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" 3-D STANDING WAVES IN A RECTANGULAR BASIN 

DUE TO A LINEAR ELASTIC RESTORING FORCE " 

L 
by 	HELMY MUHAMMAD SAFWAT 

ABSTRACT Three-dimensional standing gravity 
waves on the surface of an inviscid liquid in 
a moving rectangular basin are considered. The 
basin horizontal plane motion is due to a lin-
ear elastic restoring force. The initial-boun-
dary value problem ( I.Bv.P) has been formu - 
lated and solved. The surface-wave profile , 
velocity-potential and pressure distribution 
are determined. The three-dimensional results 
reduce to the two-dimensional ones when one 
of the wavelengths becomes infinite. Reduced 
results agree exactly with previous studies . 
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1. INTRODUCTION  

STANDING gravity waves problems are more difficult to analyse 

than those of progressive wave motions. The reason is that the 

progressive wave motions can be easily reduced to steady flows 

of known solutions by an appropriate choice of the frame of 

reference while standing wave motions possess complications 

introduced by their time dependence. Nevertheless,treatments 

have been done to many cases of interest such as: two- and 

three-dimensional standing waves on a fluid of finite and in-

finite depth ; interfacial standing waves in multi-layered fluids 

and effects due to surface tension. A survey of these and other 

standing wave problems may be found in the review article of 
Wehausen & Laitone [1] . In particular , standing wave problems 

in fluids of limited mass in two- and three-dimensions are 

given in Abramson [.2j and Moiseev & Rumyantsev [3] . Further 

progress has been reported in Refs. [4 - 	. 

Usually, researchers ,in their treatment for standing waves in 

liquids contained in moving basins, do not consider certain 

factors such as basin inertia. They also prescribe , a priori , 

the basin motion which is always in a straight line either para-

llel or perpendicular to the gravitational field direction. This 

may be attributed,in the present writer's opinion,to that the 

horizontal or vertical straight line translation of the basin is 

the simplest method of excitation in the laboratory. Besides, it 

is the simplest case amenable mathematically. In the present 

paper,we consider the three-dimensional standing gravity waves 

on the surface of an inviscid liquid bounded by a rectangular 
basin of specified mass. The basin describes a two-dimensional 

motion in a horizontal plane due to an elastic restoring force, 

linear in magnitude but varying in direction. In sec.2 we 

formulate the initial-boundary value problem that governs the 

phenomenon under consideration. In sec.3 we present its solution 
and in sec.4 we give a discussion and limiting cases. 

L 	 _J 
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6 	2. HYPOTHESES AND FIELD EQUATIONS  

We consider a rectangular basin of mass mb  whose horizontal 
base dimensions are 71 and 7 L in which L is width to 
length ratio. The basin is filled with liquid of mass 	

Int its forming a finite domain D in R3, up to a height h from ts 
base. If the liquid-containing basin,whose mass now is 

m = mb + m2 is displaced from its equilibrium position to 

Fig.l. Diagram of partially filled basin showing 
co-ordinate system. 

describe a translational motion in the horizontal plane due 

to an elastic linear restoring force with modulus m k2 then 
a motion in the liquid is set in. To describe this generated 

motion of the liquid by following the eulerian representation, 
we take the origin 0 at one corner,the axes xl,x2  along 
two of the sides of the basin and the y axis points verti-
cally upward as shown in Fig. 1 . The triad xl,x2,y is fixed 
in the basin and the coordinates g and denote the position 
of the basin at any instant. We adopt the following hypotheses: 
1. The basin walls and base are rigid,impermeable and free 

from geometric irregularities. 
2. The basin displacement in the vertical direction as well as 

its rotations about all axes are fully constrained. L _J 
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3. The liquid is homogeneous,incompressible and nonviscous ; 
and the capillary contact effects between the liquid and the 
basin walls are negligible. 

4. The deflection and slope of the free surface of the liquid 
are everywhere small during the motion. 

5. No spraying or tumbling over occurs from the liquid during 
the motion. 

Thus, the equations governing the motion are 

'3)4   
172 

on x1 = 0x 	
, 

' 1 
x2 = 0 '  x2  =7CL, y = - h (2.2) 

VP D 	(2.1) 

'-z)3Z _ on y = 0 
9o_ 71 3  

( 2 .3) 

If 1/(xl,x2;t) dx, dx2  = 0 	(2.4) 

o o 
p = ( 2  -c  - g y - 	x - 	x2) 

	
(2.5) 

mb = 
	p cos(n,x1) dA - m k2 	(2.6) 

121s 

mb = 	 k2  p cos(n,x2) dA - m k 	(2.7) 
.5  

in which (x,,x2,y;t) is the velocity-potential whose negative 
gradient is the liquid velocity vector, 7 is the free surface 
elevation, p is the pressure inside the liquid, 'ins the out-
ward normal vector, g is the acceleration of the gravitational 
field, C is the liquid density, V)s  is the liquid boundary in 
contact with the basin walls and base, 1DF  is the free surface 
boundary and,finally,the dot denotes as usual the time differen-
tiation. 

Equations (2.1 - 2.3) are the usual equations of the theory 

of surface waves (Cf. Coulson [10] , Chap.5). The first expresses 

L 	 _J 
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6 	the condition of continuity ; the second follows from rigidity 
of basin walls and base ; the third expresses the condition that 
a particle on the surface remains on the surface.. Eq.(2.4)indi-
cates the condition of constant volume of the liquid. Eq.(2.5) 
is Bernoulli's law taking into effect the base accelerations . 
Lastly,Eqs.(2.6 & 7) imply the principle of conservation of linear 
momentum of the whole dynamical system in the 4.  and4.directions 
respectively. 

3. I.Bv.P. SOLUTION  

Proceeding for the solution of Eqs.(2.1 - 7), we take the free 
surface elevation and velocity-potential in the forms 

/(xl,x2;t) = cos xl • q10 	cos L 1x2.q01  + cos xl  . 
- 1 cos L x2  (3.1) 

and 

= - Csch(h). cos xl  . Cosh(y+9. 410 

-L Csch(L-1h). cos L-1x2  Cosh[L-ty+h)j. q01 

(1+L-2) -1/2  C s ch [h (1+L- 
 2) 1/2J . COS X1  

cos L-1x2 Cosil+L 
2)1/2or+h)] . c111 	(3.2) 
-t  

where c110,  q01 and ql1are generalised coordinates that are 
functions of time with max

0 = 0th) in (1q101,1q011,1(111 
which E<d . 

Here,consideration is given only to the lowest mode pairso since 
for the higher modes max 	, (i,j1) are of higher order 
of smallness,i.e. o(gh)9(Cf. Abramson[2], p. 280) . 

It is obvious that Eq.(3.2) satisfies Eqs.(2.1 & 2), Eq0(3.1) 
satisfies Eq.(2.4) and both Eqs.(3.1 & 2) satisfy Eq.(2.3) . 
Instead of further manipulating directly Eqs.(205 - 7) , we 
proceed with a Hamiltonian formalism as follows. 

L 
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The kinetic energy of the dynamic system is 

T = 	fiK4 —t- 	--f) 1- ( 12-1)j ct 
2 	Jx1 	xz 	ay 

T = (4'4+ 41-i- 	C L" 	1V r iffat AV — 4' 'fiat Ll V
ax e  " 3x  

1 

Expanding,we get 

(3.3) 

(3.4) 
.1) 

Applying Green's identity to 

Iff[4.77  AV =ift.7;  „IA _iff, 
.1) 

By virtue of Eqs.(2.1 & 2), 
R.H.S. of Eq.(3.5) vanish a 

L 'IL 

flitv-vfi ay= —ff*(34-oxlio3t)-11-c1.- ax, "2. 
0 0 

The next two integrals on the R.H.S. of Eq.(3.4) can also be 

simplified as follows : 

Since 	.3'41  - V. (x 1 7) — 

then by integrating Eq.(3.7) and applying Gauss divergence 
theorem to the first term on the R.H.S., we get 

fif v. (x i  71) ctV ctA ± ((It 2i- d,A 	(5.8) 
..).1 I .311 	JJ 

.7) 	"D.Ds 	ODF 

The first integral on the R.H.S. of Eq.(3.8) vanishes by 
Eq.(2.2)and , also , via Eq.(2.3), Eq.(3.8)can be written as 

Lif V DL 1 7 9) AV = 	;3 ct A 	 (3.9) 

Noting that the last term on the R.H.S. of Eq.(3.7) vanishes 

by Eq.(2.1), we finally get 

fif *1, 	" = 	si ---a z,t 
D 	0 0 

x1  o1 x. (3.10) 

(3.6)  

(3.7) 

L 
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and similarly 

FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 CAIRO 

qr,L. 

j' V 1 f 	°I X i .2- 	(3.11) 
o 0  

Thus, from Eqs.(3.1 - 3 , 6 , 10 11) , the final expression 
of the kinetic energy of the system is 

(CO (12-  ± 1. ( tl-  L-941  

01 	2. 

2TC  L 

(3.12) 

Also, the potential energy of the system is 

—rr 
 1J

j tz,LA t 2nA2:(4'-fla2) 	 (3.13) 
DF  

Substituting for 1 from Eq.(3.1) into Eq.(3.13) and eval-
uating the resultiell integrals, we obtain 

11-T" -t-  I2 „l 	(4 	2,) 01 z (3.14) 

We introduce the generalised momenta 
PIO , p01 , p11 9  

p4. that are defined by 

T = fr(74  {Cetil 01) '14  L 
10 

CA  ( 1 +C)-±j 

p10 = 
sr 

= 	(1-c. Coth(kAe  
p01 = 	.fr211  LZ (41:. 	 ( k) 41. 	 1+ 4) 

01-  

2A 

p11
DT 

= 	L 	 Cotk 0+,--)51 _  
= 7,7,4 - 27-c14 io 

07 = 	 -- 2 TC t 

17 

= 
Di- 	ot 

Thus, the corresponding Hamiltonian H is 

H= T +1T-  111- 	[►Co" (11) - 	L ] '1)4  ID 
ath 	- 8 LL 	+ 1)- 

J L  
Ci (T.GL 2-  L 

(3.I5a) 

(3.15b) 

(3.I5c) 

(3.15d) 

(3.15e) 

C2 
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Ta.nk 	(1 +-C)ii 	[ey, _ )3 	(0)H  rl

L 	

_, i 
Lrrl - 8 L-lc' Taoll (L=" 	re.  + 	Cotti(1.1) 8 1.fl 

■,) 

Gtii(Cii)_gt_tyj
-i  poi r.4 	4rc Lc Ix 

to 	 h it 
(3.16) 

Substituting H from Eq.(3.16) into Hamilton equations 
(Cf. Whittaker [11j 	g 109) 

- q • 	H 	 --OH (3.17) 

	

r
r 	

pr  = 

and defining the vector PLO).1 = tq10 q01 q11 	4 p10 
POI Pll P4 P4-1 T , we obtain the following autonomous 
differential system 

(3.18) 

in which the elements of the matrix N are 

n16 = ALLY 	[ rri CA /1  (1) - 	L 

n19 = 1+ 	[hi Ccik (h) - 	L 
qr 

 

n27 	
2 ell 	 _ 8 Lz  

irt:2 	 i - 
n2,10= 	[rY1 	(C — 3 LZY] 

 

ric 
.1 

n38 	( + 	z  Ta,61,1 	( I t CY] 
crulLy 

n46 = 	CAll (1) - S 
. -1 

n49 = 	— 8 L TaAkhd 

L 
	n57  = 
	

[NI Co (LA) - 12- y] 
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n5,10 

n61 = 

n94 = 

= 

"72  

n102 5 

[m - 8 L.  Ta^41 (n1 

n83  
, L  

mk2 

and all other elements take the zero value. 

The initial values of Pq (i.e.17(0)t) are 

= X= 	Eli 	1'7-- I2—f 	xir = 4t, 71.-r 
that correspond to the following initial conditions of the 

dynamical system : 

t» 	•(o)= 0 	-= 4'1 
li (xi  x2  m;U) 	 E 	/- 4 	Xz), 

TOL_ 
V ¢ (xi)  xa  1 	-= 

in which .10  and k
-1 4" are 0 (Eh) . 

(3.19) 

By applying Laplace transform to Eq.(3.18) , we obtain 

"i(s).1 — 1i(04 = EN] {i(s)} 	 (3.20) 

in which the bar denotes the L . T . of a quantity. 

Thus, Eq.(3.20) can take the form 

ti (5) 	E Ni 	(01 	 (3.21 

in which [s E - NJ is the system transfer matrix and 
E is the identity matrix. 

Evaluating the transfer matrix by partitioning method 
(Cf. Frazer et al [12]), the relevant transforms are 
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-q-10  (s) = 	S ( 524" ncri Agit) I; 	- ni9 nv4 s )64(.4 

k 5 	..5:, to ic;s-)  1/4s fv2 i9-t. r12,,G 5t )069) - 020c 	nic I .2 A 	 \i t 	 CO 

C101 	
16  (3.23) 

(5) 

(3.22) 

qll (s)  = 
and 

D10  (s)= 

(3.24) 

na c'4,t 1' 1'0 	niG 	ni-r1 ngir 
Z -61 7991  (3.25) 

D01 (s) = 
	( 15,i0 n,o.s ± 424 

	 14-2X 

)nA 	ii rojs- 	 r2 	IojS 
	 (3.26) 

D11 (s) = 	,5 - + 438 183 
	

(3.27 

Having found the transforms q10 ' c101 ' 	we are now in 
a position to investigate the stability of the resulting waves. 
By applying Hurwitz stability criterion (Cf. Hurwitz [13] or 
Hayashi [14],p.73) to Eqs.(3.25-27) and forming Hurwitz deter-
minant for each of these equations, it is found that all prin-
cipal diagonal minors of each Hurwitz determinant are non-
negative. Thus, we can conclude that the occurring standing 
waves are stable. 

Now, applying the inversion theorem for the Laplace transform 
(Cf. Sneddon L15],p.174) , we obtain 

q10 = A cost 	 (3.28) 

q01 = B cossLt + C sin. tt 	 (3.29) 

qll= D cosa-t 	 (3.30) 

in which the quantities 	; A ,B I C I D are 

LO= R2  t (1 - ymY 
Tank (11)) Ta.,6(.t4)] 

A z t 	Tahh (i):1 
(3.31 

L 
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Cilith(L:41.) 	  
+ 	174;4, 0:' ti).] 

(3 32) 

CT- (1-t-LIT 	tho  rckjti (3.33) 

2 - 	 • I 

thij- 3 L s T4.4.1h (h)]-1._ mZ 

B 3 	lkiLv" - 8 	( C'ti) j-   
Jai [e Li TA..11(cioi► - 8 CT -  T (L' 	2  

C= 	E 	 -4"  

[-e-, 3 t:' •Ta.„1,0-..-'0] Lem -y Lz y 714 (0 h)] 	2  

= — C`t E li  
rr:r  

(3.34) 

(3.35) 

(3.36) 

(3 .37) 

Thus, substituting Eqs. (3.28 — 31) into Eqs.(3.1 & 2), the 
surface—wave profile and velocity—potential are 

( y  .x.23 fr) := A CO5 . cc* 	B 	X2. C4,3 

C Cr3 L X L  S. n xtt t  D Cr3:it„ cos L x ce3 crt 
2 

and 

4-.(zo 	1-- 44= A Gcli (A) ct,s xi  Cash 0 +.9 s.n 
L Csch (cq't) c43 Cilxz 	CIO 

(8 5.A 	C cessit)+ 
c4-s 	cry C lx.2  Comlijo 	11(.y+ 9.1 Si 	t 	(3.39) 

For the determination of the pressure distribution , we note 
that the free surface is an equi—pressure one (with p = 0). 
Thus, from Eq. (2.5) , we get 

( 3 . 38) 

y 2   — oc. - -tz 	 (3.40) 
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1 
Eliminating the base accelerations r)  ,C between Fqs.(2.5) & 
(3.40) yields 

( 3.41) 

Substituting for lz ,21- from Eqs.(3.38 & 39) we obtain 

I' .-. A cz5 -,x, L csdi (M)  Ccsii (1+ 9 _ ii c,:, _,. 1 	c,,s ,, 
3 

({ 	(Ch) C.451, [C't Ito] -1 j ..ce#  

( 

(  (B (-6s-it  	21-4   I-   C   ..s,e1   -a:9   +   .D   (..1:-5   .L:L   C,-311 .A. 	t( I i- C   . 

Cscli [k( t fC9iii CA 1(,fi:)1( hij _11 G--- j crsc-t —3 1 	(3.42) )  

4. DISCUSSION  

In the previous section analytical solutions in closed forms 
have been obtained for the surface-wave profile, the velocity-

potential and the pressure distribution inside the liquid. For 

discussing the influence of basin inertia and the restoring 

force modulus on the resulting waves characteristics, we recall 
that the frequency of standing waves in a rectangular stationary 
basin (Cf. Coulson [10] 	§ 49) is given by 

1. 
= g r Tanh rh 

2 r = p2 + L-2 q2 
(4.1) 
( 4.2) 

in which p q are non-negative integers. Thus,taking 

advantage of Eqs.(4.1 & 2) , Eqs.(3.31 - 33) are rewritten 
in the forms 

 

3 C4.)  

6;:7") 0 	`-``piEl+ _21.1fti it(2L)11 L . = 	31..4 	 
( 	

t 
cr- + 	+(IT] 0-- 

 

L 
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r- 	 1 

Eq.(4.5) reveals that the coupling mode is unaffected by the 
basin inertia and the elastic restoring force. For other modes, 
it is clearly seen that they are reduced by a reduction factor 

containing mb  , k and h as parameters. For example, Eq.(4.3) 
indicates that with the increase of the modulus k, the reduc-
tion factor decreases and the difference Imo- decreases  
consequently. In the limiting case 	k too , G., -I. cr . Also 

ID 

a similar behaviour is shown with the increase of the basin 
mass until it becomes comparatively large with mm , the liquid 
motion is exactly like free standing waves in a stationary 
basin. This can be explained from Eqs.(2.6 2.7) that for 

mbtoo  and all forces on the R.H.S. are finite 4' 1 0 ,resul-
ting a stationary basin (or ,naturally, a basin with recti- 
linear uniform velocity) . Also, if 111'00, then 	1 . 

oCr 

Now , let us consider the case of the ratio L becomes large. 
Letting , in Eq.(3.1), L too, applying the condition of constant 

/g 
volume of liquid i.e. oj vix.;  = 0 , and noting that q11 is 

now merged with q10 we obtain 

= A cos xl  cos eat 	(4.6) 

in which A and CAO are given by Eqs. (3.34) and 0.3)respectively. 
This gives us the case of standing gravity waves occurring on 
the surface of a liquid embodied in a two-dimensional finite 
rectangular basin vibrating along the x1  - axis. This case has 

been treated by Sretenskii [167 . Eq.(4.3) agrees exactly with 
Sretenskii results. However , Sretenskii approach depends on 
the direct treatment of the field equations (i.e., the force 
method). He has finally come up with two coupled differential 

1 I have been unable to obtain Sretenskii paper but a good 
précis of it is given in Wehausen & Laitone [1], p. 628 . 
This précis is sufficient for the present discussion. 

L 
	 _J 
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equations , one of them is of the third order' in the present 

notation) and to integrate them he was forced to make an ad hoc 

assumption in the initial conditions , that is r'0,0= O. 

This third order differential equation implies that there exists 
a force-potential that is a function of the acceleration and 

his assumption also means that an initial value of the accelera-

tion should be imposed. Since Hydrodynamics is based entirely 

on Newtonian mechanics , then this ad hoc assumption - despite 

its mathematical correctness - is not permissible in the realm 

of Newtonian mechanics. This point shows clearly that the 

Hamiltonian formalism applied in the present study offers sig-
nificant advantages vis - a - vis the direct force method. 

5. CONCLUSIONS  
From the present study, the following points can be concluded . 

1 - The occurring standing waves are characterised by being 
oscillatory stable. 

2 - The increase of the basin inertia restoring force 

modulus and liquid depth yields ,both individually and 

simultaneously, an increase in the frequency of the occu-

rring standing waves. This increase is bounded by the 

frequency of standing waves in a stationary basin. 

3 - The basin inertia and the restoring force modulus have 

no effect on the frequency of the coupled modes. 

4 - The Hamiltonian formulation offers ,for the treatment of 

interaction liquid waves problems, certain advantages 

over the direct force method and it is strongly recommended 

for tackling similar problems. 

5 - The present analysis is useful in studying the stability 
and response of airplanes and space vehicles containing 

liquid ftel - filled tanks. For example,integrating the 
L 
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pressure on basin (tank) walls and base yields the total 
force due to fuel motion. Thus, we have a transfer function 
relating the basin motion to the total liquid force. This 
tranfer function can then be used in analysing the closed 
loop response motion of the airplane or space vehicle. 
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