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ABSTRACT 

The chandelle is a very important three dimensional maneuver used 

during aircombat. The final total energy per unit weight of the air-
plane is an important criterion required to be maximum at the end of 
the maneuver. A simple criterion function leads to the increase of 
the time of performance of the chandelle. This paper introduces a 
compound criterion function that includes the time of performance of 
the chadelle. This approach enables to solve the maximum final ene-
rgy chadelle with a limitation upon the time of performance of the 
maneuver. 

The gradient method is used to solve this nonlinear trajectory op-
timzation problem. The obtained optimal control laws have different 
strategies for the supersonic aircraft and for the jet trainer. The 
gain of energy for supersonic fighter is very high compared to the 
nominal solution. This paper shows that classical solution of the 
chadelle is not suitable in this case. 
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INTRODUCTION 

The chandelle was solved in Ref. [ 1 ] as a three dimensional moneuver 

assuming an exchange of kinetic and potential energies of the aircraft. 

A modified solution was given in Ref [ 2 ] which took into considera-

tion the existance of longitudinal component of the load factor. In 

Ref [ 2 ] the optimum chandelle was solved. In Ref [ 3 ] maximum final 

energy chandelle was solved for a jet trainer. When applying the method 

on a supersonic fighter the time of per formance of the chandelle is 

increased. This fact suggests the modified work of this paper. The ob-

jective here is to find that control law leading to the maximum final 
energy and simultaneously keeping the time of performance of the chan-

delle at a required low values. 

MATHEMATICAL MODEL 

The mathematical model expressing this maneuver is a system of nonli-
near differential equations of the form 

f( x, u ) 	 , u e 	U 	 (1) 

where 	x is a four dimensional state vector with the components 

( h,v, 7-, yi) and u is a two dimensional control vector with the com-
ponents ( n, 0 ). A complete analysis of this model is given in Ref 

[4] . The above mathematical model assumes that the aircraft is repre-

sented as a mass point, the forces acting upon an airplane perform-
ing three dimensional maneuver is shown on fig. (1) 

PROBLEM FORMULATION 

The objective of this paper is to find a control law n (t) and 0 (t) 
such that the energy per unit weight of the airplane at the end of 
the maneuver E

f is maximum and the time of performance is kept at 

required low values. So a new criterion function is defined as 

PI  = - B E f  .0 + (1 - C). tf 	 (2) 

Where B is a number used to give both terms of the above equation 
values of the same order of magnitude. 

This modefied criterion function represents the extension of the 

work of Ref [ 3 ]. If C = 1. the problem is to maximize the final 

energy without any restriction on the time of performance of the 
chandelle t

f . If C = 0 , then the problem is transfered to minimum 

time chandelle. 

Since the gradient method will be used to solve this problem it is 

better to use the penalty function approach to change the fixed end 
point problem to a free end point one. Finally the problem can be 
formulated as follows: 
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Find n(t) and 0 (t) 'hich minimize 

P = - B Ef.0 + (1 - C) tf  + k ( 1(-61.)- 4 )2  
subject to 

h = V sin r 
V = (T - D - W sin r )/m 

1"= 2 (n cos 0 - cos?' ) 
V 

g n sin  0 
V cos T/ 

with the following boundary conditions 

h(0) = h0 
	

h (t
f
) = free 

V(0) = V
o 	

V (t
f
) = free 

r(0) = 0 	 rad = free 

ki.)(0) = 0 	 4/(tf) = 180' 

Equations (4a) through (4d) represent the mathematical model of a 
three dimensional maneuver. 

NECESSARY CONDITIONS 

Applyino the maximum principle and introducing the system Hamiltonian 
4 

Fl 	L 	A. f
4
. 	 (5) 

then the necessary conditions are the Euler-Lagrange equations 
given by 

H 
- - h 	a h 

a H 
v 	a v 

_= ail 
I` a r 

a I-I 
" 

_ 
a w 

The boundary conditions for the above equation are according to 
Ref [ 4 1: 

Ckh(tf) = - B C 

	

ot f ) 	- B C V(tf)/g 

f
) = 2k ( f(tf) - 

2 ct — -- 

	

, f 	t=tf 

(3) 

(4a)  

(4b)  

(4c)  

(4d)  

(6a)  

(6b)  

(6c)  

(6d)  

(7a)  

(7b)  

(7c)  

(7d)  
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The second part of the necessary conditions is 

6" = 0 , and °1-i 	0 

-an 	DO 

RESULTS AND DISCUSSIONS 

The method is applied on a supersonic fighter, its data is given in 

Ref [6]. The least square method is used to find analytical expre-

ssion for the given graphical data. The engine thrust T and the drag 

coefficient C
D 

are obtained as folloWs 

T = f( h,M ) , and 

CD= CD  (M) + K(M) C1 (06) 

The gradient method Ref [5] is used to solve this nonlinear tra-

jectory optimization problem. A nominal control n(t) and 0 (t) is 

chosen. Then the state equations (4a) through (4d) are integrated 

forward till yfr = 180 . Then the boundary values of 	are 

found according to equations (7a) through (7d), hence the costate 

equations (6a) through (6d) are integrated backwords till t =0. 

Then the control vector is modified according to 

u. 	= u- + w H
u u 

where i is the number of iterations, and 

w is a negative definite diagonal matrix of the gradient 

step sizes. 

The procedure is repeated up to the required degree of accuracy. 

The Parameter C: 

This parameter determines the type of the problem to be solved. 

If C = 1, then it is a pure maximum final energy maneuver. The 
time of performance of the chandelle is increased. This parameter 

represents a comporomize between the final time and the final ene-
rgy. A dependence between this parameter and the final time of 

both supersonic fighter and jet trainer is given on figure (2). 

This parameter is closely connected to the penalty function con-

stant k, which is very important for the convergence of the sol-

ution. If C =0 then the problem is transformed to a minimum 

time one. The final energy as function of the number of itera-

tions is shown on fig.(3). It is seen that the final energy inc-
reases very rapidly at the beginning and the convergence is better 

for smaller values of the parameter C. 

Comparison Between The Optimal Control Laws: 

As seen on fig.(4) and fig.(5) the obtained optimal control laws 

are basically different for the two used aircrafts. The bank an-

gle control law for supersonic fighter is changed slightly during 
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the maneuver, but for the jet trainer it starts with low values of 
bank angle and increuses twards the end of the chandelle. The obta-
ined optimal load factor control for the supersonic fighter is inc-
reased in the middle of the maneuver and decreased again at the 
end, but for the jet trainer it starts at certain value and decreases 
continuously till the end of the maneuver. Both control laws could 

be easily performed by pilots. 

Comparison Between Optimal Trajectories: 

As shown on figure (6), the optimal trajectory of the supersonic 
fighter is shifted to a region of high energy altitude. The gain 
of total energy for supersonic airplane is very high compared to 
the nominal solution. It could be easily seen that classical solu-
tion of the chandelle is very far from reality. The airplane gains 
above 18 km of energy altitude during the performance of the cha-
ndelle, but classical solution assumes exchange of kinetic and 
potential energies. Concerning the jet trainer the optimal traje-
ctory is shifted to higher energy altitude too, but the shift is 
very small compared to the supersonic fighter. The optimum flight 
path angle for both airplanes is shown on figure (7). The flight 

path angle for supersonic fighter is more shallow than that of 

the jet trainer. 
The convergence of the method is good. This is shown on figure 

(8), the two defined parameters qn  and q approach very small 

values after 10 iterations. This means that aH and aH are 

approaching zero. 	 Vn 	alo 

CONCLUSION 

An optimal chandelle for supersonic fighter is obtained. The obta-
ined optimal control law is simple enough to be performed by pil-
ots. The classical solution of the chandelleis very far from rea-
lity it is seen that the gain of total energy for supersonic fig-
hter is very high compared with the nominal solution. The conve-
rgence of the method is good and the used gradient method is ef- 

ficient is this case. 
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NOMENCLATURE 

B 	numerical coefficient 
C 	numerical parameter 
CD 	drag coefficient 
CL 	lift coefficient 

drag force 
energy altitude 

g 	acceleration of gravity 
H 	variational Hamiltonian 
h 	flight altitude 
L 	lift force 
M 	Mach number 
m 	aircraft mass 
n normal load factor,a control input 
P 	criterion function 
T 	thrust force 
t 	time 
u control variable 
V 	flight speed 
W 	aircraft weight 
w gradient step size 

oz, 	angle of attack 

flight path angle 

0 	bank angle,a control input 
:1 	adjiont variable 

heading angle 

Fig.(2), Final Energy for 

Supersonic Airplane 
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