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Abstract:  

 This paper considers life-testing experiments and its influence of stress factors 

such as, temperature or electricity loads on the lives of experiment items. Step-Stress 

test is a special class of accelerated life tests, which allows the researcher to increase 

stress levels more than normal during the experiment to see the surviving items. The 

lifetime distribution of the test items is assumed to follow weighted exponential 

distribution that considered. Different methods for estimating the parameters are 

discussed. These methods are mainly maximum likelihood and confidence interval 

estimations which generates narrow intervals to the unknown parameters of the 

distribution with high probability based on asymptotic normality. Numerical study to 

illustrate the optimal time procedure using MathCAD (2001) is discussed. 

  

Keywords: Accelerate Life Testing, Step-Stress, Maximum Likelihood Estimator; 

Information Matrix, Confidence Interval Estimators, Weighted Exponential 

Distributions. 

1.  Introduction 

 The Accelerated Life Tests play an important role in reliability analysis. The 

stress levels are increasing discretely at pre-fixed time points on test units during an 

experiment. This is called step-stress test. Under normal operating conditions, it 

allows the experimenter to obtain information on the parameters of the lifetime 

distributions readily. In addition, when a test unit fails, there are many causes for the 

failure such as mechanical, temperature and electrical.  

 Many authors have measured different choices for accelerate life testing. Drop, 

R. V. et al (1996) developed a Bayes model for step-stress accelerated life testing. 

They assumed the failure times at each stress level are having exponential 

distribution but the specification of strict compliance  to a time transformation 

function is not required. Dharmadhikari, A. D. & Monsur  M. R. (2003) assumed 

that the scale parameter of Weibull and lognormal models which depend upon the 

present level as well as the age at the entry in the present stress. They  proposed a 

parametric model to the life distribution for step-stress testing and estimated the 

parameters involved in it. Chen, Z. et al (2006) considered  the step-stress 
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accelerated life tests for exponential population.  They applied the tampered failure 

rate model to be evidence for the existence, uniqueness, strong consistency and the 

asymptotic normality of the MLE of mean. Al-Ghamdi A. S. & Hassan, A. S. (2009) 

considered  the problem using the Lomax distribution under a cumulative exposure 

model. They obtained the optimum test plan by minimizing with respect to the 

change time scale parameter and the asymptotic variance  of the maximum 

likelihood estimator of a given 50th percentile. 

 Recently, Donghoon, H. & Balakrishnan, N. (2010) considered the simple 

step-stress model under time constraint when the lifetime distributions of the 

different risk factors are independently and exponentially distributed. they derived 

the maximum likelihood estimators of the unknown mean parameters under the 

assumption of a cumulative exposure model. . Abd-Elfattah, A. M. and Al-Harbey, 

A. H. (2010) studied the estimation problem when the lifetime distribution of the test 

items is following Burr type III distribution. They derived  the Maximum Likelihood 

Estimates for the distribution parameters and acceleration factor in type II censored 

samples. Lee, H. et al (2013) studied the problem for exponential products based on 

type II right censored data from the step-stress accelerated life test. He preformed 

tests of hypotheses about model parameters based on the likelihood method. 

 Azzalini (1985) suggested a method of obtaining weighted distributions from 

independently identically distributed random variables. He used the density function 

of one random variable and the distribution function of the other random variable as 

follows: 

       xFxf
XXP

xF YYX 
 21

1


   (1.1) 

Gupta & Kundu, (2009) presented a new class of weighted exponential distributions 

based on an idea of Azzalini (1985). Makhdoom (2012) studied the estimation of 

Stress-Strength reliability when  X and Y are two weighted exponential distributions 

with different parameters. He obtained the MLE of R based on one simple iteration 

procedure, and he carried out Bayesian estimators of parameters with real data. 

 The cumulative distribution function and the probability density function of a 

random variable which has the weighted exponential distribution respectively are: 
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hence   and   are the shape and scale parameters respectively (see Gupta & 

Kundu 2009). This paper consists of four sections corresponding to sections 2, 3, 4 

and 5, respectively. section 2 discusses the model description and assumptions. 

section 3, provides the likelihood function and the asymptotic Fisher information 

matrix which is contain on second and partial derivatives of the logarithm of 

likelihood function. Confidence intervals about model parameters is examined based 

on asymptotic normality in chapter 4. Finally, the last section contains a numerical 

investigation carried out to study the properties of the new estimators. 

2.  Model Description and Assumptions 

 The cumulative distribution function of weighted exponential distribution 

which is mentioned in(1.1) contains failure time of test item in case constant stress. 

and the assumptions made are as below: 

1- There is a relation that represents the relation between stress level iZ  and scale 

parameter i as follows: 

  ii Z10log   2,1i  where 10 ,   are unknown parameters  depend on the 

way and outcomes of the test and.  

2- The entire in  , 2,1i  items are put at the normal stress 1Z  , at the beginning, 

continuing until time  . Next, the stress is varied to a high level 2Z , and the test 

ongoing until all items failed. 

 3- At the time jix  , inj ,,2,1   under a stress level iZ , 2,1i  , all of in  failure 

are observed. 

4- In Step-Stress test which is a special class of accelerated life tests, the cumulative 

exposure model is: 
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where 
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  which is asolution of       21 FF  for   . So the cumulative 

exposure model for weighted exponential distributions is obtained as follow:   
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and the probability density function of the failure time is:   
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 In next chapter, the likelihood function and asymptotic Fisher information 

matrix are provided. 

3. Likelihood Function and Asymptotic Fisher Information Matrix 

 Let the failure times 2,1,,,2,1,  injx iij   and 21, nn are the number of 

items which faile at normal stress 1Z  and high stress 2Z  respectively. Then, their 

likelihood function and log likelihood function respectively are: 
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The first derivatives of  21,,; x  with respect to  , 1  and 2  are, 

respectively: 
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Unfortunately, there is no closed form  for  21,,  in (3.3), (3.4) and (3.5), 

so, Newton–Raphson method is used to solve these equations i. It is an iterative 

method for solving equations 0)( f   where )(f  is assumed to have a continuous 

derivative  )(f  . Given a function )(f and its derivative )(f  , a first guess 0  is 

initialed . Then, an approximation of 1  is 
 
 0

0
0 




f
f


   and an approximation of 2  is 

 
 1

1
1 




f
f


  and so on for number of iterations r or if   rr 1  where r  is the thr  

estimate. (see Kotz et al (2003). 

 Now, to construct  the asymptotic Fisher information matrix, the second and 

mixed derivatives of  21,,; x  with respect to  , 1  and 2  are taken as follows: 
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4. Approximate Confidence Interval 

Let nXXX ,,, 21   be two independent random samples drawn from Weighted 

Exponential distributions as Eq. (1.1) with parameters  21,,  . They are used at 

different stress values of 1Z  , 2Z . Then  the maximum likelihood estimation ̂  of   
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is asymptotically normally distributed with mean   and variance )(2  under 

regularity conditions and large sample. It can be constructed  as:  

      



  1ˆ.ˆˆ.ˆ

22
zzP . 

Now, using following equations and confidence level  95.01   , the lower 

and upper confidence intervals can be constructed as: 
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(4.1) 

5. Simulation Study 

The computer programs MathCAD (2001) is used to obtain numerical 

illustration for the last theoretical results. A comparison between the three estimators 

is performed . 1000 samples generated from Weighted exponential distributions with 

parameters  1,  and  2,   are used, respectively at different values of 1Z  , 2Z   

with various size samples 22 , nnn   in table 1, 2 and 3. 

Relative bias (R Bias) 

 


ˆ

RE  , mean square error (MSE) which is    

  2ˆ)ˆ(   EMSE  , and relative error (RE) 





)ˆ(
)ˆ(

MSE
RE   are calculated. 

Also,  the lower and upper confidence intervals of the acceleration factor and two 

shape and scale parameters are obtained. The steps of Simulation are: 

 1- The random samples are generate from cumulative exposure for Weighted 

exponential distributions as Eq. (2.2) at various values of 1Z  , 2Z   with various size 

samples .22 nnn   Then, calculate ii Z10)log(   ;  .2,1i   

2- For each sample, the non-linear likelihood system (3.3), (3.4) and (3.5) are 

solved for  21,,    using Newton–Raphson method which was illustrated.     
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3- The (R Bias) , (MSE) and (RE) of the three parameters  21,,   are 

obtained. Also, for different sample sizes, asymptotic variance and covariance matrix 

of the estimators  are obtained. 

4- The lower and upper confidence intervals at significant level 05.0  of the 

two shape and scale parameters are construct. 

Now, from Table (1) and (2), note that the (R Bias) , (MSE) and (RE) of the 

three parameters  21,,   are decreasing by increasing the sample size n . Also, in 

table (3), the lower and upper confidence intervals of the acceleration factor and two 

shape and scale parameters are asymptotic, so the length of interval is decreasing by 

increasing the sample size. 

Table (1) Value of R BIAS , MSE and RE for parameters  ,, 10  at different stress levels and 

different sample sizes. 

,7.0,3.0 10  ZZ  ,1,25.0 10  ZZ  
21 nn   

 ,, 10  
R BIAS MSE RE R BAIS MSE RE 

0  0.0708 0.1988 0.0788 0.0478 0.1348 0.0638 

1  0.7558 0.4278 0.6508 0.9478 0.7018 0.8328 50 

  0.2428 0.1998 0.2438 0.2998 0.3808 0.3008 

0  0.0228 0.0598 0.0408 0.0378 0.1008 0.0538 

1  0.5918 0.3188 0.5628 0.3418 0.6798 0.8188 60 

  0.2158 0.1698 0.2178 0.2978 0.3798 0.3048 

0  0.0148 0.0308 0.0288 0.0248 0.0428 0.0338 

1  0.5908 0.2818 0.5298 0.2868 0.5328 0.7268 70 

  0.1998 0.1328 0.2008 0.2898 0.3558 0.2908 

0  0.0088 0.0298 0.0208 0.0118 0.0388 0.0318 

1  0.5458 0.2428 0.4928 0.2648 0.5018 0.7048 80 

  0.1748 0.1418 0.1778 0.2768 0.3248 0.2778 

0  0.0028 0.0148 0.0198 0.0018 0.0188 0.0228 

1  0.4188 0.2328 0.4828 0.1558 0.4288 0.6518 90 

  0.1568 0.1128 0.1638 0.2458 0.2498 0.2468 

0  -0.0082 0.0148 0.0368 -0.0012 0.0128 0.0188 

1  0.3298 0.1478 0.3878 0.1418 0.0958 0.3178 100 

  0.1488 0.0958 0.1518 0.2428 0.2458 0.2438 
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Table (2) Value of R BIAS , MSE and RE for parameters  ,, 10  at different stress levels and 

different sample sizes. 

,1,4.0 10  ZZ  ,1,8.0 10  ZZ  
21 nn   

 ,, 10  
R BIAS MSE RE R BAIS MSE RE 

0  0.08176 0.24276 0.08776 0.11476 0.79476 0.16376 

1  0.48276 0.83776 0.90876 0.64876 0.64676 0.79876 
50 

  0.34376 0.49876 0.34476 0.42476 0.75676 0.42576 

0  0.05176 0.12576 0.06176 0.10476 0.66576 0.15176 

1  0.40376 0.66976 0.81276 0.50576 0.53276 0.72576 
60 

  0.33476 0.47476 0.33576 0.41276 0.71276 0.41276 

0  0.04176 0.09376 0.05176 0.11676 0.45576 0.11376 

1  0.36276 0.66476 0.80976 0.41176 0.41476 0.64076 
70 

  0.32376 0.44276 0.32476 0.40676 0.69276 0.40676 

0  0.02676 0.04876 0.03276 0.06176 0.38676 0.06976 

1  0.16576 0.42476 0.64876 0.35576 0.28176 0.53076 
80 

  0.26176 0.36676 0.29476 0.40176 0.63676 0.38976 

0  0.02576 0.04076 0.02376 0.05276 0.16576 0.06376 

1  0.16276 0.37376 0.60876 0.23476 0.24376 0.49376 
90 

  0.29276 0.36376 0.29376 0.38976 0.63376 0.38876 

0  0.01276 0.02176 0.03676 0.03376 0.13576 0.06476 

1  0.06876 0.29976 0.54576 0.16076 0.20476 0.20176 
100 

  0.28976 0.29076 0.26276 0.38176 0.61576 0.38376 

 

Table (3) Upper and lower bounds of Confidence intervals at significant level 0.05. 

,1,4.0 10  ZZ  ,1,8.0 10  ZZ  
21 nn   

 ,, 10  
LL UL Length LL UL Length 

0  4.75346 5.47046 0.50346 3.90846 5.38446 1.26246 

1  -0.00154 0.88446 0.67246 -0.10354 0.98346 0.87346 
50 

  1.32146 2.02846 0.49346 0.63246 1.83646 0.99046 

0  4.90946 5.61546 0.49246 5.43546 6.43246 0.78346 

1  -0.02354 0.84346 0.65346 0.14046 0.86346 0.50946 
60 

  1.19846 1.87946 0.46746 0.75846 1.81146 0.83946 

0  4.71646 5.40746 0.47746 4.93446 5.82046 0.67246 

1  -0.05654 0.79546 0.63846 0.27446 0.95946 0.47146 
70 

  1.17446 1.84546 0.45746 0.80546 1.85646 0.83746 

0  4.69046 5.27846 0.37446 5.02846 5.84846 0.61146 

1  0.68846 0.92646 0.02446 0.17746 0.83046 0.43946 
80 

  1.19346 1.85046 0.44346 0.92446 1.84146 0.70346 
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0  4.73846 5.22646 0.27446 4.71846 5.51246 0.53546 

1  0.69446 0.92946 0.02146 0.24946 0.88446 0.42146 
90 

  1.34546 1.87946 0.32046 1.09646 1.79746 0.48746 

0  4.58646 5.16746 0.36746 4.80746 5.51646 0.49546 

1  0.75446 0.96646 0.00154 0.31846 0.91046 0.37846 
100 

  1.36046 1.89046 0.31646 1.16046 1.85846 0.48446 
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