Inference on the Parameters and Optimal Design of Simple
Step-Stress Accelerated Life Testing for Weighted Exponential
Distribution

Hamdy M. Salem
Department of Statistics - Faculty of Commerce - Al-Azher University - Egypt
E- mail ( d.hamdysalm@yahoo.com ).




FA7 gl — gwlil] aac| 12| deola —olnil| LIS gliaal daolel] alol|

-78 -



FA7 gl — gwlil] aac| 12| deola —olnil| LIS gliaal daolel] alol|

Abstract:

This paper considers life-testing experiments and its influence of stress factors
such as, temperature or electricity loads on the lives of experiment items. Step-Stress
test is a special class of accelerated life tests, which allows the researcher to increase
stress levels more than normal during the experiment to see the surviving items. The
lifetime distribution of the test items is assumed to follow weighted exponential
distribution that considered. Different methods for estimating the parameters are
discussed. These methods are mainly maximum likelihood and confidence interval
estimations which generates narrow intervals to the unknown parameters of the
distribution with high probability based on asymptotic normality. Numerical study to
illustrate the optimal time procedure using MathCAD (2001) 1s discussed.

Keywords: Accelerate Life Testing, Step-Stress, Maximum Likelihood Estimator;
Information Matrix, Confidence Interval Estimators, Weighted Exponential

Distributions.

1. Introduction

The Accelerated Life Tests play an important role in reliability analysis. The
stress levels are increasing discretely at pre-fixed time points on test units during an
experiment. This is called step-stress test. Under normal operating conditions, it
allows the experimenter to obtain information on the parameters of the lifetime
distributions readily. In addition, when a test unit fails, there are many causes for the

failure such as mechanical, temperature and electrical.

Many authors have measured different choices for accelerate life testing. Drop,
R. V. et al (1996) developed a Bayes model for step-stress accelerated life testing.
They assumed the failure times at each stress level are having exponential
distribution but the specification of strict compliance to a time transformation
function is not required. Dharmadhikari, A. D. & Monsur M. R. (2003) assumed
that the scale parameter of Weibull and lognormal models which depend upon the
present level as well as the age at the entry in the present stress. They proposed a
parametric model to the life distribution for step-stress testing and estimated the

parameters involved in it. Chen, Z. et al (2006) considered the step-stress
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accelerated life tests for exponential population. They applied the tampered failure
rate model to be evidence for the existence, uniqueness, strong consistency and the
asymptotic normality of the MLE of mean. Al-Ghamdi A. S. & Hassan, A. S. (2009)
considered the problem using the Lomax distribution under a cumulative exposure
model. They obtained the optimum test plan by minimizing with respect to the
change time scale parameter and the asymptotic variance of the maximum

likelihood estimator of a given 50th percentile.

Recently, Donghoon, H. & Balakrishnan, N. (2010) considered the simple
step-stress model under time constraint when the lifetime distributions of the
different risk factors are independently and exponentially distributed. they derived
the maximum likelihood estimators of the unknown mean parameters under the
assumption of a cumulative exposure model. . Abd-Elfattah, A. M. and Al-Harbey,
A. H. (2010) studied the estimation problem when the lifetime distribution of the test
items is following Burr type III distribution. They derived the Maximum Likelihood
Estimates for the distribution parameters and acceleration factor in type Il censored
samples. Lee, H. ef al (2013) studied the problem for exponential products based on
type 1I right censored data from the step-stress accelerated life test. He preformed

tests of hypotheses about model parameters based on the likelihood method.

Azzalini (1985) suggested a method of obtaining weighted distributions from
independently identically distributed random variables. He used the density function
of one random variable and the distribution function of the other random variable as
follows:

F)= g oy 0 ) (i

Gupta & Kundu, (2009) presented a new class of weighted exponential distributions
based on an idea of Azzalini (1985). Makhdoom (2012) studied the estimation of
Stress-Strength reliability when X and Y are two weighted exponential distributions
with different parameters. He obtained the MLE of R based on one simple iteration

procedure, and he carried out Bayesian estimators of parameters with real data.

The cumulative distribution function and the probability density function of a

random variable which has the weighted exponential distribution respectively are:

- 80 -



FA7 gl — gwlil] aac| 12| deola —olnil| LIS gliaal daolel] alol|

. 5SS U A .
F(x,oc,l)— ” [1 e oc+1(1 e )} ;a, A, x>0, (1.2)
f(x;oc,A):a—ﬂ-le‘“(l—e‘““) s, A, x> 0. (1.3)
o

hence «aand A are the shape and scale parameters respectively (see Gupta &
Kundu 2009). This paper consists of four sections corresponding to sections 2, 3, 4
and 5, respectively. section 2 discusses the model description and assumptions.
section 3, provides the likelihood function and the asymptotic Fisher information
matrix which is contain on second and partial derivatives of the logarithm of
likelihood function. Confidence intervals about model parameters is examined based
on asymptotic normality in chapter 4. Finally, the last section contains a numerical

investigation carried out to study the properties of the new estimators.

2. Model Description and Assumptions

The cumulative distribution function of weighted exponential distribution
which is mentioned in(1.1) contains failure time of test item in case constant stress.

and the assumptions made are as below:
1- There is a relation that represents the relation between stress level Z, and scale

parameter A, as follows:

log(1,)=6,+6,Z. i=1,2 where@,, §, are unknown parameters depend on the
way and outcomes of the test and.

2- The entire n, , i=1,2 items are put at the normal stress Z, , at the beginning,
continuing until time 7 . Next, the stress is varied to a high level Z,, and the test
ongoing until all items failed.

3- At the time X, J=L2,..,n, under a stress level Z,, i=12 , all of n, failure
are observed.

4- In Step-Stress test which is a special class of accelerated life tests, the cumulative
exposure model is:

F(x):

{ F](x) O<x<r o1

F(x—t+7') 7<x<w
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F,(r') for 7'. So the cumulative

1

& ] which is asolution of F(r)=
exposure model for weighted exponential distributions is obtained as follow:

where 7'= r(—z
A

a—“[l—e"’l‘x—L(l—e_(“”)l‘x)} 0<x<71
a a+l
F(X) = Oc_-i-l - e—zz[x—r[l—i'?]] _L - e—(a+])ﬂ.z[x—r[]—j:]] S <ren (2.2)
a a+l
and the probability density function of the failure time is:
a—ﬂ-i]e_’l‘x(l—e_“’l‘x) 0<x<rt
o
f(x)= arl ea[[]ﬂ] L o1 e (2.3)
o

In next chapter, the likelihood function and asymptotic Fisher information
matrix are provided.
3. Likelihood Function and Asymptotic Fisher Information Matrix
Let the failure times X J=1,2,..,m; ,i=12 and n,, n,are the number of

items which faile at normal stress Z, and high stress Z, respectively. Then, their

likelihood function and log likelihood function respectively are:

o +1j (Q—Hj zw o lﬂ[e_m, ﬁ(l—e‘“ M)
Jj=1 Jj=1

L(x;a,l],lz):(—
a

a
no =), [le—r[l—f]] ny —al, [XZ/'_T[]_%]] (3-1)
Xl;le 1;][ lI-e ,
(x;a, A, A, )= (n, +n, )log(a +1)—(n, +n, )log(a)
A X1, -4, (xzj —T(l —ﬁ]] +i10g(1—e_al'x”)
M)A (3.2)

)
n, —al, [XZ/_T[]_}T]]
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The first derivatives of f(x;a,l],lz) with respect to a, A, and A, are,

respectively:
55()5;05,2,],2,2) :_(nl +n2)+ﬂ nzlx ¥
aa 0((0(+1) ]j:] 1j
n (3.3)
+AZZ(X2J _T(l—ﬁjj 1**=0,
J=1 M
o(x;a, 2,2, AN
&:_xu _H-(_Z] "‘“Z X, t*
oA, & -
. (3.4
+ar(£j 2 1**=0,
A ) 3
(%(X;Olail ’12) — ( 2 _T)—z‘[(ﬁ]
oA, 1
(3.5

—a X

e
where * = and **=
oy xy; 2
l-e —alz[le-—r[]—l—z]]

Unfortunately, there is no closed form for (oc, A 12) in (3.3), (3.4) and (3.5),

so, Newton—Raphson method is used to solve these equations i. It is an iterative

method for solving equations f(¢)=0 where f(g) is assumed to have a continuous

derivative f'(¢). Given a function f(¢)and its derivative f’(¢), a first guess g, is

initialed . Then, an approximation of ¢, is &, — A ,( o) and an approximation of ¢, is
/(&)
g . . . .
& - j{ ,(( ‘)) and so on for number of iterations r or if |g,+, —g,| <¢ where ¢, is the r
8]

estimate. (see Kotz et al (2003).

Now, to construct the asymptotic Fisher information matrix, the second and

mixed derivatives of f(x;oc,ll ,12) with respect to o, 4, and A, are taken as follows:
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(o, A, 4,) (v, A, R,)  0M(xia, A, 2,)]
oo’ o0, OadA,
(s, A, Ay 0(xa, A, A,) 9 (x0n Ay, ) ¢(

dAoa, oA 04,00,
(s, A, A,)  0H(xa, A, A,) 0 (x;0 A, A,)
oL,00 01,0, oA

where,

0> (x;a, 2, l) (n, +n,)(2a +1)
oa’ | (205+1 AZZx,]t* )fo,J )

2
—l;Z(xzj—r(l—ﬁD LEE
j=l A
n 2{ 2
—l;Z{xzj _T(I_TZD .(t**)z,
J=1 1
o M(x;ah,h,) 21
612] 2= ﬂ (ﬂ] ZXUZ‘*—O{ lej
4
— 2&1’ ( ] t** (ﬁ] zlt**
] /I] Jj=1

(%(xocll,l 2t 2051' = .
o A P
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m

(a2, 2,)  0%(x;a A, A) n
= = tF—a i b E
dadi, o100 ;x" “ ‘;x‘f

2
—OCAIfoj(.t*)Z —r(%] z g
j=1

o (3.9)

0’ U, 25 4,) _ D0, 00,2,) 3

7\
=
~o
~.
[
N
7\
o
|
|>>
— [\
N—
\._/
~
*
*

0aoA, O0A,0a =
—Z a (xzj—r(l—ﬁ ]+arﬁ
J=1 1 1
12 * ok
XAy Xy, =T 1—7 1t (3.10)
1

oo, 4 k) (e A n,)  2e( A, ) 2, &
S ) YoM)L T +2QT—§ t**
0A0%, 04,04, A 4 ,

]+arﬁ LE* (3.11)
4

, - N
+art i a|x,, -7 l—ﬁ +0¢rﬁ TEE
/I] /I] /I]

4. Approximate Confidence Interval

Let X,,X,,---,X, be two independent random samples drawn from Weighted

Exponential distributions as Eq. (1.1) with parameters (oc ,A],Az). They are used at

different stress values of Z, , Z,. Then the maximum likelihood estimation v of v
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is asymptotically normally distributed with mean y and variance o’(y)under
regularity conditions and large sample. It can be constructed as:

p[y;_z%.a(y,)gwgy;ﬂy/.a(q}:l_y.

2
Now, using following equations and confidence level 1—y =0.95, the lower
and upper confidence intervals can be constructed as:

2 2
éo —z% .G(éo)s 0, Séo +z% .G(AO) 4.1

A

6,2, ol6,)<0,<6,+ 2, )

5. Simulation Study

The computer programs MathCAD (2001) is used to obtain numerical
illustration for the last theoretical results. A comparison between the three estimators
is performed . 1000 samples generated from Weighted exponential distributions with

parameters (a ,A,) and (o , A,) are used, respectively at different values of Z, , Z,

with various size samples n =n,,+ n, intable 1, 2 and 3.

Relative bias (R Bias) RE = a-a

, mean square error (MSE) which is

o

~ A MSE(a
MSE(a)=E [(0? —a)z] , and relative error (RE) RE(0) :ﬁ are calculated.
a

Also, the lower and upper confidence intervals of the acceleration factor and two

shape and scale parameters are obtained. The steps of Simulation are:

1- The random samples are generate from cumulative exposure for Weighted

exponential distributions as Eq. (2.2) at various values of Z, , Z, with various size
samples n=n, + n,. Then, calculate log(4,)=6,+6,Z,; i=12.

2- For each sample, the non-linear likelihood system (3.3), (3.4) and (3.5) are

solved for (& ,4,, 4,) using Newton-Raphson method which was illustrated.
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3- The (R Bias) , (MSE) and (RE) of the three parameters (oc A 12) are
obtained. Also, for different sample sizes, asymptotic variance and covariance matrix
of the estimators are obtained.

4- The lower and upper confidence intervals at significant level y =0.05 of the
two shape and scale parameters are construct.

Now, from Table (1) and (2), note that the (R Bias) , (MSE) and (RE) of the
three parameters (oc A 12) are decreasing by increasing the sample size n. Also, in
table (3), the lower and upper confidence intervals of the acceleration factor and two
shape and scale parameters are asymptotic, so the length of interval is decreasing by
increasing the sample size.

Table (1) Value of RBIAS , MSE and RE for parameters 6,,0,,c at different stress levels and

different sample sizes.

i Z,=023,2, =07, Z, =025, 7, =1,
R BIAS MSE RE R BAIS MSE RE

0, 0.0708 0.1988 0.0788 0.0478 0.1348 0.0638

50 0, 0.7558 0.4278 0.6508 0.9478 0.7018 0.8328
a 0.2428 0.1998 0.2438 0.2998 0.3808 0.3008

0, 0.0228 0.0598 0.0408 0.0378 0.1008 0.0538

60 0, 0.5918 0.3188 0.5628 0.3418 0.6798 0.8188
a 0.2158 0.1698 0.2178 0.2978 0.3798 0.3048

0, 0.0148 0.0308 0.0288 0.0248 0.0428 0.0338

70 0, 0.5908 0.2818 0.5298 0.2868 0.5328 0.7268
a 0.1998 0.1328 0.2008 0.2898 0.3558 0.2908

0, 0.0088 0.0298 0.0208 0.0118 0.0388 0.0318

8 6, 05458 | 02428 | 04928 | 02648 | 05018 | 07048
o 0.1748 0.1418 0.1778 0.2768 0.3248 0.2778

0, 0.0028 0.0148 0.0198 0.0018 0.0188 0.0228

0 6, 0.4188 0.2328 0.4828 0.1558 0.4288 0.6518
a 0.1568 0.1128 0.1638 0.2458 0.2498 0.2468

6, -0.0082 | 0.0148 00368 | -00012 | 0.0128 0.0188

100 0, 0.3298 0.1478 0.3878 0.1418 0.0958 0.3178
o 0.1488 0.0958 0.1518 0.2428 0.2458 0.2438
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Table (2) Value of RBIAS , MSE and RE for parameters 6,,0,,c at different stress levels and

different sample sizes.

o | enana Z,=04, 2, =1, Z,=08,Z, =1,
R BIAS MSE RE R BAIS MSE RE
0, | 0.08176 | 0.24276 | 0.08776 | 0.11476 | 0.79476 | 0.16376
%0 6 0.48276 | 0.83776 | 0.90876 | 0.64876 | 0.64676 | 0.79876
a 0.34376 | 0.49876 | 0.34476 | 0.42476 | 0.75676 | 0.42576
0 | 0.05176 | 0.12576 | 0.06176 | 0.10476 | 0.66576 | 0.15176
60 6 0.40376 | 0.66976 | 0.81276 | 0.50576 | 0.53276 | 0.72576
a 0.33476 | 0.47476 | 0.33576 | 0.41276 | 0.71276 | 0.41276
& 1004176 | 0.09376 | 0.05176 | 0.11676 | 0.45576 | 0.11376
70 6 0.36276 | 0.66476 | 0.80976 | 0.41176 | 0.41476 | 0.64076
a 0.32376 | 0.44276 | 0.32476 | 0.40676 | 0.69276 | 0.40676
8 1002676 | 0.04876 | 0.03276 | 0.06176 | 0.38676 | 0.06976
80 6 0.16576 | 0.42476 | 0.64876 | 0.35576 | 0.28176 | 0.53076
a 0.26176 | 0.36676 | 0.29476 | 0.40176 | 0.63676 | 0.38976
O 1002576 | 0.04076 | 0.02376 | 0.05276 | 0.16576 | 0.06376
%0 6 0.16276 | 0.37376 | 0.60876 | 0.23476 | 0.24376 | 0.49376
a 0.29276 | 0.36376 | 0.29376 | 0.38976 | 0.63376 | 0.38876
O 1001276 | 0.02176 | 0.03676 | 0.03376 | 0.13576 | 0.06476
100 6 0.06876 | 0.29976 | 0.54576 | 0.16076 | 0.20476 | 0.20176
a 0.28976 | 0.29076 | 0.26276 | 0.38176 | 0.61576 | 0.38376

Table (3) Upper and lower bounds of Confidence intervals at significant level 0.05.

— Z,=04, 2, =1, Z,=08,Z, =1,
LL | uL Length | LL UL | Length
6, 4.75346 | 5.47046 | 050346 | 3.90846 | 5.38446 | 1.26246
%0 0 -0.00154 | 0.88446 | 0.67246 | -0.10354 | 0.98346 | 0.87346
a 1.32146 | 2.02846 | 0.49346 | 0.63246 | 1.83646 | 0.99046
6, 4.90946 | 5.61546 | 049246 | 5.43546 | 6.43246 | 0.78346
60 6 -0.02354 | 0.84346 | 0.65346 | 0.14046 | 0.86346 | 0.50946
a 1.19846 | 1.87946 | 0.46746 | 0.75846 | 1.81146 | 0.83946
6, 471646 | 5.40746 | 0.47746 | 4.93446 | 582046 | 0.67246
70 6 -0.05654 | 0.79546 | 0.63846 | 0.27446 | 0.95946 | 0.47146
a 1.17446 | 1.84546 | 0.45746 | 0.80546 | 1.85646 | 0.83746
6, 4.69046 | 5.27846 | 0.37446 | 5.02846 | 5.84846 | 0.61146
80 0 0.68846 | 0.92646 | 0.02446 | 0.17746 | 0.83046 | 0.43946
a 1.19346 | 1.85046 | 0.44346 | 0.92446 | 1.84146 | 0.70346
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6, 4.73846 | 5.22646 | 0.27446 | 4.71846 | 5.51246 | 0.53546
%0 2 0.69446 | 0.92946 | 0.02146 | 0.24946 | 0.88446 | 0.42146
a 1.34546 | 1.87946 | 0.32046 | 1.09646 | 1.79746 | 0.48746
6, 4.58646 | 5.16746 | 0.36746 | 4.80746 | 5.51646 | 0.49546
100 6 0.75446 | 0.96646 | 0.00154 | 0.31846 | 0.91046 | 0.37846
a 1.36046 | 1.89046 | 0.31646 | 1.16046 | 1.85846 | 0.48446
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