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» Z_7) STANDING WAVES IN A RECTANGULAR BASTN

DUE TO A LINEAR ELASTIC RESTORING FORCE "

L
by HEIMY MUHAMMAD SAFWAT

ABSTRACT Three-dimensional standing gravity
waves on the surface of an inviscid liquid in
a moving rectangular basin are considered. The
basin horizontal plane motion is due to a lin-
ear elastic restoring force. The initial-boun-
dary value problem ( I.Bv.P) has been formu -
lated and solved. The surface-wave profile ,
velocity—-potential and pressure distribution
are determined. The three-dimensional results
reduce to the two-dimensional ones when one
of the wavelengths becomes infinite. Reduced
results agree exactly with previous studies .
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1. INTRODUCTION

STANDING gravity waves problems are more difficult to analyse
than those of progressive wave motions. The reason is that the
progressive wave motions can be easily reduced to steady flows
of known solutions by an appropriate choice of the frame of
reference while standing wave motions possess complications
introduced by their time dependence. Nevertheless,treatments
have been done to many cases of interest such as: two=- and
three-dimensional standing waves on a fluid of finite and in-
finite depth ; interfacial standing waves in multi-layered fluids
and effects due to surface tension. A survey of these and other
standing wave problems may be found in the review article of
Wehausen & Laitone [1] . In particular , standing wave problems
in fluids of limited mass in two- and three-dimensions are
given in Abramson [2] and Moiseev & Rumyantsev [3] . Further
progress haé been reported in Refs. [4 - 9] o

Usually, researchers ,in their treatment for standing waves in
liquids contained in moving basins, do not consider certain
factors such as basin inertia. They also prescribe , 4 priori ,
the basin motion which is always in a straight line either para-
1lel or perpendicular to the gravitational field direction. This
may be attributed,in the present writer’s opinion,to that the
horizontal or vertical straight line translation of the basin is
the simplest method of excitation in the laboratory. Besides, it
is the simplest case amenable mathematically. In the present
paper,we consider the three-dimensional standing gravity waves
on the surface of an inviscid liquid bounded by a rectangular
basin of specified mass. The basin describes a two-dimensional
motion in a horizontal plane due to an elastic restoring force,
linear in magnitude but varying in direction. In sec.2 we
formilate the initial-boundary value problem that governs the
phenomenon under consideration. In sec.? we present its solution
and in sec.4 we give a discussion and limiting cases.
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2. HYPOTHESES AND FIEID EQUATIONS

We consider a rectangular basin of mass my whose horizontal
base dimensions are G7 and 7t L in which L is width to
1engthAratio. The basin is filled with liquid of mass mp
forming a finite domain D in R3, up to a height h from its
base. If the liquid-containing basin,whose mass now is

m=m + mp s is displaced frqmrits equilibrium pos%ﬁion to
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Fig.l. Diagram of partially filled basin showing
co-ordinate system.

describe a translational motion in the horizontal plane due

to an elastic linear restoring force with modulus m k2 then

a motion in the liquid is set in. To describe this generated

motion of the 1liquid by following the eulerian representation,

we take the origin O at one corner,the axes X19%, along

two of the sides of the basin and the y axis points verti-

cally upward as shown in Fig. 1 . The triad Xqy%5,Y is fixed

in the basin and the coordinates £ and?% denote the position

of the basin at any instant. We adopt the following hypotheses:

1. The basin walls and base are rigid,impermeable and free
from geometric irregularities.

2. The basin displacement in the vertical direction as well as
its rotations about all axes are fully constrained, N
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3. The liquid is homogeneous,incompressible and nonviscous ;
and the capillary contact effects between the liquid and the
basin walls are negligible.

4. The deflection and slope of the free surface of the liquid
are everywhere small during the motion.

5« No spraying or tumbling over occurs from the liquid during
the motion.

Thus, the equations governing the motion are

i, _ 2f 2 ¢ R '
7 . : - —-0 VP E D 2.1
# o Taa Ty (2.1)
;%g?— = 0 on ¥ =0, % =TC
X, =0, x, =L, y = - h (22 )
2L . 2% oy y=o0 (2.3)

2t 'Izi.'n'ay

j‘/"z (%ps%p3t) Axq dx, = 0 (2.4)

¢ o . ew B
p =\’(,§—zﬁ-gy -gxl _:Xg) (2.5)
mb'g = '[‘/‘p cos(n,xl) dA - m k2£ (2.6)
- O
m § = ff p cos(n,xz) dA - mx°Z [247)
20

in which fo(xl,xz,y;t) is the velocity-potential whose negative
gradient is the liquid velocity vector, # is the free surface
elevation, p is the pressure inside the liquid, T is the out-
ward normal vector, g is the acceleration of the gravitational
field, § is the liquid density, 9 Dg is the liquid boundary in
contact with the basin walls and base, 9Dy is the free surface
boundary and,finally,the dot denotes as usual the time differen-
tiation.

Equations (2.1 - 2.3) are the usual equations of the theory
of surface waves (Cf. Coulson [10] § Chap.5). The first expresses
- =l
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the condition of continuity ; the second follows from rigidity

of basin walls and base ; the third expresses the condition that

a particle on the surface remains on the surface. Eq.(2.4)indi-
cates the condition of constant volume of the liquid. Eq.(2.5)

is Bernoulli’s law taking into effect the base accelerations .
Lastly,Eqs.(E 6 & 7) imply the principle of conservation of linear
momentum of the whole dynamical system in the Z and § directions
respectively.

3e I.Bv,P. SOLUTION

Proceeding for the solution of Egs. (2.1 - 7), we take the free
surface elevation and velocity-potential in the forms

- -1
U(*q9%53t) = cos Xp » Qg * €08 L "x,.q0, + COS X .

-1
cos L x5 o Qqq (3.1)
and

tfa(xl,xz,y;t) = - Csch(h) . COS Xy . COSh(y+h) - 49

-L Csch(L™ ). cos L‘1x2 00sh[L‘}y+h)]. ‘.101
..(1+L"‘2)"1/2 Csch[h (1+L"2) 1/2] . COS Xq

-1 -2y1 ~ °
cos L X5 CoshKhL ) /%y+h)] e dqq (3_2)

where A10s 907 and q;, are generalised coordinates that are
functions of time with max (lqlol , |q01| ’ ’qlll) = O(Eh) in
which €1 .

Here,consideration is given only to the lowest mode pairs,since
for the higher modes max ,qijl , (i,j)l) are of higher order
of smallness,i.e. o(Eh) ,(Cf. Abramson[Z], Pe 280) .

It is obvious that Eq.[3.2) satisfies Eqs.(2.1 & 2), qu(3.1)
satisfies Eq.(2.4) and both Eqs.(3.1 & 2) satisfy Eq.(2.3) .
Instead of further manipulating directly Eqs.(205 - -7) , we
proceed with a Hamiltonian formalism as follows.

L =



- FIRST A.S.A.T. CONFERENCE
FI“‘} 318

14-16 May 1985 ¢ CAIRO

The kinetic energy of the dynamic system is

v = 2o (50) e X [fflE- 2LV (6- 251 (5] 4 (3.3)

Expandlng,we get D

T = i“—(ZJh——ffva# v dV - \’EM"‘P dv - S’ﬁfff”b (v (3.4)

Applying Green’s 1dent1ty to the termJUth& vadV results in

[ffiereagee-Jfeii - ffe s Mf z (-9

By virtue of Eqs (2.1 & 2), the flrst two integrals on the

R.H.S. of Eq.(3.5) vanish and via Eq.(2.3), Eq.(3.5)becomes
L T

ﬂﬂw Vf dV= "f/?’(*u UO,t).Z:Z_ dx, dx, (3.6)

The next two 1ntegrals on the R.H.S. of Eq. (3.4)can also be
simplified as follows :

Since 2¢ = . (%, V?’b) -2 sz’f (3.7)

2 %,

then by integrating Eq.(S.T) and applying Gauss divergence
theorem to the first term on the R.H.S., we get

[[V.(xw)ow ffx 2% dn ffx—i"_cm (3.8)

The first 1ntegral on the R.H.S. of Eq.(%.8) vanishes by
Eq.(2.2)and , also , via Eq.(2.3), Eq.(3.8)can be written as

fffv (X, V) dV = -f[x LA (3.9)

Notmg that the last term on the R.H.S. of Eqe(3.7) vanishes
by Eq. (2 1), we finally get

[[21 JV:—‘[\/"Q’Z ol.x DL)L (3.10)
'395—,
D

-
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and similarly oy x
CL TU

/]f;j: AV = ff 9’7‘ dx dx, (3.11)

Thus, from Eqs.(3.1 - 3 , 6 , , 11) , the final expression
of the kinetic energy of the system is

T = ’j; Le Cothta)a + L Coth (L h)(i +1 (H—L)
Coﬂn[h(lﬂ.) 14 } _ angz(acz...
+L‘1M17) +——(: +z°) (3.12)

Also, the potential energy of the system is

1T = "3 J_(z dA ¢ 2K ’"“€ T?) (3.13)

a5
Substituting for 7 from Eq. (3. %) into Eq.(3. lj) and eval-
uating the resulfm? integrals, we obtain

- up(Refeat)e K@) o

We introduce the generalised momenta P10 s Po1 » P17 9
P , Dp  that are defined by

£ 1
Pyo = _3.%; = ‘W‘Lf (7 Coth(h)i — ‘rZ) (5.152)
p01 = -;l;;” = 'l"'z LZ\‘-' (fﬁ, Coth(L h)‘i_ --'fz) (3.1513)
Py = 2F =IELy (+0) 7 Goth Lh(h—L) 4q, (3.15¢)
P, :% = m?‘ - ,z'cl-_ﬁ"j_'lo (3.154)
P, =£ = my - amlby§ q (3.15¢)
Thus, the corresponding Hamiltonian H is
2= maT= 2 (mGth() - 5 Lﬁ]_ b
Ceth (L L= } S
= L‘_ [m (L'h) -8 EN (41-1.) g
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Tanh [k {I+C')ji] f>|‘ & _;_ [m — 8L¢ Tanh Lh)J f;
. = . ) ¥ -1
-i-%LM— XLZS“ Tanh (L h)] f:-q- [m Coth (h) _.3L\J I.DQT;"
+_.q¥.-['m G:th(f;,)_gfy] fm P, +__. LY«
s 2 A .
(L +d +.§L_ii).f..znz/_é’_(g “z) (3.16)
Substituting H from Eq. 3 16) into Hamllton equations
(Cf Whittaker [11] 109)
* _ 2H - _ _2H :
= 2 » B, = g, (3.17)

and defining the vector {X(—t)} {qlo o1 Y11 & T Pio

we obtain the following autonomo
qu pll' pé, lz,j ’ (o) g onomous
differential system

{'X} o [N] {X} (3.18)

in which the elements of the matrix KR are

2m ™ g .
fig = = [muth(h)_gl_y]
ag - __%’;_ [m Coth (h)*XLY]—I
w2y by

ny 107 __%c_ [ Coth(C h)-sLZYJ
s (l+t_'ﬂj’: Tanh [h(ITL'%)t]

L§
. -y )
= & WY gL
N6 = Lm Coth (Ch) 5 LX]

b
A
(ee}

1

I

['m - 8Lf T&.nh{h)] )

3 [m Coth(c) - 8127 ] i
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- 26 Tawh (C'h
5,10 = [W‘-3‘—Y . { )J
_ _mh )¢ L i

fgy = fgy Segmig » gz T $
n = - m k2

94 = ™o,5

and all other elements take the zero value.

The initial values of {X}'(f&‘iagﬁ)}) are

'X. )L “-‘ £h , X.t:-—;;iﬁl’l 3 X#:Zo, ’x::xéz
“Xy =X = Xm0 and X = m 7

that correspond to the following initial conditions of the
dynamical system :

EW=EF, ,5(0)=0 ,72()=5,,
7 (%3 %5 3 D) = E,h (,’q:it_ )CZ)J. (3,19)
V#(x,x, 750) =

in which % and k“lz' are  O(&h)

By applying Laplace transform to Eq.(3.18) s We obtain
s{:i(S)} - {7?.(@} = [NJ {i('s)} (3.20)
in which the bar denotes the L . T . of a quantity.
Thus, Eq.(3.20) can take the form
{i(s}} = [SE - N]_i {‘7(.’(0)} (>-21)

in which [s E = N] is the system transfer matrix and
E is the identity matrix.

Evaluating the transfer matrix by partitioning method
(Cf Frazer et al [12]) the relevant transforms are

b —
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1
T (e) = (5 + ned o) Aile) = Nig N S Aiele) (3.29)
Dy (s) )
‘qnq (8) = (5%+ 500 Mie.5) (S Xyt Ny i0Xjol9) = Ny ""s;w'n.c,ﬁ.‘é’ (%.23)
ot D, ()
s - s X3(e)
A &) = = (3.24
11 X )
and
Digle) = $* o (Mg M o+ Ny M) S Mg Mg Mg gk
s i . . . %
Mg T My (3.25)
Dop (e = ST+ (Msio Mg s T My Myy) S+ Mg Maax
N |
XNy oMoy — " .26
S0 gy ﬂi,lu 12 n“{))- (3 )
Dyq(s) = ST+ N3gngs (3.27)

Having found the transforms E&O » o1 ail , We are now in

a position to investigate the stability of the resulting waves.
By applying Hurwitz stability criterion (Cf. Hurwitz [13] or
Hayashi [14],p,75) to Eqs.(3.25—27) and forming Hurwitz deter-
minant for each of these equations, it is found that all prin-
cipal diagonal minors of each Hurwitz determinant are non-
negative. Thus, we can conclude that the occurring standing
waves are stable.

Now, applying the inversion theorem for the Laplace transform
(Cf. Sneddon LIS],p.l’M) s we obtain

Qg = A coswt (3.28)
Qg3 = B cosat + C sin=at (3.29)
97 = D cosct (3030)

in which the quantities w,«a,0-; A , B, C , D are

£ (1= 55 Tanh (h) Taunl)]
[é" +§ Tanh U")]

(3.31)

-
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r R g
2z i g . TR T -1
Po g M gL Teah(Chy L& 4 (4= 55 Tonh (C) T (] (3.32)

L2+ ¢ L™ Tawh (L'W)]

4 % . Lo
= F PO Tak' [0 0] (3.53)

o o e -y
ilﬁz[m-S‘LS‘Te.nL(h)]i%}gh_%[m(c%(h}*ﬁ’ﬂ_’ £ 4 34)

A= = i il
[#*+9 Tach(h)] [m~SL§ Tenn (] ™" — 9.
i gL o o -1 q
B=2£ {R [m=-FL% Tauh (C')] - %jeh : (3.35)
T2 [ +§L Tanh(c b)] ['m -8 P Taul, (L h)J"i_ 9. __;__zf
-1
- J;""ch{f'h) -z .7, (3.36)
T [£5 JU Tamh (K] [m - 5L¢ Teuh ()] =
D=- £reh (5.57)
qeir

Thus, substituting Eqgs.(3.28 - 51) into Eqs.(3.1 & 2) , the
surface~wave profile and velocity-potential are

7 (x',xzj -{;')-_-.- A ccs"-'oci ces wit 4 Bees L-‘xz Ces.aat

.'..CC‘-:,';LI._)_ s.nat.fDa-sliwL.;Lz(ksG‘t (3.38)
and
Frorngit) = @ A GehiW) ces o Cosh (yeb) san et

4+ i Gen (I:'h) Ce3 L‘ix?_ Cosly Li—-‘(.‘j-i-h)]x

i .- e P
(Bs.n.g_t . c,-d.a.'L)-f- G".D(Hl-y 'fst:hl_iq(lsz)/'_']
b A e al _ :
XC8 X, el x, (.vdl«[_(H»Lj L(Ji—h}} Sino-t , (3.39)
For the determination of the pressure distribution s We note

that the free surface is an equi~-pressure one (with p = O).
Thus, from Eq. (2.5) y We get

?”z:(% _Ex,-é:xa (3.40)

q
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Eliminating the base accelerations Z gf between Fqsg(Z.E) &
(3.40) yields

P= s[?(’z 7) +2L 2f - %’,] (3.4

Substituting for 7 s g%?- from Eqs.(3.38 & 39) , we obtain
_-_‘E.. = Acsx, [Csciq(h) Ccsh(}-fh)-l] Wiy g | coswt
+ (.csLl ({(LC::(IA(L)\) (ﬁahLLLJrh)_J 1_‘» -5 f})
(thiitthfflsuqstf)~+,3 s deL X (}{(lrL )
Cscln 'h(n-L )"] Ci-‘il'll(lfi:f)‘(ji-h!] ,1} o——'f,-.})c,-w't—gy (3.42)

4. DISCUSSION

In the previous section , analytical solutions in closed forms
have been obtained for the surface-wave profile, the velocity-
pPotential and the pressure distribution inside the liquid. For
discussing the influence of basin inertia and the restoring
force modulus on the resulting waves characteristics, we recall
that the frequency of standing waves in a rectangular stationary

basin (Cf Coulson {}Q] y 8 49) is given by

PR
6 = gr Tanh rh (4.1)

pe = p2 + 17 q2 (4.2)
in which p , g are non-negative integers. Thus,taking

advantage of Eqs.(4.1 & 2) . Eqs.(3.31 - 33) are rewritten
in the forms
(-3

=1 -2
(& =1 - =& o (4-4)

,ﬁ

o gk [H"mv,][ )]
Tty |712Tj [rrch).]

L o= = or (4.52J
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Eq.(4.5) reveals that the coupling mode is unaffected by the
basin inertia and the elastic restoring force. For other modes,
it is clearly seen that they are reduced by a reduction factor
containing m, , k and h as parameters. For example, Eq.(4.3)
indicates that with the increase of the modulus k , the reduc-
tion factor decreases and the difference qub..ual decreases
consequently. In the limiting case k 1‘00 ) > O Also ,
a similar behaviour is shown with the increase of the basin
mass until it becomes comparatively large with mp the liquid
motion is exactly like free standing waves in a stationary
basin. This can be explained from Egs.(2.6 , .z)“ that for

bTO" and all forces on the R,H.S. are finite & ¢ 0 ,resul-
ting a stationary basin (or ,naturally, a basin with recti-
linear uniform velocity) . Also, if hToo , then —;—-—r 1 .

ic

Now , let us consider the case of the ratio L becomes large.
Letting , in Eq.(S.l), I:Toa, applying the condition of constant
volume of liquid i.e. oJ’zd11 = 0 , and noting that aq1 is
now merged with 99 We obtain

U = A cos xy coswt (4.6)

in which A and ¢ are given by Eqs.(3.34) and (4.3)respectively.
This gives us the case of standing gravity waves occurring on

the surface of a liquid embodied in a two-dimensional finite
rectangular basin vibrating along the x, - axis. This case has
been treated by SretenskiY [16]§ . Eq.(4f3) agrees exactly with
SretenskiY results. However , Sretenskil approach depends on

the direct treatment of the field equations (i.e., the force

method). He has finally come up with two coupled differential

§7I have been unable to obtain SretenskiY paper but a good
précis of it is given in Wehausen & lLaitone [1], p. 628 .
This précis is sufficient for the present discussion.
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equations , one of them is of the third order(E in the present
notation) and to integrate them he was forced to make an ad hoc
assumption in the initial conditions , that is %H;Eﬂﬁﬂﬂ = 0.
This third order differential equation implies that there exists
a force-potential that is a function of the acceleration and
his assumption also means that an initial value of the accelera-
tion should be imposed. Since Hydrodynamics is based entirely

on Newtonian mechanics , then this ad hoc assumption - despite
its mathematical correctness - is not permissible in the realm
of Newtonian mechanics. This point shows clearly that the
Hamiltonian formalism applied in the present study offere sig-
nificant advantages vis - & - vis the direct force method.

5+ CONCLUSIONS

From the present study, the following points can be concluded .

1 - The occurring standing waves are characterised by being
oscillatory stable.

2 = The increase of the basin inertia , restoring force
modulus and liquid depth yields ,both individually and
simultaneously, an increase in the frequency of the occu-
rring standing waves. This increase is bounded by the
frequency of standing waves in a stationary basin.

3 = The basin inertia and the restoring force modulus have
no effect on the frequency of the coupled modes,

4 - The Hamiltonian formulation offers ,for the treatment of
interaction liquid waves problems, certain advantages
over the direct force method and it is strongly recommended
for tackling similar problems.

5 = The present analysis is useful in studying the stability
and response of airplanes and space vehicles containing

liquid fuel - filled tanks. For example,integrating the
L -
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pressure on basin (tank) walls and base yields the total
force due to fuel motion. Thus, we have a transfer function
relating the basin motion to the total liquid force. This
tranfer function can then be used in analysing the closed
loop response motion of the airplane or space vehicle,
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