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ABSTRACT 

A new method for solving the compressible, laminar, boundary 
layer equations over a flat plate is developed in the present 
study.. The method accounts for the variations of all boundary 

. layer parameters which control the flow, and it is able to 
solve the equations for any gas. 	In this method, the Illingworth 
transformation is used to transform the equations of motion to 
a set of ordinary differential equations (ODE). The fourth-order 
Runge-Kutta method in conjunction with the shooting method are 
used to solve the set of ODE. A very efficient procedure is 
developed to find out the unknown boundary conditions at the 
wall. 

The method is applied to investigate the characteristics of 
supersonic flow of air over cooled, adiabatic, and heated walls, 
where wide ranges of free stream Mach numbers and wall-free 
stream temperature ratios are used. Comparsons of the present 
results with previous ones show that the method is very efficient. 
In addition to the verification of the success of the method, 
investigation of the characteristics of the flow leads to very 
useful results. 

* Assistant Professor, 	** Assistant Professor, Mech. Eng. 
Dept. Al-Azhar University, Cairo, Egypt. 
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INTROCUCTION 

Many methods have been developed to solve the laminar, compressible, boundary 
layer equations over a flat plate [1-3]. Most of these methods are restricted 
by some approximations which lead to simplified equations. However the 
resulting soution may not be consistant with that of the real flow due to the 
nonrealistic assumptions. For example, if one considers Pr = 1 for air (the 
actual value is 0.72), the simplified solution [3] is greatly deviated from 
the experimental one [4]. Thus in order to efficiently solve the equations, 
one must not put any restriction on any controling parameter and must account 
for the variations of the flow properties in a realistic manner. Of cours 
the equations will be more complicated and many simplified methods fail to 

solve them. 

The present study provides a new method which takes into considerations all 
the above precautions. As will be shown, the method can solve the boundary 
layer equations for any arbitrary value of Pr and for any correlations of 
the viscosity with temperature, that is, the method is able to solve the 
equations for any gas by appropraitely selecting the above two parameters. 

GOVERNING EQUATIONS 

The two dimensional compressible, laminar, boundary layer equations are [6] 

(pu)x  + (pv)y  = 0 	 (1) 

puu
x 
+ pvu = (lu

Y  )Y 	
(2) 

pu h
x 
+ pv h = (pr 	 h

y  )y 
 + uu

2 	
(3) 

The energy equation has been derived upon the assumption of perfect gas 

relations with constant specific heats: 

h 	Cp T 
	

(4) 

P .PRT 
	

(5) 

The viscosity is related to the temperature by the power law [7] 

4o 	To 

4 	= (_,_ )n 	
(6) 

Where p- o 
and T

o 
are reference values and n is an exponent. Empirical values 

of 110  , To, and n are tabulated in Ref.[7] for various gases. 

METHOD OF SOLUTION 

The method of solution consists of the transformation of the equations of 
motion to a set of ordinary differential equations (ODE), numerical method 
for solving the ODE, and a procedure for finding out the unknown boundary 

conditions (B.C.) at the wall. 

Equations (1) to (3) are transformed into a set of ODE by using the Illing-

worth transformation [5]. In this situation a similarity solution is 

obtained. The transformations used are given by 	
_J 
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Where C is the Cahpman-Rubesin parameter [6]. The continuity equation is 
satisfied identically. Transformations of the other equations yield: 

f"' + (n-1) g
-1 

g' f" + g
1-n 
 f f" = 0 	 (12) 

g" + (n-1) g
-1 

g'
2 

+ g
1-n 

Pr f g' + Pr (Y-1) M
e
2  
 f"2  = 0 	(13) 

The boundary conditions are 

No slip 	fw  = fW = 0 

Free streem fe g 	1 
e 

In addition, either one of the following B.C. must be satisfied 

Adiabatic wall cg d  = 0 

Heat transfer gw  = Tw/Te  

In order to solve equations (12) and (13) subjected to the B.C. [equations 
(14) to (17)], the fourth order Runge-Kutta method [8] is used where 
solution starts at the wall and extends throughout the boundary layer until 
the free stream is reached. The shooting method is used to predict the 
unknown B.C. at the wall [g1:4  (or gw) and f"] where guessed values are 

assumed and the solution in the whole boundary layer is obtained. The 
computed values of fe and ge  are then compared with their exact values and 

the procedure is repeated until convergence is achieved. 

To obtain the exact values of the unknown boundary conditions at the wall 
[gt:i  (or gw  ). 	and f"], the following procedure is performed: As seen there 

are two unknowns. For simplicity, let these two unknowns be denoted by the 
letters a and b. The procedure is based upon the assumption that the 
computed free stream conditions are functions of a and b. When the exact 
values of a and b are obtained, the following equations must be statisfied: 

F 	f' - 1 =F (a,b) =0 
	

(18) 

G = ge  - 1 = G (a,b) = 0 	 (19) 

Expanding the above equations into Taylor series about the point (a t, bi) 
yields 

F(ai  +pa, bi  + 	b) = Fi  +pa Fa  (ai, bi) +pb Fb  (a t, bi) = 0 (20) 

G(ai  +Pa, bi  + 	b) = Gi  +Aa Ga  (ai, bi) +pb Gb  (ai, bi) = 0 (21) 

(14)  

(15)  

(16)  

(17)  
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Where subscripts a and b are used to denote partial differentiation with 
respect to the subscript at point (ai, bi). Equations (20) and (21) can 

besolvedforAaandAb-Thevaluesura-and bi 
are then corrected by 

adding pa to a. and Ab to b. and the procedure is repeated until equations 
(18) and (19) Are satisfied.)  

The partial derivatives with respect to a are computed as follows: The 
value of ails increased by a small amount C. 0.001 such that its 
value becomes a 	a. +E , and the value of b1 is kept unchanged. Equations 
(12)anc103)aisethnsolvedwitha.C.-al aneb.Let the corresponding 

free streem values denoted by F
1 
and G

1' 
The partial derivatives are 

computed from the equations 

Fa  (ai, bi) 	(F1 - Fi)/(al  - ai) 	
(F1 

 -,F1 )/ E 	(22) 

Ga  (ai, bi) 	(G1  - Gi)/(al  - ai) = (G1  - Gi)/ e 	(23) 

Similar procedure is performed such that the partial derivatives with 
respect to b can be obtained. 

RESULTS AND DISCUSSIONS 

The flow of air has been choosen in our application. The values of Pr, n, 
and Y are 0.72, 2/3,and 1.4, respectively. Keeping these values unchanged, 
it is clear that the remainder parameters which control the solution are 
Me and gw. The effect of these two parameters is investigated in the 
present work. The solutions are presented in the nondimensional physical 

coordinate y , given by: 

N— Re 	 ) 	dl 	 (24) 

Figure 1 illustrates the profiles of the adiabatic flow. The results of 
Ref. 19] are also shown. It is seen that as Me is increased, there is a 
considerable thickness of the boundary layer ye. The profiles of f' are 
approximately linear for values of Me equal to or higher than 4. The 
adiabatic wall temperature gwa  is seen to increase by increasing Me. A 
very important conclusion is obtained from the figure by noticing the 
similarity of the profiles of g and f" (notice that both g and f" have 
maximum values with zero slopes at the wall). This similarity of the 
profiles may suggest the existance of a solution in the form g = g (f"). 
No attempt has been done in the present work to investigate such solution. 
The present results are in excellent agreement with that of Ref. [9]. 

Variation of the adiabatic wall temperature gwa  with Mach number sequared 
is shown in Figure 2. As seen, the profile can be approximated to a very 
high accuracy by a straight line which indicates that gwa  is proportional 

to mg. Variation of r with Me, is illustrated in Figure 3. The results 
of Ref. [10] are also presented. The agreement is shown to be excellent. 
The figure shows that r is slightly decreased by increasing Me. 

The flow with heat transfer is illustrated in the remainder figures of 
this work. Figure 4 illustrates the velocity profiles f' = u/Ue. As 
seen the effect of increasing gw, keeping Me unchanged, results in an 

increase of the boundary layer thickness ye. Linearity of the profiles 
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6 	
is seen to be achieved for any value of Me when gw 

 reaches a minimum value 

gam. The ratio of gwm to the corresponding adiabatic value gwa is of high 

values at low Me and it decreases by increasing Me. 

Figure 5 illustrates the temperature profiles g = T/Te. Comparison of the 
thermal and velocity boundary layers shows that the first is slightly 
larger than the later. The shape of the profiles is greatly affected by 

the values of gw 
 and Me. For cooled wall, the profile is increased from 

gw to a maximum value then it decreases gradually. For insulated and 
heated walls the profile is decreased gradually from its maximum value at 
the wall. A very important conclusion can be deduced from the profiles 
over heated walls at low Me: As shown from figure 5-c, the profiles are 

approximately linear at high values of gw (4 and 8). 

Figure 6 illustrates the g'-profiles. Again the profiles are greatly affect 

by the values of Me and gw  . The values of 	
are positive for cooled 

walls and negative for heated walls. The profiles where Me = 2 and 
gw = 4 and 8, are shown to have constant values over a wide range of y. 
This supports the linearity of the corresponding profiles of g. Figure 7 
shows the f"-profiles. As seen the slopes of f" are positive for cooled 
walls, zero for adiabatic walls, and negative for heated walls. The 

effect of increasing gw, keeping Me unchanged'is to increase fw . 

Inspection of the profiles of f" and g shows similarity between them for 
values of Me of 6 and 12. However this similarity is shown to be lost for 

low values of Me. The skin firction coefficiE,
nt Cf and the stanton number 

Ch [3] are shown in figure 8. The results of Ref. [9] are also illustrated. 
Excellent agreement of both results are clearly seen. 

CONCLUSIONS 

A new method for solving the supersonic boundary layer equations over a 
flat plate is presented in this study. The method is able for solving the 
equations as applied to any gas by selecting the appropriate values of Fr, 
n, and Y. The method is applied to the flow of air and it has proven to 

give excellent results. 

In addition to the verification of the success of the method, investigation 
of the characteristics of the flow leads to the following useful results: 
(1) The adiabatic wall temperature is proportional to M. (2) The profiles 

of f' are approximately linear for any value of Me when gw 
 reaches a 

minimum value gwm. The ratio gwm/gw
a is of order of multiples of unity at 

low values of Me and it decreases by increasing Me until it reaches a 
fraction of unity at high values of Me. (3) The profiles of g are 
approximately linear for low values of Me and high values of gw

. (4) For 

values of Me which are greater than 4, the profiles of f" and g are similar. 
This may suggest the existance of a solution in the form g = g (f"). 
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NOMENCLATURES 

C Chapman-Rubesin parameter U
e 

Free stream velocity 
C
f Skin friction coefficient u,v Velocity components 	in 

Cop Specific heat at constant pressure the x and y directions. 
f Transformed stream function x,y Cartesian coordinates 
g Temperature ratio 1 Transformed coordinate 
h Static enthalpy P Density 
M Mach number p Viscosity 
n Exponent 7 Specific heat ratio 
P Static pressure (11  Stream function. 
Pr Prandtl number Subscripts 
R Gas constant e 	Free stream condition 
Re Reynold's number w Wall 

Prime denotes differentiation with respect to 1 
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