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AERODYNAMIC CHARACTERISTICS OF QUASI-SLENDER 

WING - BODY COMBINATIONS AT SUPERSONIC VELOCITIES 

* 
0 . E . ABDELHAMID 

ABSTRACT 

A procedure for determining the lift and pitching moment derivatives 
of not so slender wing-body combination in supersonic flow is presented. 
It is based on an introduced extension of the approximate slender body 
theory by retaining additional terms that have been neglected by virtue 
of body slenderness.The extension included the dependence of the solution 
on body geometry and flow Mach number. An application is given for the 
case of thin flat triangular wing mounted on conical pointed body. 
Computed results are compared with the original theory and other publish-
ed theoritical and experimental data where good agreement is obtained. 
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1.INTRODUCTION 

Slender and quasi-slender wing-body combinations are currently appearing in 
the aerodynamic design of modern high speed airplanes and missiles.Among 
analytical techniques for determining their aerodynamic characteristics is 
the Slender Body theory originated by M.Munk[1] and R.T.Jones [2]. The 
theory solves approximately the flow around slender wings and bodies elonga-
ted in direction of flight at small angles of attack.In view of body elong-
ation in direction of flight , the theory assumes that the flow pattern near 
the body at any transverse section is the same as in two dimensional incomp-
ressible flow.The theory proved to be applicable throughout the whole flight 
speeds range,from M=0 to supersonic velocities.Being simple and useful,it 
was extended to deal with different wing-body combinations [3]&[7] and with 

unsteady flows[6]. 
Quasi-slender bodies have larger relative lateral dimensions than slender 
bodies.Application of Slender Body theory for determination of their aerod-
ynamic characteristics leads to very approximate results. Several extensions 
were derived for modifying the theory to deal with quasi-slender bodies [7]& 
[11].The extension given in [7] uses a complicated procedure based on solv-
ing a system of integral equations ,and is applicable to wings only.Extension 
given in [11] has its validity limited to bodies of revolution only.The 
presented work is an extension of the Slender Body theory for solving the 
aerodynamic characteristics of quasi-slender wing-body combinations having 
arbitrary cross-sectional shapes and wing planforms. It introduces a more 
accurate solution of the linearized potential flow equation upon which the 

original theory is based. 

2. INTRODUCED EXTENSION OF THE SLENDER BODY THEORY 

The linearized supersonic potential flow around bodies is given by the 
solution of the partial differential equation 

	

(1426 ;20  ;20 220 	lz# 

	

x2. ay= 2 z2 	9x 0t 

where 45 (xalzA) is the nondimensional perturbation velocity potential, 
and M,, is the flight Mach number. The solution of Eqn.(2.1)is subjected 
to the basic boundary conditions of flow around bodies : 
i-Zero normal velocity component at the body surface 

7- 
gv c Dt 	9t 	• " 

(2.2a) 

where P is the direction of the local normal to body surface C, and 

ii-Vanishing perturbation potential and perturbation velocity on and out- 
side the generated Mach cone. 

ibta, t) Or,y,Zit) 0 	yzz7i  X 	, 0 4%4 C° 	(2.2b) 

Equation(2.1)and its boundary conditions are derived in the moving system 
of coordinates shown in Fig.2.1,where x-axis coinsides with the direction 
of undisturbed velocity Um .All linear dimensions are nondimensionalized 
with respect to body length I and the time with respect to the quantity 

e / C/0 4, which can be interpretted as the time taken by the body to 

travel its characteristic length 1 . 

(2.1) 
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For steady and quasi-steady flows the time derivatives of the perturbation 
potential are zero or negligibly small respectively,and [0(2.1) reduces to 
the known Prandtl Glauert equation 

2
-.1) 

9gcb  lzo  A. 
0, C.14 

XI 	Z • z1 
(2.3) 

Fig (2.1) Body and Coordinate System 

In terms of cylindrical coordinates X 	r and tn, Eqn.(2.3) changes to 
I  IA /  320 = fri 2;5 —  r r 	r2  a y) 	a.0. (2.4) 

where filr7 
The solution of Eqn.(4.2) which converges far from the body is obtained by 
applying Laplace transform and the boundary conditions (2.2) 

	

Cp.yiz,t) -7. Z. KnCrnpr) An Cp,t) cos n Sp t Ba  (p,i) sin n 	( 2 . 5 ) 

wherq■is the Laplace transform of ib ,p is the transformation variable 
and K. 6wpr9is the modified Bessel function of the second kind. 
The expansions ofgo6P7r9for small values of their arguments are : 

icCmpr) 	rj[/ t 0 (,)] 

Cnipr) :I 	I 	4  	 '22." 	- 	00-2) 	(2.6b) 
mpr 	2 	2 

kn  (mpr) = [ 01-1)! ( 2  )"1 Cl C2Cr 2)] 
2. nvor J 

where /r is the Euler constant ( X . 0.57... ) 
Substituting 	the above relations in (2.5) and performing the inverse 
Laplace transform ,the general solution of (2.4) is given by the real part 
of the complex potential 

(x l y i z it).RL (70 = ee 	Cx,t) In W b(sit) 	ct". Cx•)  4 a 	( 2 . 7a ) 

(2.6a) 

(2.6c) 
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where 
	

w 

o. b0 	 coefficients to be determined 
complex conjugate of 

Equation (2.7a),without the last term,corresporids to the slender body sol-
ution of Adams and Sears [7],Ward[B]and Miles [9]. They considered only the 
first terms in the expansions of I n  .The additional potential 	represe- 
nts the extension for quasi-slendert bddies,introduced in this work by 
retaining the terms up to order h ,that is the second term in (2.6b) in 
addition to the first one. 
For the flow solution near the body surface , r in the sqUare roots under 
the integral sign,is substituted by the. equivalent radius Ae given in 
terms of X only.The additional perturbation potential can be then interpr-
etted as the real part of the complex potential corresponding to additional 
perturbation cross flow velocity 

M2 
- 

 a  
,12  
 C3a,t)  
,2 x2 

X-P2Ce  

2 6t-o,f)/ t9A-02  
ALoo _ 

 

It (2.8) 

The complex transverse force 

FeXit) = Y(Xit) t  c Z.CX1t) 

acting on the body between 	and Xis given by[9], 

2F -fut. fu= t. 012 
x 

where 62 is the nondimensional virtual momentum given by 

c2 = 2ff-ez. 	(k. ,C) 
JD 	3  

area of local cross-section. 

position of section centroid. 

In the slender body solution [9],the coefficient 0)  is determined using the 
conformal mapping of the exterior of the body cross-sections S to the 
exterior of circles with radii C keeping the flow at infinity undistorted. 

a = ,u-  ees t trc 	 (2.12) 

where RATL is the residue of the mapping function.Substituting the above 
relationdin (2.11)we get 

C2(Xft) r-- C21TC2 S) U- 11-21r keS, 

where v"=&velpt is the cross flow velocity component and (r 	its complex 
conjugate.Foi• motions in the vertical plane V" 7.-- 	,and equation (2.13) 

becomes 

Ncx,-6) = C2r cc.2-Res) —S] 
L 	 f 

(2.14) 
_J 

t 

(2.9) 

(2.10) 

(2.11) 

and 	.5 

(2.13) 
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For circular cross-sections,the quantity in square brackets equals the 

section area.Accordingly,for cross-sections of general form,this quantity 
can be interpretted as the area of an equivalent circle of raduis 'e given 
by 

= C 2 r (c2_ Res)_ 	= 77-  
(2.15) 

This circular cross-section has the same virtual momentum as that of the 
given body section of general form. 
By virtue of (2.14) and (2.10), the body formed by these equivalent cross-
sections has the same aerodynamic loading (excluding viscous effects ) as 
the original body. Using this argument,the integral in the expression for 
the additional potential of the presented extention is evaluated.For cal-
culating this potential near the body surface at small deflections,the 
equivalent radius &Junction of x only,substitutes r in these integrals, 
enabling their easy solution. 
Aerodynamic forces and moments are determined within this extension using 
an iterational procedure with the first step given by the original Slender 
Body theory. The coefficient al  is firstly calculated from relation (2.12) 
using the cross flow velocity component tr=-.04/g/Dt•The additional transve-
rse velocity given by (2.8)is then evaluated and added to the cross flow 
velocit),..,4010:0VThe resulting value of tr is used for calculating the vir-
tual momentum 4 of the quasi-slender body from relation (2.14) . 

3. THE APPLICATION TO WING-BODY COMBINATIONS 

The presented extended theory is applied for calculating the slopes of 
lift and moment curves as function of angle of attack of quasi-slender 
wing body combinations in steady supersonic flow.The chosen configuration 
is a low aspect ratio wing of local span2 b(x),mounted on a pointed body 
of revolution of radius mex),see Fig.(3.1). 

W-re 

	

Fig.(3.1) Selected wing- 
	

Fig.(3.2) Conformal mapping 

	

body combination 	of body cross-sections 
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The double Joukovsky transformation 
z 	

4
z 

w. 	= = + 
W 

( 3 .1 ) 

where 

[ 	
alcxil 

C 04) = i he x) 1 1- 	, 
kicx)...1 (3.2) 

mapps the domain exterior to the winged body cross-sections in the W plane 

to the domain exterior to the flat plate —2C 4. ›..‘2c in the ). plane and 
hence to the exterior of the circlelike,as shown in Fig.3.2. Considering 

the case of rigid cross-sections,the equivalent cross-sectional areas of 

the wing -body combination are 

4 
<7 1  = 

TT 
	

2t .1r) 	(3.3) weLAI 	
ea) T4776-  

Solving for simplicity,the case of delta wing mounted on a conical body, 

wherea-Cx)/6(x) = k and hCX)=kx.( k and kware constants),the additional 
cross flow velocity derivative with respect to angle of attack is found to 

be independent of .7c 

2 

Z Au; = 	Lin km, 0,421  [f  # cc,sh  I 

	

/ 	(3.4) 

2 	 m k.,( I- e+ 0)] 

The nondimensional lift curve and moment curve slopes with respect to I 
angle of attack related to wing planform area A . 12  gmv  reference length , 

	

( and the dynamic pressure / e 	are then  sew 
 

k32  ez = 2 	kz+k4) 	I — 041  kw  /4 	I It. CoSh  w l  2  	(3.5) 

kw  ga 	 4 	mk CI-k+k 4) 

acmi = 9c. 	icc  - g-) 
a 11,4,hoc I b  

Results of Eqn.3.5 are presented graphically in Fig.3.3. For comparison, 

the presented solution is applied for the limit cases of wing and body 

alone. For the wing case, 	a- = kb=„0.Hence 

lez ra 7r 	— 	in2  icz  C/1- coSh 	 
(3.7) m k 2k 	w 

In the previous relation ,the first term Zr- is the original slender body 

theory value of CZ /2i,,,,,The second term represents the correction to the 

not so slender bodies and tends to zero for slender ones,where 	0. 

Results of Eqn.(3.7) are graphically presented in Fig.3.4 and compared 
with experimental data from [14]together with the results of the exact 
theory[13] and the extended slender body theory[7] , where good agreement 

is observed. Moreover ,the presented solution is much easier than the 

extension given in [7] which necessitates the solution of a system of 

integral equations.The moment curve results pridicted linear variation 

with lift coefficient and a position of aerodynamic center at two thirds 

toff wing root chord,which agrees with the known value for similar wing- 

and 
(3.5) 
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body combinations. 

Slender Body Theory value=1.0 

0.8 Ink 1.0 

Fig 3.3 Lift force derivative of 
wing body combination 
according to presented 
extension of S.B.theory. 
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Fig.3.4 Comparison of different 
theories and experiment 
for the lift force deriv-
derivative of delta wing. 

For the case of body alone(cone in this case), A:=1 & kv=kb.The lift curve 
slope related to cone base area S= 77-e2k2is thus given by 6 

CZ  — 2 	k )2( /1,- cosh-I 
m

I
kb

)] (3.8) 0'7.1 b  

Results of Eqn.3.8 are plotted as function of cone semi-vertex angle Sc 
for a moderate range of supersonic Mach numbers together with the results 
of linearized solution of [15] , emperical formula cc: -.2Ca.S2Ec  [16] , and 
the exact shock expansion theory [13],noting that S.B. theory value of 
this quantity is 2.0. . Good agreement is observed . 

A practically useful result for estimating the effect of body on total lift 
of wing-body arrangment is obtained by deviding Eqn.,3.5 by Eqn. 3.7 

/ Inzkovz /7-k,62) 	
cosi)  

4 	 hlk„...(1-k2+ ;4.'91]  
[1- ft m2 	I+ 	 3.] 

mk 
A, . C k2+ 	 (3.10) 

is the Slender Body theory value of this ratio [12] and which can be 
derived within the previous analysis by setting kw  = 0 in Eqn.3.9. Results 
of Eqn.3.9 are numerically presented in Tab.3.1 where it shows larger 
decriment of lift of the wing-body combination due to increasing the 
relative lateral dimensions of the body with respect to the wing. 

Conformal mapping of wing-body combination cross-sections can be solved 
either either computationally using the method of trigonometric inter-
Elation [17] or experimentally using electrohydrodynamic analogy[18]. 

(/...k24-1419 

where 

(3.9) 
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Fig.3.5 Comparison of several theories for the lift force derivative 
of quasi-slender cones for different Mach numbers. 

kw  k = 0.2 0.3 0.4 0.5 

0.2 0.9967 0.9925 0.9862 0.9774 
0.4 0.9886 0.9736 0.9511 0.9201 
0.6 0.9752 0.9424 0.8935 0.8261 
0.8 0.9547 0.8953 0.8074 0.6871 

Tab.3.1 The ratio Lw6 / L,, 	for different wing and 
wing-body combinations slenderness ratios. 
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4.CONCLUSIONS 

The determination of aerodynamic characteristics of quasi-slender wing-
body combination can be performed satifactorily using the presented 
extension of the Slender Body Theory. Obtained results are in good agreement 
with available theoritical and experimental data. The presented extension 
allowed the introduction of effects of body shape and flow Mach number which 
were not included in the original theory solution . Moreover ,the applied 
procedure and the form of final results are much simpler than other used 
theoritical techniques. 
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