 
Fool Thinks 1 
Thinks Fool 1 
Thinks Himself 1 
Himself Thinks 1 
Himself To 1 
To Himself 1 
To Be 1 
Be To 1 
Be wise 1 

 
 
The problem now could be seen as a classification problem, where the model predicts whether two words occur 
simultaneously in the same context – defined by the window of size N- or not. But to do that, an extra step must be added 
which is negative sampling to avoid a model that always predicts 1. The authors did that by adding extra pairs of words 
that do not occur in the same context as shown in TABLE III. (Again, defined by the window of size N). 
 
Both CBoW and skipgram performed quite well. However, according to the authors’ notes, between the two architectures, 
CBoW was faster to train but the skipgram had more accurate results. 
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TABLE III 

EXAMPLE OF NEGATIVE SAMPLING IN SKIPGRAM 

Input1 Input2 Are Neighbors? 
Fool A 1 
Fool Thinks 1 
Fool Apple 0 
Thinks Fool 1 
Thinks Himself 1 
Thinks Cars 0 
Himself Thinks 1 
Himself To 1 
Himself Carpet 0 
To Himself 1 
To Be 1 
Be To 1 
Be wise 1 
Be Orange 0 

 

 
How embeddings solve the downsides of one-hot encodings is by having a dense vector that differentiates words from each 
other eliminating the processing overhead, moreover, words now have some relations to each other rather than being 
orthogonal to each other. Figure 2 illustrates this by displaying multiple words, some of them are related, while others are 
not. The similarity in the vector space for cat and kitten can be seen, as well as the (lesser) similarity of animals in relation 
to houses. The relationship of pronouns can also be seen between man, woman, king, and queen, where man to woman has 
the same relationship (graphically) as king to queen. 
 
 

  
 

Figure 2: A 2D visualization of a 7D word2vec embeddings of sample words [2] 
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3) Contextualized Embeddings: 
 

The effectiveness of word embeddings such as word2vec was mainly because the context was taken into consideration. 
However, these embeddings were static for each word in the vocabulary and could not handle homographs. In the two 
sentences “I will deposit my money in the bank” and “All the animals lined up along the riverbank”, even though the 
word “bank” is semantically different, it would have the same embedding generated by word2vec for both sentences. A 
solution to this is using deep contextualized embeddings [3], which are word embeddings given to words depending on the 
context they are found in, hence capturing the meaning of the words. This is done by means of a two-layered bi-LSTM that 
takes the left and right context of the target word into consideration before assigning an embedding to it. 

 
Embeddings from Language Models (ELMo embeddings) are made by taking the input sentence (e.g., The quick brown 
fox jumped over the lazy dog) then outputting the vector for each word in the sentence, as seen in Figure 3. ELMo consists 
of 2 layers of bi-directional LSTM, each changing the state according to the input word as well as its surrounding words 
(context) Figure 4. 

 

 

 
 

 

 

Figure 3: ELMo embedding from the highest level 

Figure 4: The hidden layers of ELMo from both directions 
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To produce the ELMo embeddings, the hidden layers of the word and the context are taken, concatenated, multiplied by a 
weight (weights differ according to the task) then summed, producing the ELMo embedding of the word, shown in Figure 
5. Since this vector is a function of the word, the context and the order of the words, an embedding of a word will always 
change whenever the context/sentence change, solving the issue of static embeddings such as those from word2vec. 

 
Figure 5: How ELMo embedding is done under the hood 

B. Information Retrieval Methodologies 
 

Now that we are done with the aspect of representation, we go to other aspects of cQA which are Retrieval and Ranking. 
Since cQA systems have the goal of providing users with specific “queries” information that meets those queries, cQA can 
be considered information retrieval with an added ranking module.  
From a scope perspective, IR systems were used to be viewed from 2 complementary views: 

• Machine Centered Perspective: which deals with creating efficient and effective indexes, retrieving the 
information the users need quickly and a ranking “scheme” that enhances the retrieved results 

• User Centered Perspective: which deals with User Experience (UX) and embedding our information about the 
user within the models/algorithms to personalize the retrieved results. 

 
A sample high-level architecture of a simple IR system (Figure 6) mainly consists of the following components:  

• A document/data collection stored on a filesystem/database. 
• An indexer which indexes the contents of the collection generating a representation of it. 
• A retrieval system that takes the “user query” which encompasses the user’s need as an input.  
• A ranking module to rank the results based on what the system thinks is “relevant” to the user  

 
The retrieval system parses the user input, expands it (with synonyms and spelling variants) generating what is called the 
“system query” which is then queried against the collection (or rather its index) retrieving a subset of the collection.  
This collection subset is then passed through a ranking module to rank the results based on what the system thinks is 
“relevant” to the user; Hence, from a user perspective, the ranking module was (and sometimes still is) considered the most 
critical component of the IR system. It is worth noting that deciding what a relevant document is, is subjective since a user 
could think that a specific document is relevant to a certain query, while another user thinks it is not, hence the importance 
of User Centered perspective mentioned earlier. 
Finally, to retrieve the documents (or questions/answer pairs in the context of cQA) from the collection and decide whether 
they are relevant or not, a certain representation – as discussed in the previous section - should be created for them for the 
system to work properly. There are many methods by which this could be achieved all of which aim at making working 
with documents easier. This representation and any modification to the content (such as stop words removal like “the, a, 
an”, depending on the situation) is done on both the documents in the repository and on the system query so that the 
comparison is fair and relevant. 
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Figure 6: A High-Level Architecture of a Simple Information Retrieval System 

 
1) Bag of Words & TF-IDF 

 
This model was first referenced by Zellig Harris in his article “Distributional Structure” [4]. The basic idea of the Bag of 
Words model (BoW) is to have a vector of length v and each index of the vector corresponding to a word in the vector. 
So far, BoW is similar to the One Hot Encoding approach, the difference however is instead of checking whether a word 
exists in a text or not, the number of occurrences of the words are captured as well via a counter, capturing the 
frequencies of words (Term Frequency or TF) in a span of text or document as a feature. (Figure 7) 
This method faced a problem of having texts - which could be similar for us humans – be orthogonal to each other. 
Another problem this method faced is having stop words dominate the vector representation of the text, which is 
mitigated by simply removing them. However, in domain specific applications, some terms are used more than others, 
and simply pruning them is not a solution. For that reason, a measure of how rare a term is across different spans of texts 
or documents is needed, which is called the Inverse Document Frequency (IDF). Coupling both TF and IDF (TF-IDF) 
gave a measure of how important some terms are relative to others, which made a huge improvement in Information 
Retrieval (IR). However, much like the One Hot encoding approach, the Bag of Words model disregards word order. 
It is worth noting that both bag of words and TF-IDF could be used for document representation (subject to the 
downsides discussed earlier), as well as for retrieval where ranking is done by means of similarity measures. 
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Figure 7: Illustration of the Bag of Words Model 

 
2) Language Modelling Based Information Retrieval 

 
One of the earliest general approaches of Question retrieval in IR was to estimate the probability that given a certain user 
query, a retrieved document would be relevant. At the time, IR systems had 2 models: 

• Indexing model: that relates (or labels) a document with certain tags to be used when searching. 
• A retrieval model that handles matching the user query with the documents through their tags 

 
This 2-model structure had 2 problems:  

• A parametric assumption: which states that there is an indexing model out there that fits the data set, in such 
a way that the tags fit the data perfectly. 

• Documents are members of a an already defined class: which assumes that documents fall into mainly 2 
categories “Elite” and “Non-Elite”, where an ‘elite’ document for a given query term is a document that 
satisfies that query with that single term.   
 

To bypass these 2 problems, the Language Modelling (LM) [5] approach was used, where the concept behind it is to 
generate a language model for each and every document in the data set, then the ranking criteria would then be on the 
probability that a certain query is generated given the language models of the documents, as shown in Figure 8. 
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Figure 8: High Level overview of the Language Modelling Approach in Question Retrieval 

The goal of the LM approach is to estimate the likelihood of a query being generated by a certain language model Md 
𝑝𝑝(𝑄𝑄|𝑀𝑀𝑑𝑑), which could be formulated as: 
 

𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡|𝑀𝑀𝑑𝑑) =
𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑)
𝑑𝑑𝑙𝑙𝑑𝑑

       (1)  

 where: 
𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑): is the raw term frequency of term t in document 𝐝𝐝 

𝑑𝑑𝑙𝑙𝑑𝑑  : is the total number of tokens in document 𝐝𝐝 
 
It is assumed that the terms within a query occur independently given a language model, which results in the ranking 
formula of a document ‘d’ to be as shown in equation 2: 
 

�𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡,𝑑𝑑)
𝑡𝑡∈𝑄𝑄

                      (2)  

 
 
This formula would be calculated for each document, getting the product of the generation of each term ‘t’ in the user 
query ‘Q’. There are several problems with this estimator; The most obvious practical problem is that we do not wish to 
assign a probability of zero to a document that is missing one or more of the query terms. In addition to this practical 
consideration, from a probabilistic perspective, it is a somewhat radical to infer that 𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡|𝑀𝑀𝑑𝑑) = 0. I.e., the fact that we 
have not seen a certain term before does not infer that it is impossible to see it in the future. Instead, an assumption is 
made that a “not so occurring term” is possible to occur, but with a probability no bigger than what would be expected by 
chance in the collection (i.e. 

𝑐𝑐𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐

 ) where 𝑐𝑐𝑓𝑓𝑡𝑡 is the raw count of term t in the collection and 𝑐𝑐𝑐𝑐 is the raw collection size or 
the total number of tokens in the collection. The value of this assumption is that it provides us with a more reasonable 
distribution and circumvents the two practical problems mentioned. 

 
3) Translation Based Information Retrieval 

 
When a person tries to search for a question (or a document) in a retrieval system like google or Quora, it could be 
thought that what he/she is really doing is imagining the “perfect” document in his/her head then try to distill this 
document into a term or more formulating the query being input to the system. The translation-based approach is based 
on an idea which treats this “perfect” document being imagined by the user (i.e. the document with the highest 
relevance/matching score to the user) and the input query as parallel texts, and as such, the query could be treated as a 
translation from that perfect document being imagined, shown in Figure 9. 
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At the time, the authors [6] tried to explore this approach with word-based translation models, not because it is better 
than the traditional approaches such as BoW based or LM-based, but because it proved to be practically convenient and 
that this approach has much potential to be explored. 

 

 
Figure 9: Model of query generation and retrieval [6] 

 
The idea behind the translation-based approach is summarized in Figure 9, which summarizes the model of query 
generation to the following points: - 

• The user needing an information 𝜻𝜻 
• From this need, a user generates a perfect document part 𝒅𝒅𝜻𝜻 
• The user then chooses a set of words from the generated document parts, building the query 𝒒𝒒 from the chosen 

words. 

Now, the task of the retrieval system is to find the a posteriori probability that a document 𝒅𝒅 satisfies a query 𝒒𝒒, given the 
query and the user’s general preferences 𝑈𝑈, given by 𝑝𝑝(𝑑𝑑|𝒒𝒒,𝑈𝑈) which could be decomposed into: 
 

𝑝𝑝(𝑑𝑑|𝒒𝒒,𝑈𝑈) =
𝑝𝑝(𝒒𝒒|𝒅𝒅,𝑈𝑈) 𝑝𝑝(𝒅𝒅|𝑈𝑈)

𝑝𝑝(𝒒𝒒|𝑈𝑈)      (3)  

 
 
The term 𝑝𝑝(𝒒𝒒|𝑈𝑈) in the denominator could be ignored, since it is fixed for a given a query and a given user, so it will not 
affect the ranking. Hence a relevance metric is defined as 
 

𝜌𝜌𝒒𝒒(𝒅𝒅) = 𝑝𝑝(𝒒𝒒|𝒅𝒅,𝑈𝑈) 𝑝𝑝(𝒅𝒅|𝑈𝑈)      (4)  
 
Equation (4) highlights the decomposition of relevance into two terms: a query-dependent term 𝑝𝑝(𝒒𝒒|𝒅𝒅,𝑈𝑈) measuring the 
proximity of d to q, and second, a query-independent or “prior” term 𝑝𝑝(𝒅𝒅|𝑈𝑈), measuring the quality of the document 
according to the user's general preferences and needs. Though in this work [6] the prior term is taken to be uniform over 
all documents, in real-world retrieval systems, the prior term will be crucial for performance, and for adapting/fitting to the 
user's needs and interests. 
 

C. Attention Mechanism 
 

Attention is a mechanism that allows a system to focus its “attention” on a part of the input that is important to 
accomplishing a specific task or subtask. Attention was implemented as a method to enhance machine translation [7]. 
A very good graph showing this is Figure 10 where a French sentence is translated to English. In the figure, a matrix of 
attention weights is formed between words, where when trying to output a certain English word, higher weights 
(attention) is given to certain French words denoted by the white squares, while the other relatively unimportant parts are 
given very low weights. 
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Figure 10: A sample alignment example from French to English [7] 

Machine Translation used to be done using a pipeline of statistical components, then a neural approach proposed by [8], 
[9] and [10] where a single neural network is trained and used to output the translation from a source language to the 
target language. This approach solved the classical problem of several sub-components, because only one model is 
trained and fine-tuned, whereas in the classical approach, each sub-component had to be trained and fine-tuned 
separately. 
In [7], the authors propose a novel architecture to the conventional neural approach proposed by [8], [9] and [10], where 
the architecture was made up of an encoder RNN and a decoder RNN components. The encoder takes the input words 
and, in the end, encodes the entire sentence in a vector that is then passed to the decoder to decode, and output the 
translation, shown in Figure 11. 

 

 
Figure 11: Machine Translation using the "Encoder-Decoder" Architecture 

 
The problem with this approach is that if the input sentence is long - longer than the longest sentence in the training 
dataset- performance deteriorates drastically, and the authors of [7] argue that this is due to having the vector passed to 
decoder components of fixed length, which cannot capture long term dependencies very well. 
What is proposed in [7] is a method for the model to align and translate jointly, by means of soft searching the words 
within the input sentence where the most relevant data lies. The model then predicts the words in the output sentence 
based on the context vectors of the soft-searched words along with any previously generated (translated) words.  
Based on this suggestion and the fact that a fixed length context vector is replaced with a vector for each word, the 
encoder-decoder is freed from compressing all the information lying within the input sentence from a single fixed length 
vector and enabled to generate the target words in a dynamic fashion depending on each word translated. 
 
Formally, in the traditional Encoder-Decoder architecture, the encoder gets the input 𝑋𝑋 = (𝑥𝑥0, 𝑥𝑥1 … 𝑥𝑥𝑇𝑇) and compresses 
that into vector 𝑐𝑐 where: 

 
𝑐𝑐 = 𝑞𝑞��ℎ1,ℎ2 …ℎ𝑇𝑇𝑥𝑥��     (5)  
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where ℎ𝑡𝑡 is the hidden state at time t, and it is calculated as: 
 

ℎ𝑡𝑡 = 𝑡𝑡(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)                         (6)  
 
 
and 𝑡𝑡 and 𝑞𝑞 are non-linear functions. 
The decoder then takes the context vector 𝑐𝑐 and any translated target words {𝑦𝑦0,𝑦𝑦1,𝑦𝑦2 …𝑦𝑦𝑡𝑡−1} as input and outputs the 
most probable word 𝑦𝑦𝑡𝑡 where: 
 

𝑝𝑝(𝑦𝑦) = ∏𝑡𝑡=1
T 𝑝𝑝(𝑦𝑦𝑡𝑡|{𝑦𝑦0,𝑦𝑦1,𝑦𝑦2 … 𝑦𝑦𝑡𝑡−1}, 𝑐𝑐)   (7) 

 
where each conditional probability at time t in the RNN could be derived to: 
 

𝑝𝑝(𝑦𝑦𝑡𝑡|{𝑦𝑦0,𝑦𝑦1,𝑦𝑦2 …𝑦𝑦𝑡𝑡−1}, 𝑐𝑐) = 𝑔𝑔(𝑦𝑦𝑡𝑡−1, 𝑐𝑐𝑡𝑡 , 𝑐𝑐)  (8) 
 
Where 𝑔𝑔 is a non-linear function that outputs the probability of 𝑦𝑦𝑡𝑡 at time t, and 𝑐𝑐𝑡𝑡 is the hidden state of the decoder at 
time t. 

 
Figure 12: Proposed Architecture to Support Attention Mechanism [7] 

 
In the new architecture (Figure 12), the authors model the conditional probability on the decoder side as follows: - 
 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1,𝑦𝑦2 …𝑦𝑦𝑖𝑖−1, 𝑥𝑥) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖)   (9) 
 
where 𝑐𝑐𝑖𝑖 – like the traditional architecture – is the hidden state of the RNN at time 𝑖𝑖, and is computed by the formula  
 

𝑐𝑐𝑖𝑖 = 𝑡𝑡(𝑐𝑐𝑖𝑖−1,𝑦𝑦𝑖𝑖−1, 𝑐𝑐𝑖𝑖)                                  (10) 
 
where 𝑐𝑐𝑖𝑖 is a distinct context vector used to predict the target word 𝑦𝑦𝑖𝑖. This context vector is dependent on the 
annotations (ℎ0,ℎ1 …ℎ𝑇𝑇) which the encoder maps the words within the input sentence to. Each vector ℎ𝑖𝑖 captures 
information about the whole sentence, with special focus (or “attention”) to one or more words. Each of the context 
vectors hence are computed by 
 

𝑐𝑐𝑖𝑖 = ∑𝑗𝑗=0
Tx 𝛼𝛼𝑖𝑖𝑗𝑗ℎ𝑗𝑗                                          (11) 

 
where 𝛼𝛼, the weight given to each annotation, and is calculated by: - 

 

𝛼𝛼𝑖𝑖𝑗𝑗 =
exp�𝑒𝑒𝑖𝑖𝑗𝑗�

∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)Tx
k=1

            (12) 
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where: 
 𝑒𝑒𝑖𝑖𝑗𝑗 = 𝑎𝑎�𝑐𝑐𝑖𝑖−1,ℎ𝑗𝑗�                 (13)  
 

is the alignment model which scored how relevant input j is to the target output i and the model 𝑎𝑎 is a feed forward 
network that is trained jointly with the RNN. [7] shows these equations in action at the Decoder side. 
 
It is also noted that unlike the traditional approach of having a uni directional RNN at the decoder side and/or encoder 
side, this approach uses a Bi-directional RNN in order to capture not just the information within the preceding words, but 
also the following ones. The resulting annotation vectors are then concatenated together – both from the forward and 
backward RNN – and used to calculate 𝑒𝑒𝑖𝑖𝑗𝑗 which in turn used to calculate 𝛼𝛼𝑖𝑖𝑗𝑗 with the trained alignment model, which is 
used to calculate the context vectors 𝑐𝑐𝑖𝑖 which is used to calculate 𝑐𝑐𝑖𝑖 which is passed to the non-linear function calculating 
the probability distribution of the word 𝑦𝑦𝑡𝑡. 
 
In summary, the attention mechanism is an approach in which the model gives weights to each lexical input – be it words 
or sentences – and focuses (or pays attention) to the inputs with the highest weights when generating the target output(s). 
How Attention is beneficial in cQA is that Transformers [11] (discussed in section E) is based on this mechanism, which 
is widely used to produce context-based embeddings in a fast manner. 

D. Transformers 
“Attention Is All You Need” [11] is a paper published in December 2017 by Google Research and Google Brain, and it 
was one of the most revolutionizing papers to date. Up till the time before this paper was published, the NLP field was 
dependent on Recurrent and Convolutional models. Of course, the state of art results at the time was not due to the 
vanilla versions of these recurrent or convolutional architectures, but more sophisticated variants of them, mainly Long 
Short-Term Memory Networks (LSTMs) [12] and Gated Recurrent Units (GRUs) [10]. 
 
These variants mainly address the issue of long-term dependencies since vanilla RNNs cannot “remember” contexts the 
larger the input text, so what these variants add are “Gates” that enable the network to have the ability to keep some 
contexts and forget others at will through training. Also, the addition of attention mechanisms further enhanced the 
ability of these networks. The attention mechanism enables the network to give weights to the input, focusing its 
“attention” to relevant part of the inputs as seen in the previous section. 
 
Although LSTMs and GRUs did a good job, RNNs in general suffered from being unable to be trained in parallel, 
because the layers are recurrent in time which made the model sequential by nature, rendering all technological 
advancements in Graphical Processing Units (GPUs) and parallel training useless. To bypass this dilemma, the authors of 
[11] threw away recurrence all together in favor of using “Self-Attention” which enabled parallel training as well as 
enhancing performance. Although the proposed approach does not use recurrent neural networks, the high-level 
architecture of having encoders and decoders remain, as can be seen in Figure 13. 

 
1) The Encoder Stack 

The encoder stack consists of 𝑁𝑁𝑥𝑥 = 6 encoders (Could have been more, but this was the choice the authors went with at 
the time of publishing), each layer consists of two sublayers, the first is a multi-headed self-attention sublayer and the 
second is a point-wise feed forward network, as could also be seen from Figure 13, a residual connection has been put 
after each sublayer, followed by a layer normalization step. So, the output becomes 𝐿𝐿𝑎𝑎𝑦𝑦𝑒𝑒𝐿𝐿𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑎𝑎𝑦𝑦𝑒𝑒𝐿𝐿(𝑥𝑥)) 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑎𝑎𝑦𝑦𝑒𝑒𝐿𝐿(𝑥𝑥) is the functionality being implemented by the sublayer (i.e., Multi-headed attention or the point-wise 
feed forward connection). Also, to facilitate these residual connections, the authors fixed the size of output of all layers 
(embeddings included) to 𝑑𝑑𝑚𝑚𝑜𝑜𝑑𝑑𝑑𝑑𝑚𝑚 = 512. 

 
2) The Decoder Stack 

Like the encoders, 𝑁𝑁𝑥𝑥 = 6 identical decoders were employed, each decoder has the same multi-headed self-attention and 
point-wise feed forward network with the residual connections and the fixed output size 𝑑𝑑𝑚𝑚𝑜𝑜𝑑𝑑𝑑𝑑𝑚𝑚. So far, everything is 
identical, except for a third sub-layer that performs multi-headed attention over the output of the encoder. Also, the self-
attention layer in the decoders is modified so that positions do not attend to subsequent positions (peek into future tokens, 
in colloquial terms). Due to this modification and the fact that outputs are offset by one from the inputs ensures that 
outputs are solely dependent on past outputs and nothing more. 
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Figure 13: The Transformer Model Architecture [11] 

 
Before proceeding with equations, it is worth explaining “attention” in the context of [11]. The authors explain attention 
in a very intriguing manner which is “A function that maps a query and a set of key-value pairs to an output”. One can 
intuitively think of the query as the word in question in terms of “How much attention should be given to this word?”, 
and in similar fashion, one could think of the key-value pairs as the representations – not to be confused with embeddings 
– of the words within the input sentence, similar to query but in another space. 
The output “How much attention should be given” is a weighted sum of the “value” vectors, where the weights assigned 
are calculated by a “compatibility function” using the query and key vectors. The formula (shown in Figure 14) for the 
attention is given by 

 

𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝐴𝐴𝑡𝑡𝑖𝑖𝐿𝐿𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑐𝑐𝐿𝐿𝑡𝑡𝑡𝑡𝐿𝐿𝑎𝑎𝑥𝑥 �
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑖𝑖
�𝑉𝑉                 (14) 

 
where Q is the query matrix, K is the Key matrix and V is the value matrix, each of these matrices are multiplied by the 
embedding of each of input of the encoder to produce the resulting query, key and value vectors specific to that input 
word. The Q, K and V matrices are trained jointly with the model. 
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Figure 14: Scaled Dot-Product Attention [11] 

The authors also mentioned that there are different attention functions, most commonly are the “Dot-Product Attention” 
which was used in this paper, and the “Additive Attention”. Unlike the additive attention used in [7] which calculates the 
compatibility function through a single-layered feed-forward neural network, the Dot-Product attention function uses dot 
product between matrices to achieve this purpose (Figure 14) The only difference between the “traditional” dot-product 
approach and that of [11] is the addition of the scalar 1

�𝑑𝑑𝑘𝑘
 (hence the Scaled part in the name). The reason for this is that 

the authors suspect that for large values of 𝑑𝑑𝑖𝑖 the dot product becomes too large, it pushes the SoftMax function into 
regions with very small gradients. However, at small values of 𝑑𝑑𝑖𝑖 both Dot-Product Attention and Additive Attention 
perform similarly. 
 
The authors also mentioned that they found it useful to calculate the attention ℎ = 8 times, each projecting the query, key 
and value vectors with different learned linear projections 𝑊𝑊𝑖𝑖. The output in this case is dependent on the concatenated 
sets of ℎ vectors which is then projected yet again resulting in the final output. Concretely the formula is: - 
 

𝑀𝑀𝑆𝑆𝑙𝑙𝑡𝑡𝑖𝑖𝑀𝑀𝑒𝑒𝑎𝑎𝑑𝑑(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐶𝐶𝐿𝐿𝐴𝐴𝑐𝑐𝑎𝑎𝑡𝑡(ℎ𝑒𝑒𝑎𝑎𝑑𝑑1,ℎ𝑒𝑒𝑎𝑎𝑑𝑑2 …ℎ𝑒𝑒𝑎𝑎𝑑𝑑ℎ)𝑊𝑊𝑂𝑂   (15) 
𝑤𝑤ℎ𝑒𝑒𝐿𝐿𝑒𝑒 ℎ𝑒𝑒𝑎𝑎𝑑𝑑𝑖𝑖 = 𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝐴𝐴𝑡𝑡𝑖𝑖𝐿𝐿𝐴𝐴�𝑄𝑄𝑊𝑊𝑖𝑖

𝑄𝑄 ,𝐾𝐾𝑊𝑊𝑖𝑖
𝐾𝐾,𝑉𝑉𝑊𝑊𝑉𝑉

𝑉𝑉�  (16) 
 
This Multi-headed approach allows the model to capture different representations subspaces at each input position, that 
could not have been achieved using a single-headed attention. 

 

 
Figure 15: multi-Headed attention consisting of h attention layers running in parallel [11] 
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So, in summary the Attention mechanism is used in the Transformer architecture in 3 ways: - 
• In the self-attention component within the encoder, allowing the encoder to attend to all words in the input. In 

this case all query, key and value vectors come from the previous encoder layer. 
• In the “Encoder-Decoder” attention in the decoders, allowing the decoders to attend to the input from the 

encoders. In this case, the query vectors come from the previous decoder layer whereas the key and value 
vectors come from the encoder stack. 

• In the self-attention component within the decoder, allowing the decoder sublayers to attend to the output of the 
previous decoder layers. The authors note that any inputs in positions following the current position being 
calculated should be blocked, in order to preserve the auto-regressive property of the decoder. This blocking 
mechanism is implemented by setting all inputs to the scaled dot-product function to −∞ coming from illegal 
connections, effectively setting the softmax output of these inputs to 0. 

 
There is one last thing to note in and that is when adopting this new approach, rather than the traditional “recurrent” one, 
the sequential properties of the inputs have been stripped. So how would the model know the position of each word in the 
sentence? The answer to that is “Positional Encoding”, which uses sine and cosine function with different frequencies: 

 

𝑃𝑃𝐸𝐸(𝑝𝑝𝑜𝑜𝑐𝑐,2𝑖𝑖) = sin�
𝑝𝑝𝐿𝐿𝑐𝑐

10000
2𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�      (17) 

𝑃𝑃𝐸𝐸(𝑝𝑝𝑜𝑜𝑐𝑐,2𝑖𝑖+1) = cos�
𝑝𝑝𝐿𝐿𝑐𝑐

10000
2𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�     (18) 

 
Where, pos is the position of the word and 𝑖𝑖 is the dimension. So, each dimension of the positional encoding vector 
corresponds to a sinusoid. Note also that the positional encoding has a dimension length similar to that of the word 
embeddings layer on the encoder side, which means that they can be summed. 

 

E. Bidirectional Encoder Representations from Transformers (BERT) 
 

BERT [13] is a transformer-based architecture, where only the Encoder part of the transformer is used (some 
architectures use the decoder only like [14]). What the authors of [13] are trying to accomplish is to enhance current 
schemes of pre-training [15] a model that with little modification could be used in other tasks and achieve high level of 
performance. 
The authors mentioned the several approaches for transfer learning, one of which is feature based approach and fine-
tuning based approach. Feature based Approach is similar to that of ELMo [14] where the model is pretrained on a task 
generating representations of the words, then developing task specific architectures which uses these representations, 
which is obviously not the best due to the need to modify the architecture. Fine-tuning based approach however is similar 
to that of GPT [14], where the model is originally trained on a task then have the entire model fine-tuned on the 
downstream task. It is worth noting that both these approaches share the same pre-training objective, which is using 
unlabeled text to learn language representations. 
Although the authors of [13] will be adopting the fine-tuning-based approach [15], they argue that existing techniques 
limit the potential of pre-trained representations, due the fact that the current architectures use a left-to-right approach in 
training, which the authors think is suboptimal in sentence level tasks and could be dangerous in token level tasks like 
Question Answering, where it is imperative to incorporate contexts from both directions. 
To address this, the authors improve fine-tuning approaches by introducing the encoder only architecture which is free 
from the unidirectional constraints of previous architectures by using “Masked Language Model” (MLM) as a pre-
training objective. MLM is a task where the model is given a sentence with some of the tokens masked. The model must 
figure out what these masked tokens (in the form of embeddings) are. One other task BERT is trained on is “Next 
Sentence Prediction” where the model is given two sentences, and the model has to predict whether these sentences come 
after each other or not. 
These two pre-training objectives combined enables the model to capture information from both left and right contexts, 
as well as capture sentence level insights. This approach is different than that of GPT [14] since it takes both left and 
right contexts and different from ELMo which trains two bi-directional LSTM networks independently from each other, 
then shallowly concatenate the output representations. Due to these objectives, BERT achieves state of the art results in 
eleven - token level and sentence level - NLP tasks. 
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Figure 16: The pre-training and fine-tuning stages of BERT [13]  

 
The overall pre-training and fine-tuning steps of BERT are illustrated in Figure 16. The pretraining step consists of two 
phases: - 

• Pretraining: where the model is pretrained on several tasks 
• Fine-tuning: where the model is initialized with the pre-trained parameters then fine-tuned with the labeled data 

of the downstream task. 

Two things to notice in Figure 16, first is that each downstream task has a separate fine-tuned model and second is that 
BERT has the same architecture across the different tasks. 
The model architecture the authors employed is very similar to the one by [11], except that BERT only makes use of the 
encoder part. The number of layers is denoted as 𝐿𝐿, the hidden size as 𝑀𝑀 and the number of self-attention heads as 𝐴𝐴. The 
paper reports the results of two model sizes. 
 

𝐵𝐵𝐸𝐸𝑅𝑅𝑇𝑇𝐵𝐵𝐵𝐵𝑐𝑐𝑑𝑑(𝐿𝐿 = 12,𝑀𝑀 = 768,𝐴𝐴 = 12,𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑃𝑃𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑒𝑒𝑡𝑡𝑒𝑒𝐿𝐿𝑐𝑐 = 110𝑀𝑀) 
𝐵𝐵𝐸𝐸𝑅𝑅𝑇𝑇𝐿𝐿𝐵𝐵𝐿𝐿𝐿𝐿𝑑𝑑(𝐿𝐿 = 24,𝑀𝑀 = 1024,𝐴𝐴 = 16,𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑃𝑃𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑒𝑒𝑡𝑡𝑒𝑒𝐿𝐿𝑐𝑐 = 340𝑀𝑀) 

 
Also, to have BERT be able to handle a variety of downstream tasks, the authors designed BERT to be able to handle 
both a single sentence and a pair of sentences as input. In the paper, they refer to “sentence” as a span of text that could 
be a single linguistic sentence or more. Moreover, they refer to “sequence” as one or more “sentences” packed together. 
BERT also uses Word Piece embeddings rather than the regular word embeddings, with a 30,000 token vocabulary, 
where the first token in every sequence is the special token [CLS]. It is worth noting that the final hidden state 
representing this special token is used as the overall “sequence” representation for classification tasks. 
When feeding “sequences” to the BERT as input, the methods by which the model knows the separation of “sentences” is 
by: - 

• Using another special token [SEP] between each sentence. 
• Adding learned embeddings to each token in the input indicating whether said token belongs to sentence A or 

sentence B. 

As shown in Figure 16, the authors denote the input embeddings as 𝐸𝐸, the final hidden vector representing the [CLS] 
token as 𝐶𝐶 and final hidden vector for the 𝑖𝑖𝑡𝑡ℎ input as 𝑇𝑇𝑖𝑖. Also, as shown in Figure 17, each token representation is 
constructed by summing: - 

• The corresponding token embedding 
• The corresponding segment embedding 
• The corresponding position embedding 

 
Now let’s talk in detail about the pre-training phase. The first task BERT is trained on is Masked Language Model. This 
task was the task of choice because it trains the model on both left and right contexts and by that method it learns a deep 
bi-directional representation of words. (Again, unlike the relatively shallow representation employed by [3]). 

 

Egyptian Journal of Language Engineering, Vol. 9, No. 2, 2022 17



 
Figure 17 BERT input representation [13]  

 
The MLM task goes in this sequence: - 

• An input sequence is fed to BERT 
• Any token has a 15% chance of getting masked 
• In order to avoid a mismatch between pre-training and fine-tuning by overfitting the model on the literal token 

[𝑀𝑀𝐴𝐴𝑆𝑆𝐾𝐾], only 80% of the to-be-masked tokens are replaced by the token [𝑀𝑀𝐴𝐴𝑆𝑆𝐾𝐾], 10% remains unchanged and 
10% are replaced by another random token. 

Next, the model has to predict the masked words from the context, not the entire input sequence. Then, the second pre-
training task is Next Sentence Prediction (NSP) task, where two sentences are fed to BERT, and the model has to predict 
whether the second sentence comes after the first or not. This task is important because many tasks - such as QA and 
Natural Language Inference (NLI) - are dependent on the model understanding the relationships between sentences, 
which normally could not be captured with traditional LM tasks. 
Finally, the training data used in the pretraining tasks, are: - 

• Books Corpus: A dataset of books comprising of 800M words 
• English Wikipedia: 2,500M words. 

BERT has achieved state of the art metrics in several downstream NLP tasks, using relatively less data than [16]. However, 
it is not without its flaws, because even though BERT (or Transformers in general) has the potential of learning long-term 
dependencies within the text (unlike RNNs), it is still limited by the fact that only a fixed amount of input can feed at a 
time. This limitation creates disruptions in learning dependencies between sentences fed at different times, which is solved 
later by using auto-regressive architectures like [17] and [18]. 
Even though limited context is a huge downside, in practice, the length of words being input at a time (input batch) usually 
do not reach that limit, coupled with how has many implementations have been made available through the hugging face 
library [19] which is widely adoption by the AI community, the upsides greatly exceed the downsides of BERT. Moreover, 
there variants of BERT which underwent knowledge distillation ([20], [21] and [22]) such as distill BERT [22] which is a 
smaller, faster BERT with an accuracy that is not so far off the original BERT. 

 

F. Data Centric AI (DCAI) 
 

As the industries learn the value of AI, use cases are starting to get more complex and the requirements of the AI-based 
systems are becoming more strenuous. The usual trend was to either invent a new complex model to handle the use case 
or put together an ensemble of relatively simpler models to do the job. This approach while showed results in previous 
years, is now showing its limits, since ensembles of complex models are not only difficult to train, but hard to maintain 
and operationalize. As such, the new trend of Data Centric AI [24] and [25] came to be, where the approach is not to 
develop complex models to solve the cases, but to properly label and preprocess the data to be of higher quality, enabling 
relatively simple models to do a better job. The goal of DCAI is to have a systematic approach in engineering the data in 
order to facilitate the learning to the models. 

What DCAI aims at is to unify and agree on the definition of categories/classes and what defines each class within a 
category. In the context of cQA, there should be an agreement and a methodology that marks 2 or more questions as 
relevant or not. An example to this is in [Figure 18] where I wanted to check what the differences were between tensor 
flow [26] and pytorch [27], so “tensorflow vs pytorch” is queried hoping to find a question that asks about a comparison 
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between the 2 libraries. To approach this problem with this example from a systemic approach annotator need to agree on 
what defines a relevant question to my query, as in “Is any comparison considered relevant?”, and if not, then what is the 
degree of granularity should be considered relevant. For example, the second question “TensorFlow vs PyTorch: 
Memory Usage” talks about the comparison between TensorFlow and pytorch but from a memory standpoint only, 
hence, annotators will have to agree on whether such aspects of comparison are enough to make the retrieved results 
relevant or not. 

 
Figure 18 A sample query to stack overflow 

 

3 CONCLUSIONS 
In Summary, Community Question Answering has a vast array of techniques (both mentioned in this paper and not) that 

tries to increase relevancy metrics (such as MAP), where the retrieved documents are relevant to the query input to the 
system, However, many of the older techniques lacked precision in the Ranking part where the documents are sorted/ranked 
from most to least relevant. To solve this, better representations of the query and documents are required, where a similarity 
function could be easily applied, and the similarity score can be used in ranking. One such representation scheme is to use 
Embeddings to map the meaning/semantics of the sentence or document to a vector space. This mapping eases the ranking 
task by enabling the use of similarity functions, where the vectors of retrieved documents that are closer to the vector of 
the query are more relevant. 
However, embeddings alone are not enough, because in order to make use of good embeddings, data should be cleaned 
and annotated properly to convey the correct classification and meaning, otherwise the embeddings would not be of much 
help. This is where DCAI comes to play, where methodological, systematic way of engineering the data to be coherent to 
enhance the training of the model and have the target categories - hence, the relevancy metrics - consistent.  
 
 
REFERENCES 
 

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector 
Space,” arXiv preprint arXiv:1301.3781v3, 2013 

[2] Swati Meena (2020). Training Word2vec using genism, Available from 
https://swatimeena989.medium.com/training-word2vec-using-gensim-14433890e8e4 

Egyptian Journal of Language Engineering, Vol. 9, No. 2, 2022 19



[3] M. E. Peters et al., “Deep contextualized word representations,” arXiv preprint arXiv:1802.05365v2, 2018. 
[4] Z. S. Harris, “Distributional Structure,” WORD, 10:2-3, 146-162, DOI: 10.1080/00437956.1954.11659520 
[5] J. M. Ponte and W. B. Croft, “A Language Modeling Approach to Information Retrieval,” in proc. of the 21st 

annual international ACM SIGIR conference on Research and development in information retrieval, pp.  275–
281, August 1998. 

[6] A. Berger and J. Lafferty, “Information Retrieval as Statistical Translation,” in proceedings of the 22nd annual 
international ACM SIGIR conference on Research and development in information retrieval, pp.222–229, 
August 1999. 

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” 
arXiv preprint arXiv:1409.0473v7, 2014. 

[8] N. Kalchbrenner and P. Blunsom, “Recurrent Continuous Translation Models,” In Proceedings of the 2013 
Conference on Empirical Methods in Natural Language Processing, pp.1700–1709, Seattle, Washington, USA, 
2013. Association for Computational Linguistics. 

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” arXiv preprint 
arXiv:1409.3215v3, 2014 

[10] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine 
Translation,” arXiv preprint arXiv:1406.1078v3, 2014. 

[11] A. Vaswani et al., “Attention is All you Need,” In Advances in Neural Information Processing Systems, 
pp.6000–6010, 2017. 

[12] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Journal of Neural Computation, vol.9, no.8, 
pp.1735-1780, 1997. 

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding,” arXiv preprint arXiv:1810.04805, 2018. 

[14] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by Generative 
Pre-Training,” 2018. [Online]. Available: https://cdn.openai.com/research-covers/language-
unsupervised/language_understanding_paper.pdf 

[15] J. Howard and S. Ruder, “Universal Language Model Fine-tuning for Text Classification,” arXiv preprint 
arXiv:1801.06146v5, 2018. 

[16] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised 
Multitask Learners,” 2019. [Online]. Available: https://cdn.openai.com/better-language-
models/language_models_are_unsupervised_multitask_learners.pdf 

[17] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, “Transformer-XL: Attentive Language 
Models Beyond a Fixed-Length Context,” arXiv preprint arXiv:1901.02860, 2019. 

[18] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized 
Autoregressive Pretraining for Language Understanding,” arXiv preprint arXiv:1906.08237, 2019. 

[19] T. Wolf et al., “Hugging Face’s Transformers: State-of-the-art Natural Language Processing,” arXiv preprint 
arXiv:1910.03771, 2019. 

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network (2015),” arXiv preprint 
arXiv:1503.02531v1, 2015. 

[21] X. Liu, X. Wang, and S. Matwin, “Improving the Interpretability of Deep Neural Networks with Knowledge 
Distillation,” arXiv preprint arXiv:1812.10924, 2018. 

[22] J. Gou, B. Yu, S. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” arXiv preprint arXiv:2006.05525, 
2020. 

[23] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distil BERT, a distilled version of BERT: smaller, faster, 
cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019. 

[24] B. Koch, E. Denton, A. Hanna, and J. G. Foster, “Reduced, Reused and Recycled: The Life of a Dataset in 
Machine Learning Research,” arXiv preprint arXiv:2112.01716, 2021. 

[25] Data Centric AI Web Site: https://datacentricai.org/ (accessed 26 August 2021) 
[26] M. Abadi, et al., “TensorFlow: A system for large-scale machine learning,” arXiv preprint arXiv:1605.08695, 

2016. 
[27] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” arXiv preprint 

arXiv:1912.01703, 2019. 
[28] Glossary of Scientific AI Terms, Available from https://aiinarabic.com/glossary/ 

 
 
 
 
 
 
 

20 A. Zaazaa, M. Rashwan, O. Emam: Community Question Answering Ranking: Methodology Survey

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1801.06146v5
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aiinarabic.com/glossary/


BIOGRAPHY 
 

Ahmed Zaazaa 
Ahmed received the B.Sc. in Communications and Computer from the Faculty of Engineering, 
Cairo University, Cairo, Egypt. Ahmed has been working in IBM for 7 years, 6 of which in the field 
Artificial Intelligence and Cognitive Solutions.                                   
 
 
 
 

 
 
Prof. Mohsen A. A. Rashwan 
Professor Mohsen Rashwan received the B.Sc. and M.Sc. degrees in Electronics and Electrical 
Communications from the Faculty of Engineering, Cairo University, Cairo, Egypt, another M.Sc. 
degree in systems and computer engineering from Carleton University, Ottawa, ON, Canada, and the 
Ph.D. degree in electronics and electrical communications from Queen’s University, Kingston, ON, 
Canada. 
 
 

 
 
Dr. Ossama Emam 
Dr. Ossama Emam received B.Sc., M.Sc. and Ph.D. degrees in Systems and Computer Engineering 
from the Faculty of Engineering, Cairo University, Cairo, Egypt. Dr. Ossama has more than 36 years 
of experience in NLP and ML technologies. Dr. Ossama has been leading the IBM Cairo Human 
Language Technologies since 1986. And in 2008, he became the Chairperson of the MEA invention 
Development Team. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Egyptian Journal of Language Engineering, Vol. 9, No. 2, 2022 21



Arabic Abstract 
 
 

 الاجابة على اسئلة المجتمعات: دراسة استقصائیة عن منھجیتھا 
 

 أحمد زعزع*1،  محسن رشوان*2، أسامة إمام*3
 قسم ھندسة الاتصالات والالكترونیات، كلیة الھندسة، جامعة القاھرة، جبزة، مصر*

1azaazaa@eg.ibm.com 

2 mrashwan@rdi-eg.ai 

3ossama.emam1@ibm.com 

 ملخص 
 

، وكیف تستخدم  عجنبًا إلى جنب مع المنھجیات المستخدمة في الإجابة على أسئلة المجتم الكلماتتضمین  تستعرض ھذه الورقة تطور  
اللغة تضمین  ھذه المنھجیات   نمذجة المتجھات وكیف أثرت على معالجة  تناقش الورقة أولاً  لتحقیق مقاییس أداء أعلى.  الكلمات 

وغیرھا. ثم المتجھ  نموذج الكلمة إلى    وطریقة  ،ترمیز ون ھوتثم تشرح بالتفصیل بعض الأسالیب المستخدمة مثل    ككل، الطبیعیة
السیاقیة للكلمات وكیفیة تحسینھا على التقنیات السابقة. تسلط الورقة بعد ذلك بعض الضوء على نمذجة    لتضمیناتا  تناقش الورقة

 علىوتناقش بإیجاز كیف تعمل وكیف أثرت لیس فقط    )،(المحولات  آلیة الاھتمام  اللغة جنبًا إلى جنب مع البنى الجدیدة القائمة على
في المجال من الذكاء  ع  على أسئلة المجتم  إجابة بإیجاز التحول  تناقش الورقة  ثم  بشكل عام.  اللغویة العصبیة  لكن على البرمجة 

بمقاییس عالیة الأداء إلى ذكاء اصطناعي مرتكز  نموذج  إنتاج  ینصب معظم التركیز على  النموذج، حیث  القائم على  الاصطناعي 
 .ولة الحصول على طریقة منھجیة لتصنیف البیانات حتى یسھل تولید نموذج عالي الأداءالبیانات حیث ینصب التركیز على محا

 
 الكلمات المفتاحیة

 الترتیب المجتمعات،الاجابة على اسئلة  الطبیعیة،معالجة اللغة  العمیق،التعلم  الآلة،تعلم 
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