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JOUKOWSKI AIRFOIL IN SUBSONIC FLOW 

MINA B. ABD-EL-MALEK 

ABSTRACT 

The thin airfoil theory for the case of steady,compressible, 
inviscid,and uniform flow past a Joukowski airfoil located 
along the horizontal axis is considered. Velocity potential 
is extended to a second-order approximation. 

Flow quantities,at the body surface,such as speed,pressure 
coefficient,and drag coefficient are obtained,up to a second-
order approximation,for various values of Mach number "M" 
less than unity. 

?approximate value of the critical Mach number in the related 
compressible flow about the thin airfoil when its section 
is contracted with the Prandtl-Glauert correction factor,in 
the stream direction,is calculated. 

The results are plotted and difficulties in calculations are 
discussed. 

Lecturer,Department of Mathematics and Physics,Faculty of 
Engineering,Alexandria University,Alexandria,Egypt. 
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Fig.1 Uniform flow past a symmetrical. Joukowski airfoil 
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-BASIC EQUATION AND BOUNDARY CONDITIONS 

The problem to he considered i thr,  r.,Ire of steady,compres- 
sible,invi:7cid,and uniform flow past a symmetrical Joukowski 
thin airfoil as shown in Fig.1 

According to Van Dyke [1] , it is convenient to work with the 
velocity potential,because the connection between the stream 
function and the velocity is complicated by variations of 
density. 

For nlane flow of a perfect gas the full potential equation 
given by Oswatitsch 2 is 
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where M is the free-stream Mach number and 15" is the adiaba, 
tic index. 

The dimensionless velocity components are 
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Let the velocity of the flow at infinity along the body axis 
be U=1. 

Let the thickness function be T(x)=(1-x)1/1-x2 , describes a 
symmetrical Joukowski airfoil. The thickness ratio is 6 at 
midchord,and 1.30E at the thickest point,x=-O.5,as shown in 
Fig.1 

Boundary conditions considered are: 
(i) A uniform stream at infinity is given by 

1)(x,r)--)►x as x  
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(ii) The flow tangent condition to each fixed surface may be 
written as 

Ct)  
vy 	dy 
u = 24. 	dx 

"Dx 

1+x-2x2 at Y= + a (1-xal-x2  
V(1-x2 	 (1.3.2) 

where the upper sign for the upper surface and the lower one 
for the lower surface. 

ANALYSIS 

From the asymptotic condition (1.3.1),it is possible to write 
velocity potential in the form 

	

(I)= x + t 	. 	 (2.1) 
such that the perturbation potential 	vanishes at infinity. 
Hence,from (2.1),we get the following 
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Upon employing (2.1) and (2.2) into (1.1),we get 
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where ? 2= 1 - M2 . 
Applying the Prandtl-Glauert 
ical scale),we write 

ii = x 
:Hence we get 
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Substituting (2.6) in (2.3),we get 
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Upon employing  (2.1),(2.5) and (2.6) into 
(1.3.1) and (1.3.2) we get 
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We seek the asymptotic expansion of the solution as the thic-
kness parameter E--4.0. In the limit,the Joukowski airfoil 
degenerates to a line which causes no disturbance of the free 
stream,so the basic solution is the uniform parallel flow. 
We tentatively assume that the asymptotic series for the per-
turbation potential Thas,for a given thickness function T(x), 
the form 

(2.9) 
Substituting  (2.9) in (2.7) and equating  like powers of E 
we get 
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Substituting  (2.9) in (2.8.1) and equating  like powers of E 
we get 
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boundary conditions 
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In order to substitute the expansion (2.9) in the tangency condition (2.8.2) we must transfer (2.6.2) to the axis y=0. 
This can he done by using Taylor series expansion on the x-axis and equating like powers of e,we get 
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Here g=o+ refers to the top and bottom sides of the slit to 
which the airfoil degenerates in the limit as E.-§.0,and across 
which 75T is discontinuous. 

SOLUTION OF THE FIRST-ORDER PROBLEM 

Solve -,2 
u t + -02  4)1  .0 	(3.1) ....0 cc.2 	_0 1-,.2 

Subject to 
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which is equivalent to an incompressible problem. 
Solution of the first-order problem (given by Cheng and Rott 
ND is: 
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which is obtained by replacing the body by a distribution  
.4• re r '.-' 

sources and sinks (due to the symmetry of the airfoil) and 
with equal numbers (due to the closed shape of the body).Also, 
solution can he verified by direct substitution. 
L 	 _J. 
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Upon employing the conditior 3.2.2) in (3.3) and (3.4) and 
along the x-axis,using Bois 3 ,we get: 
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SOLUTION OF THE SECOND-ORDER PROBLEM 

solve 
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Substituting (3.5) and (3.8) in (4.2.2) we get 
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fn order to calculate surfa e values,as we will see in the 

next section,we need only -42   7)3z  (x,0) from the second-order 

problem. Therefore,it is now appropriate to apply the i b-
ert transformation,formore details see Muskhelishvili 4 , 
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r— 
where P.V. refers to the Cauchy principal value of the dive-
rgent integral when -1 -c -c 1. 

Upon employing (4.2.3) into (4.3) for ,--.-0+ and carrying out 
the integrations,using Bois[3],we get 

-O. t  - 	1 	1 	3Z (x,o) . 	( —) (1 + 25Z)2 	4 1 + x 	 (.4) -ox 	2 2•2  

FLOW QUANTITIES AT THE BODY SURFACE 

Flow quantities,at the body surface,such as the speed qs,the 
pressure coefficient C

P 
 ,and the drag coefficient Cd can be 
s expressed as power series in the thickness parameters  E by 

relating them,again through Taylor series expansion,to the 
velocity components on the x-axis. 

Thus the surface speed a
s  is found to be 
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Using (3.5),(3.6), (2.5),and (4.4) we get 

Hence,upon employing (5.2) into (5.3),we get 
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The drag coefficient C
d can be calculated by integrating the 

pressure over the surfa8e of the airfoil according to 
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Hence (5.5) becomes 

 

( 5.1) 
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The surface pressure coefficient C ,following 
Davies [5] ,is given by 	Ps 
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	— Efe.E[  2 ( 1 - 2x)]  E2 [  2x ( 4x2  - 3 )  
ds 	 (12 ( 1 + x ) 

/ 	.) Po 	1+x-2x2 dx 	 (5.7) 
eo )(V1 - x
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Carrying out the integrations in (5.7),keeping only first-
and second-order terms gives 

c
d 
	27T- E2 	 (5.8) 

This result is obviously incorrect since it contradicts 
d'Alembert's principle. This is due to the rounded leading 
edge. 

Jones 1:6] (see Van Dyke [1] ,pp.55) has shown that this leading-
edge drag can be recovered by calculating the drag not from 
surface pressures but with a momentum contour that avoids 
the region of invalidity near the leading edge. 

CONCLUSION AND DISCUSSIONS 

The region of invalidity is within a distance from the 
2 leading edge of the order of the nose radius which is 4 	. 

In that vicinity the airfoil can be approximated by parabola 
having the same nose radius. 

The first and second approximations for q
s 

and C
P 
 versus 
, 

-1 -=x-c 1 are plotted in Fig.3 and Fig.4,where the divergence 
of the series near the singular points x=-1 is evident. 
From equations (5.2) and (5.4) we find: 

qs2 1p2 	
1 - 
1 + x  ) (1 + 2x)

2 
=  

C 	= - 	( 2x 	4x2 - 3  
Ps2 	i32 	1 + x 

Hence,we find that as the Mach number M of the uniform stream 
increases so will the maximum surface speed until it becomes 
equal to the local speed of sound c. When this occurs,the free 

(6.1) 
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stream Mach number M is said to have rea-...hed a critical value 
for the flow and we write M = M

cr 
Using the second order approximation for the maximum surface 
speed and following the method suggested by Curle and Davies 
[7],we get 

(1-M cr ) (1-M
2 	

1.85 Mcr  cr 
E2 , 

(6.3) 
from which M 	may be calculated. If E.-<-<1, (1-M ) must be small and we%et 	 cr 

M 	- 0„ 45 E 
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