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ABSTRACT 

 

 The inverted Gompertz distribution, and some of its properties are investigated.  

The distribution of the thr order statistic of the inverted Gompertz  distribution and some 

special cases are presented. Transformed distributions of this distribution are derived.  

Based on Type II censored samples, the estimation of the shape and scale parameters, 

reliability and hazard rate functions are obtained using the maximum likelihood method. 

The uniformly minimum variance unbiased estimate of a function of the shape parameter 

is obtained assuming that the scale parameter is known. Asymptotic variances and 

covariances of the maximum likelihood estimators are found. Confidence intervals of the 

parameters are also given. Via a Monte Carlo simulation study, the estimated risks, 

squared bias and variances of the estimates are computed from different sample sizes. 

 

Keywords and phrases: Inverted Gompertz distribution; reliability function; hazard 

rate function; Type II censored samples; maximum likelihood method; uniformly 

minimum variance unbiased estimate. 

1. INTRODUCTION 

 The Gompertz distribution plays an important role in modeling human mortality 

and fitting actuarial tables. Benjamin Gompertz introduced a new distribution named by 

Gompertz distribution [see AL-Hussaini, AL-Dayian and Adham (2000)]. It is used as a 

growth model, especially in epidemiological and biomedical studies [see Jaheen 

(2003b)].  Casey used the Gompertz distribution as a statistical model to fit tumor growth 

[see AL-Hussaini, AL-Dayian and Adham (2000)]. Also, Laird studied several types of 

tumors in mice, rats and rabbits and concluded that the growth of a transplanted, or 

primary, tumor is described well by the Gompertz distribution [see AL-Hussaini, AL-

Dayian and Adham (2000)].  

 Many authors have contributed to the studies of statistical methodology and 

characterization of this distribution; for example, Sherman and Morrison (1950), Ahuja 

and Nash (1967), Garg, Raja Rao and Redmond (1970), Adham (1996), AL-Hussaini, 

AL-Dayian and Adham (2000), Adham and Walker (2001), Jaheen [(2003a), (2003b)], 
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Wu, Hung and Tsai (2004), Hendi, Abu-Youssef and Alraddadi (2006) and AL-Khedhairi 

and EL-Gohary (2008). 

 The probability density function (pdf) of the random variable( X ) which has a 

Gompertz distribution is defined as;   

            ,)0,a(,0,1)(expaexpa)( 



  bxxb

b
xbxf                     (1) 

then, the distribution of 1 XT  is referred as the inverse or inverted Gompertz (IG) 

distribution.  

This paper consists of five sections. Section (1) is an introduction.  In Section (2), 

some descriptive properties of the inverted Gompertz distribution are obtained. Also, 

some transformed distributions of the inverted Gompertz distribution are given. In 

Section (3), maximum likelihood estimation of the shape and scale parameters, reliability 

function (RF) and hazard rate function (HRF) of the inverted Gompertz distribution 

based on Type II censored samples are presented. In Section (4), a Monte Carlo 

simulation study is described. This study ends, in Section (5), by concluding remarks.  

  

2.  THE MAIN PROPERTIES OF THE INVERTED GOMPERTZ 

DISTRIBUTION 

 
         This section is devoted to the description of the IG distribution. Main properties of 

the IG distribution are obtained. Graphical description is presented. Moments and 

quantiles of the IG distribution are derived. Finally, the distribution of the thr order 

statistic of the IG distribuiton is obtained. 

 Let T  be a random variable distributed as IG distribution with shape  parameter 

0a   and scale parameter 0b , denoted by ~T  IG )a,( b , then 

1.  The pdf of the random variable T , using (1), is given by; 

             ).0a,(,0;1)(expaexpa)( 112 



   bttb

b
tbttf               (2) 

2.  The cumulative distribution function (cdf) of the random variable T  is given by; 
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               ).0a,(,0;1)(expa-exp)( 1 



   bttb

b
tF         (3)                                  

3.  The RF of the random variable T  is given by; 

                ).0a,(,0;1)(expa-exp1)( 1 



   bttb

b
tR                     (4) 

4.  The HRF of the random variable T  is given by;  

              
 

 
).0,a(,0;

1)(expa-exp1

1)(expaexpa
)(h

1

112







 





 






bt
tb

b

tb
b

tbt
t                (5) 

5.  Graphical description 

The curves of four IG )a,( b  densities and the corresponding HRF’s are plotted in 

figure (1).   

Figure (1): Density and HRF’s of IG )a,( b Distributions 
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                         (3)  a = b                                                                             (4)  1b  

 

Figure (1) shows that: 

 The density curve of the IG )a,( b  is positively skewed if 0a  . 

 When ba  the curves of the pdf and HRF are monotone increasing 

and then monotone  decreasing. 

 When ba  the curves of the pdf and HRF are monotone decreasing. 

 When 1a  b  the curves of the pdf and HRF are monotone 

decreasing. 

6.  Moments of the inverted Gompertz distribution 

 The moments of the IG )a,( b distribution do not exist, but the approximate mean 

and variance, using the method of statistical differentials [see Adham (1996)]., for the 

IG )a,( b  distribution can be written as follows:                
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[For proof, see the Appendix]. 
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7.  The mode of the inverted Gompertz distribution 

 The mode D of the random variable T can be obtained by maximizing the pdf as 

followes: 

                                    ,)()()(0 DADfDf                                                                (8) 

where )(Df  is as given by (2), after replacing t  by D , and  

                                  .2expa)( 112   DbDbDDA                                                (9) 

The solution of (6) is 0)( DA  which gives the mode of an IG )a,( b .  

8.  Quantiles of the inverted Gompertz distribution 

The quantile of the IG )a,( b  distribution is given by        

                        ,10,ln
a

1ln1
1















 



qqb
b

tq                                                    (10) 

and the special cases may be obtained by using (10) such as first and third quartiles, when 

41q  and 43q , respectively.  Also, if 21q , we obtain the median of T , which is 

given by 

                  .)2(ln
a

1ln1median
1















 

b
b

tmedian                                                      (11) 

9. The distribution of the thr  order statistic of the inverted Gompertz distribution  

Let T Tn1 ,...,  be independent identically distributed random variables from an 

IG )a,( b distribution.  Let T r( ) denote the r th order statistic of T Tn1 ,... .  Then the pdf of 

T r( )  can be written as a linear combination of  IG( brj , ) density functions.  That is, 

                        





rn

j
rjT tbrjtftf

r
0

,0),),(a()(
)(

                                               (12) 

where, for )),(a(,,...,1,0 brjtfrnj   is as given by (2) after replacing t  and a  by 

)(rt  and )(a rj  , respectively, and the combination factors rj  are given by  
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Proof: 

It is well known that the pdf of the r th  order statistic  T r  of a random sample of 

size n drawn from a population with pdf f tT ( )  and cdf F tT ( )  is given by 

    0,)(1)()()( 1
)(







  ttFtFtfrtf rn

T
r

TT

n

r
T r

.                                             (14) 

By expanding   rn
T tF  )(1 , using the binomial expansion, (14) can be written as  

              0,)()1()()( 1
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By substituting )(tfT , )(tFT  given by (2) and (3) in (15), after replacing t  by  t r , we 

obtain 
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Special cases 

(i) If, in (12), 1r , we obtain the pdf of the first order statistic,                                                                                                  

   aa11 min TT
n

 , which is given by 

                            





1

0
1 ,0),),1(a()(

)1(

n

j
jjT tbjtftf                                            (16) 

where 

                            









n
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j
j

1
1 )1(  ,   .1,...,1,0  nj                                                   (17) 

and )),1(a(
)1(

bjtfT  is the pdf of the IG )a,( b , given by (2) after replacing a by a( j+1), 

1,,1,0  nj  .  Therefore, the pdf of the minimum of a random sample drawn from an 
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IG )a,( b population is a linear combination of IG  bj ),1a(   density functions, and 

combination factors j1  given by (17), where 1,,1,0  nj  .       

(ii) If the sample size is odd, let n m 2 1 and in (12), r m  1 , then the pdf of the 

median is given by  

                     


 


m

j
jjmT tbmjtftf
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where   
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)1()1( ,                                                        (19) 

and ,)),1(a( bmjtf   is the pdf of the IG )a,( b , given by (2) after replacing a  by 

)1(a  mj , mj ,,1,0  .  Therefore, the pdf of the median of a random sample drawn 

from an IG )a,( b  population is a linear combination of IG  bmj ),1a(   density 

functions, and combination factors jm )1(   given by (19), where mj ,,1,0  .   

(iii) If, in (12), r n , we obtain the pdf of  the last  order statistic,  aa1)( max TT
nn 

 , which             

       is given by 

                      





1

0

,0),),(a()(
)(

n

j
T tbntftf

n
                                                          (20)    

where )),(a(
)(

bntf
nT is the pdf of the IG )a,( b given by (2) after replacing a  by )(a n .  

Therefore, the pdf of the maximum of a random sample drawn from an 

IG )a,( b population is the same distribution but with parameters )(a n  and b  as shown in 

(20). 

10. Transformations applied to the inverted Gompertz distribution and the resulting    

distributions 

It can be shown that the IG )a,( b distribution is related through variable 

transformations to a wide range of well known distributions such as Pareto Type I, 

Weibull (exponential, Rayleigh), gamma (chi-square), left-truncated exponential, Burr 

Type XII (Lomax, beta Type II, Pareto Type II, Pareto Type III, Pareto Type IV, log 

logistic, F), Generalized logistic Type I (logistic, standard logistic, Generalized logistic 

Type II, Burr Type II), Burr Type III, Burr Type IV, Burr Type X, extreme value, power-
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function, compound Gompertz and generalized uniform (beta Type I) distributions. Table 

(1) summarizes the transformations from IG )a,( b  to other distributions. The proof, in 

each case, is straightforward. 

Table (1) 

Summary of Transformations Applied to the Inverted Gompertz 

and Resulting Distributions  
 

Transformation Distribution Pdf Range 
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Table (1) (continued) 

Transformation Distribution Pdf Range 
1

,(v) 1 
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3. ESTIMATION OF THE PARAMETERS, RELIABILITY AND HAZARD    

RATE FUNCTIONS BASED ON TYPE II CENSORED SAMPLES 

 

In this section, we are concerned with the estimation of the vector of two  

parameters,   b,a , RF and HRF of the inverted Gompertz based on Type II censored 

samples.  The maximum likelihood (ML) method is used to estimate the vector  , RF 

and HRF.  Furthermore, the uniformly minimum variance unbiased estimator (UMVUE) 

of the function of shape parameter, a, is obtained when the scale parameter, b, is known.          

 Suppose that )()2()1(   rTTT    is a censored sample of size r obtained from a 

life-test on n items (Type II censored sample) whose lifetimes have an IG )a,( b  

distribution.  The likelihood function based on Type II censored sample is given by 

                      ,)a,;()a,;(
)!(

!)a,( )(
1

rn
r

r

i
i btRbtf

rn
ntbL 












                                 (21) 

where, )a,;( btR (r) is given by (4).  When )a,(, tbLnr  , reduces to the likelihood 

function for complete samples. 

The natural logarithm of the likelihood function, (21), is given by 
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And the substitution of (2) and (4) into (22) yields    
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where 

   1)(exp)(and1)(exp)( 11  
rrii bttAbttA .                                                        (24) 

3.1  MLE’s of the Parameters of Inverted Gompertz Distribution 

 To obtain the MLE’s of the parameters, a and b, differentiate   in (23) with 

respect to a and b and setting to zero, we obtain 
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                 (26)                                                 

where )(ˆand)(ˆ
ri tAtA are as given by (24) after replacing b by b̂ . 

 The two nonlinear likelihood equations (25) and (26) can be solved by using 

Newton-Raphson iteration scheme, to yield the MLE’s )ˆ,â( b of a and b.   

Remark (1): 

 It may be observed that the complete sample case is a special case from Type II 

censored sample and in this case, we notice the following: 

 The two nonlinear likelihood equations (25) and (26) can be reduced to one 

equation as a function of b only, after obtaining â  from (25) and substituting the 

MLE of a in (26) and solving it numerically. 

 Suppose that nTTT ,...,, 21  is a random sample of size n drawn from an 

IG )a,( b population with pdf given by (2), where b is known and a is unknown.  If 

1a , then the UMVUE of   is 


n

i
itA

bn 1

)(1 , that is, ,)(1ˆ
1




n

i
itA

bn
 where 

              1)(exp)( 1  
ii bttA .   

                                             
3.2  MLE’s of RF and HRF 

  The MLE’s of the RF, )(tR , and HRF, )(h t , are obtained by replacing the parameters a 

and b in (4) and (5) by their MLE’s.  Hence, for a given value of t, the MLE’s of )(tR  

and )(h t  are given, respectively, by 

  ,)0ˆ,â(,0,1)ˆ(expˆ
â-exp1)(ˆ
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where â and b̂  are the MLE’s of a and b respectively.   
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3.3  Asymptotic Variances and Covariances of MLE’s  

 The asymptotic variances and covariances of MLE’s are given by the elements of 

the inverse of the Fisher information matrix  jiij EI   2)(  where 2,1, ji  

and ),a(  b .  Unfortunately, the exact mathematical expressions for the above 

expectations are very difficult to obtain.  Therefore, we give below the observed Fisher 

information matrix  jiijI   2)(ˆ , which is obtained by dropping the 

expectation on operator E.  The approximate asymptotic variances-covariances matrix V̂  

for the MLE’s is obtained by inverting the observed information matrix, 

                                                      .)(ˆˆ 1
 ijIV                                           (29)      

Differentiating (25) and (26) with respect to a and b we have:  
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  (32)                                            

where )( rtA  is as given by (24). 

3.4  Confidence Intervals of a  

Assuming the shape parameter is the only unknown parameter and nr  , then the 

confidence interval (C.I.) for a is given by 

                                  ,1
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a
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exponential ( a ), [see Table 

(1) the third transformation], 2  is a tabulated value of chi-square at 2n degrees of free- 
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dom.  However, approximate confidence intervals for a and b can be developed by 

invoking the asymptotic normality of the MLE’s.  Hence )%1(100   central confidence 

intervals for a and b are given, respectively, by  

                                  )â(â 2 Varz ,                                                                           (33)  

                                 )ˆ(ˆ
2 bVarzb  ,                                                                            (34) 

where 2z is a standard normal variate.   

 

4.  MONTE CARLO SIMULATION 

 

 Some numerical results, based on the MLE’s, are obtained according to the 

following steps: 

 1.  Given a and b, generate random samples of size n (n = 40, 60 and 100) from an 

IG )a,( b , by observing that if U is uniform (0, 1), then 
1

ln1ln1
















  U

a
b

b
T  is 

IG )a,( b . 

2.  Order the sample obtained in step1. 

3.  Obtain the MLE’s of the parameters a and b by solving the two nonlinear equations 

(25) and (26) simultaneously, using Newton-Raphson iteration scheme.          

4.  Compute the MLE’s of the RF and HRF at time 0t , using equations (27) and (28), 

respectively, after replacing a and b by their corresponding MLE’s â  and b̂ . 

5.  Repeat the above steps m times, where m = 1000 for n = 40, 60 and 100.  The 

computations are carried out for censoring percentage of 80%, 90%, 95% and 100% 

(complete sample case) for each sample size. 

6.  The estimated risks (ER’s), squared biases ( 2Bias ) and variances (Var ) of the 

estimators are computed by averaging over the m repetitions.    

      All simulation results presented here are obtained via the MathCad-14 mathematical 

package.  The computational results are displayed in Tables (2), (3) and (4). 
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Table (2) presents the estimated risks, squared biases and variances of the MLE’s of the 

two unknown parameters a and b.  The “actual” population values are 

2.5. twhere66,0.17366020h(t)41,0.90173790)(,0.3,0.3a 0  tRb  

 Table (3) presents the estimated risks, squared biases and variances of the MLE’s 

of the two unknown parameters a and b.  The “actual” population values are 

.0.4 twhere5,0.21841646h(t)99,0.63182489)(,5.3,5.2a 0  tRb  

 Table (4) presents the estimated risks, squared biases and variances of the MLE’s 

of the two unknown parameters a and b.  The “actual” population values are 

.0.3 twhere19,0.33320877h(t)78,0.27129765)(,0.1,8.0a 0  tRb    

 

5.  CONCLUDING REMARKS 

 

It may be observed, from Tables (2), (3) and (4), that 

1.  All the results based on censored samples of size r, can be specialized to the complete 

sample case by taking nr  . 

2.  The estimates â  and b̂ , are better when 1a0   than when 1a  . 

3.  If the sample size, n, increases and the censoring ratio is kept fixed, the estimated risks 

(ER’s) decrease and the estimates improved. 

4.  By increasing the censoring size, r, that is, by using more sample units the ER’s and 

variances of the estimates decrease and the efficiency of the estimates increase as a 

result of decreasing variances.  

5.  The estimates )(ˆ tR and (t)ĥ are almost asymptotically unbiased. 

 6.  The covariances between the estimates â  and b̂  are negative in all cases.       

 
 
 

 
 
 

  



– – 

 

 - 16 - 

Table (2) 
Estimated Risks, Bias 2 and Variances of the MLE’s of the shape and scale 

parameters, a and b, RF and HRF of the inverted Gompertz for Different Sample 
Sizes n, Censoring Sizes r and Repetitions m 

(a = 3, b = 3, R(2.5) = 0.9017379041, h(2.5) = 0.1736602066) 
 

n r 
)â(ER  

)â(2Bias    
)â(Var  

)ˆ(bER  

)ˆ(2 bBias    

)ˆ(bVar  

)ˆ,â(Cov b  

))(ˆ( 0tRER  

))(ˆ( 0
2 tRBias  

))(ˆ( 0tRVar  

))(ĥ( 0tER  

))(ĥ( 0
2 tBias  

))(ĥ( 0tVar  

32 
0.7488454030 
0.0001924052 
0.7486529978 

1.7442730131 
0.1296665834 
1.6146064297 

-0.8730 
0.0014635233 
0.0000312930 
0.0014322303 

0.0027088308 
0.0000123884 
0.0026964423 

36 
0.6624657841 
0.0022829822 
0.6601828018 

1.6761982818 
0.1482864401 
1.5279118417 

-0.7865 
0.0014220116 
0.0000276557 
0.0013943559 

0.0025547597 
0.0000066782 
0.0025480814 

38 
0.6617548417 
0.0021520811 
0.6596027606 

1.6718205878 
0.1464401071 
1.5253804807 

-0.7849 
0.0014218905 
0.0000276347 
0.0013942558 

0.0025477492 
0.0000070715 
0.0025406777 

40 

40 
0.6467216096 
0.0074529168 
0.6392686929 

1.5987579655 
0.1783449851 
1.4204129804 

-0.7311 
0.0014111554 
0.0000196201 
0.0013915353 

0.0026183906 
0.0000001142 
0.0026182764 

48 
0.4878112385 
0.0000352682 
0.4877759702 

1.1191805247 
0.0578477053 
1.0613328194 

-0.5792 
0.0009976174 
0.0000186182 
0.0009789992 

0.0017506148 
0.0000079501 
0.0017426646 

54 
0.4813309870 
0.0000220848 
0.4813089022 

1.0948674987 
0.055884868 
1.0389826307 

-0.5676 
0.0009973140 
0.0000183394 
0.0009789746 

0.0017305684 
0.0000083616 
0.0017222068 

57 
0.4809455718 
0.0000180431 
0.4809275287 

1.094269928 
0.0555697645 
1.0387001634 

-0.5673 
0.0009974443 
0.0000183270 
0.0009791173 

0.0017314240 
0.0000084290 
0.0017229950 

60 

60 
0.4393910638 
0.0004866889 
0.4389043749 

0.9620426338 
0.0521046324 
0.9099380014 

-0.4921 
0.0009516071 
0.0000099313 
0.0009416757 

0.0015755224 
0.0000024449 
0.0015730775 

80 
0.2806393533 
0.0019833314 
0.2786560218 

0.62093056 
0.0341553407 
0.5867752194 

-0.3253 
0.0006107013 
0.0000037469 
0.0006069544 

0.0009840728 
0.0000001847 
0.0009838881 

90 
0.2781131550 
0.0018293863 
0.2762837687 

0.6105992556 
0.0329311384 
0.5776681172 

-0.3206 
0.0006102371 
0.0000036918 
0.0006065452 

0.0009798267 
0.0000001321 
0.0009796946 

95 
0.2818751844 
0.0000130300 
0.2818621544 

0.5691646298 
0.0154710886 
0.5536935412 

-0.3182 
0.0005775943 
0.0000056351 
0.0005719592 

0.0009746555 
0.0000021825 
0.0009724730 

100 

100 
0.2613203647 
0.0008572109 
0.2604631538 

0.5621608389 
0.0233302311 
0.5388306078 

-0.3035 
0.0005582392 
0.0000029238 
0.0005553155 

0.0009193430 
0.0000000228 
0.0009193202 
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Table (3) 
Estimated Risks, Bias 2 and Variances of the MLE’s of the shape and scale 

parameters, a and b, RF and HRF of the inverted Gompertz for Different Sample 
Sizes n, Censoring Sizes r and Repetitions m 

(a = 2.5, b = 3.5, R(4) = 0.6318248999, h(4) = 0.218416465) 
 

n r 

)â(ER  

)â(2Bias    
)â(Var  

)ˆ(bER  

)ˆ(2 bBias    

)ˆ(bVar  
)ˆ,â(Cov b  

))(ˆ( 0tRER  

))(ˆ( 0
2 tRBias  

))(ˆ( 0tRVar  

))(ĥ( 0tER  

))(ĥ( 0
2 tBias  

))(ĥ( 0tVar  

32 
0.5320075257 
0.0080611627 
0.5239463630 

1.6850831841 
0.2103710777 
1.4747121064 

-0.7136 
0.0045792848 
0.0000196856 
0.0045595992 

0.0022840307 
0.0001814260 
0.0021026047 

36 
0.4984301881 
0.0012412202 
0.4971889679 

1.6124017567 
0.1308380438 
1.4815637129 

-0.6870 
0.0042552955 
0.0000000255 
0.0042552700 

0.0020471292 
0.0000900139 
0.0019571153 

38 
0.4976876979 
0.0011453021 
0.4965423958 

1.6065856111 
0.1287885233 
1.4777970878 

-0.6851 
0.0042392658 
0.0000000024 
0.0042392634 

0.0020329606 
0.0000878234 
0.0019451372 

40 

40 
0.4833616637 
0.0048766643 
0.4784849994 

1.5377057399 
0.1604765582 
1.3772291817 

-0.6375 
0.0043062012 
0.0000085975 
0.0042976037 

0.0019912067 
0.0001265839 
0.0018646228 

48 
0.3400788549 
0.0022173859 
0.3378614691 

1.0398256983 
0.0777524864 
0.962073212 

-0.4753 
0.0027656856 
0.0000033827 
0.0027623029 

0.0013460719 
0.0000634299 
0.0012826420 

54 
0.3350006925 
0.0017811603 
0.3332195322 

1.0105373441 
0.0720489794 
0.9384883648 

-0.4646 
0.0027283084 
0.0000021251 
0.0027261833 

0.0013033766 
0.0000569312 
0.0012464454 

57 
0.3293047917 
0.0000583791 
0.3292464126 

0.9921804430 
0.0416976711 
0.9504827719 

-0.4469 
0.0027139613 
0.0000005670 
0.0027133943 

0.0011940492 
0.0000257155 
0.0011683337 

60 

60 
0.3199839176 
0.0009410660 
0.3190428516 

0.9213917112 
0.0517132341 
0.8696784771 

-0.4241 
0.0028172425 
0.0000023443 
0.0028148981 

0.0012272437 
0.0000414947 
0.0011857490 

80 
0.2018884063 
0.0002114496 
0.2016769566 

0.5248747283 
0.0058687117 
0.5190060167 

-0.2671 
0.0016441070 
0.0000004882 
0.0016436188 

0.0006999805 
0.0000037467 
0.0006962338 

90 
0.2016107332 
0.0002085049 
0.2014022283 

0.5200420764 
0.0058176686 
0.5142244078 

-0.2653 
0.0016397200 
0.0000004815 
0.0016392385 

0.0006928801 
0.0000036935 
0.0006891865 

95 
0.2006612523 
0.0001447931 
0.2005164591 

0.5443337011 
0.0143443107 
0.5299893904 

-0.2669 
0.0016682845 
0.0000008728 
0.0016674117 

0.0007088750 
0.0000122582 
0.0006966168 

100 

100 
0.2004937387 
0.0001347341 
0.2003590047 

0.5427332798 
0.0141490524 
0.5285842274 

-0.2664 
0.0016677261 
0.0000008226 
0.0016669035 

0.0007071233 
0.0000120443 
0.0006950790 
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Table (4) 
Estimated Risks, Bias 2 and Variances of the MLE’s of the shape and scale 

parameters, a and b, RF and HRF of the inverted Gompertz for Different Sample 
Sizes n, Censoring Sizes r and Repetitions m 

(a = 0.8, b = 1, R(3) = 0.2712976578, h(3) = 0.3332087719) 
 

n r 

)â(ER  

)â(2Bias    
)â(Var  

)ˆ(bER  

)ˆ(2 bBias    

)ˆ(bVar  
)ˆ,â(Cov b  

))(ˆ( 0tRER  

))(ˆ( 0
2 tRBias  

))(ˆ( 0tRVar  

))(ĥ( 0tER  

))(ĥ( 0
2 tBias  

))(ĥ( 0tVar  

32 
0.0540344821 
0.0001145260 
0.0539199561 

0.1410219151 
0.0130621170 
0.1279597981 

-0.0659 
0.0031134041 
0.0000117961 
0.003101608 

0.0009708845 
0.0000548372 
0.0009160473 

36 
0.0533715092 
0.0000773264 
0.0532941829 

0.1386749259 
0.0122225558 
0.1264523701 

-0.0650 
0.0030646121 
0.0000086983 
0.0030559138 

0.0009505313 
0.0000501110 
0.0009004203 

38 
0.0534332759 
0.0000747800 
0.0533584959 

0.1382142105 
0.0121618645 
0.1260523460 

-0.0649 
0.0030686723 
0.0000085237 
0.0030601486 

0.0009489165 
0.0000497788 
0.0008991377 

40 

40 
0.0517310823 
0.0001108668 
0.0516202155 

0.1372866437 
0.0099800627 
0.1273065809 

-0.0639 
0.0029455515 
0.0000141485 
0.0029314030 

0.0009369049 
0.0000451278 
0.0008917771 

48 
0.0337366571 
0.0000943719 
0.0336422852 

0.0915579298 
0.0071075787 
0.0844503511 

-0.0431 
0.0018974741 
0.0000064512 
0.0018910229 

0.0006175422 
0.0000294383 
0.0005881039 

54 
0.0328921033 
0.0000760136 
0.0328160896 

0.0891344842 
0.0067220722 
0.0067220720 

-0.0418 
0.0018533316 
0.0000050927 
0.0018482389 

0.0005990692 
0.0000272706 
0.0005717986 

57 
0.0328911099 
0.0000750923 
0.0328160175 

0.0891241589 
0.0067093701 
0.0824147889 

-0.0419 
0.0018538744 
0.0000050405 
0.0018488339 

0.0005991271 
0.0000271995 
0.0005719276 

60 

60 
0.0328697869 
0.0000716081 
0.0327981787 

0.0887803349 
0.0066437188 
0.0821366161 

-0.0418 
0.0018519223 
0.0000048247 
0.0018470976 

0.0005970681 
0.0000268394 
0.0005702287 

80 
0.0218334814 
0.0000034678 
0.0218300137 

0.0505546472 
0.0017544691 
0.0488001781 

-0.0270 
0.0012456793 
0.0000007287 
0.0012449506 

0.0003666754 
0.0000068993 
0.0003597761 

90 
0.0214276161 
0.0000045858 
0.0214230303 

0.0499484191 
0.0017642010 
0.0481842181 

-0.0265 
0.0012250690 
0.0000007974 
0.0012242716 

0.0003608020 
0.0000069619 
0.0003538401 

95 
0.0214224288 
0.0000033003 
0.0214191285 

0.0497088953 
0.0017179711 
0.0479909242 

-0.0265 
0.0012244566 
0.0000006697 
0.0012237869 

0.0003594730 
0.0000067092 
0.0003527638 

100 

100 
0.0213915303 
0.0000033012 
0.0213882291 

0.0496819192 
0.0017159876 
0.0479659316 

-0.0264 
0.0012221129 
0.0000006660 
0.0012214469 

0.0003589683 
0.0000066988 
0.0003522695 
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Appendix 

 

The approximate mean and variance of inverted Gompertz distribution 

 If )a(EXP~Y , with 
a
1)(  yE  and ,

a
1)( 2

2  yV  then the variable 

  ),a(IG~1ln1)(
1

bby
b

YgT






  .  This relation will be used to find the approximate 

mean and variance of IG )a,( b .  The approximate mean and variance of the )(yg , based 

on the method of statistical differentials, are given by 

                                          )(
2
1)()( 2  ggYgE  ,                               (A.1)                                              

and  

                                          .)()(Var 22  gYg                                                            (A.2)  

Now                               
1

1ln1)(






  by
b

YgT , 

then 

                 ,1ln11)(,1ln1)(
2

1
1 








 



   b

b
bgb

b
g                        (A.3) 

and 

                 ,1ln21ln11)(
3

2  bb
b

bg 



 


                                   (A.4)  

where  
a
1

  and 2
2

a
1

 . 

By substituting (A.3) and (A.4) in (A.1) and (A.2), we obtain 

  ,
a

1ln2
a

1
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1
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