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AVAILABLE ENERGY CONTOUR LINES ON T-6 AND P-V PLANES 
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ABSTRACT 

The primary objectives of this paper are : 1-To present the available energy 
balance equation for a non-reacting closed system. 2- To develop and discuss 
a computational method for plotting the available energy contour-lines of 
that system on the temperature-entropy, and pressure-volume planes. 3 - To 
apply the method and present the contour-lines for three different cases for 
air : i - as a perfect gas (having perfect gas equation of state and const-
ant specific heats), ii. as a semiperfect gas (having perfect gas equation 
of state and temperature-dependent specific heats), and iii- as a real gas 
(having Vander-Waals equation as an example for equation of state , and 
temperature-dependent specific heats). 
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INTRODUCTION 

Available energy has been a subject in classical thermodynamics that can be 
traced back over a period of more than 100 years. However, there have been 
significant developments within the last few years. In the course of this 
extensive treatment of the subject, some reproduction of well-known material 
is unavoidable if clarity and continuity of presentation are to be maintained. 

Parts of the present work are thought to be original, particularly in the 
concise nature of the general methodology developed for plotting the 
available energy contour-lines for real substances . 

The method developed here can easily be extended to represent the available 
energy surface in three dimensions. The importance of this work lies in the 
fact that it enables appropriate evaluation and design criteria to be set-up 
for many work-producing and work - absorbing systems. Examples of using the 
contour - lines to analyze cycle performance of I.C. engines are given in 

[1-2] . 

AVAILABLE ENERGY BALANCE EQUATION 

The available energy a, for a non-reacting closed system communicating only 
with the surroundings is defined, (e.g.[4] and [ 8 ]), as the maximum work 
which could be obtained by bringing the system to a state of thermodynamic 
equilibrium with the surroundings - to its dead state at pressure Po and 

temperature To . The value of a per unit mass of the system is given by : 

a = u + KE + PE + Po v - To s-(uo+Po v0 -16 s o ) + a o 	 (1) 

where u, KE and PE are the values per unit mass of the internal, kinetic and 

potential energies , and v and s are specific volume and entropy of the 
system respectively. In the absence of KE and PE and with the available 

energy at dead state a o  = o, Eq. (1) reduces to : 

a = u - uo  + Po (v - vo) -To (s-so) 	 (2) 

The above equation is composed entirely of changes in properties and does not 
involve heat or work: It applies to all closed systems. 

COMPUTATIONAL METHOD 

The calculation of thermodynamic properties of any simple substance requires 

expressions of two types: 

(1) an equation for constant volume specific heat at low density c‘131  (T),and 

(2) a P-v-T equation of state, which can be put in the form: 

P = pRT + F (p,T) 
	

(3) 

where R is the gas constant, and F is a function of p and T with F=0(p2) as 

so that semiperfect behaviour is obtained at low densities(P =p RT). 

For the present work the above two expressions are assumed known. They will 

be used in the following manner . 

The internal energy u is generally a function in T and v and its differential 

J 
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equation of change ( with cv  -( a a  u  
T 
 ) ) is : 

du = cv  dT + (  u  
a  
a  	) dv 

T 
v 

An important thermodynamic relationship is : 

Tds = du+P dv which can be put in the form T( 

Maxwell's relation (47i-)T  = (4.-1-3T—)v  and the 

aP du = c
v 
dT + 	

v
- P] dv 

BT  

Integrating the above equation over the path shown in Fig.l, and using 

2-- 
-dp 

dv = --- and Eq. (3), then 

0 
U-U0=11-  C

V 	0 	p 	 D 
(T dT+J-P(4_) [F(p,T)-T(  3F(P,T) )] dp 

To    

	• P ,T 

Fig.l. Path of integration for Eq.(5). Note that the first 
integration is at zero density and the second is at 
constant temperature. 

and subtracting R( dp/p),integrating over the path shown irin Fig.l, and using 

gas at To and Po . This is done by adding 
Datums for u and s are chosen so that u-u0 = o and s-s0= o for semiperfect 

The entropy is determined from the Gibbs equation: ds=(-1 )du+(—
T
)dv. Adding 

Eq.(3), the last equality can be rearranged into: 

s-so= I ( CV  (T)   ) dT- R kn(p)+ I  

	

To 	T 	0 
P
2 	

BT P 

T 	L. (T) 	P 1 --- 	( , _ D  F ( p , T )  ,) ] dp 	(7) 

-0 

	

j 

	

P 

[IP0 (_2_1 ) [ F(p,T0).1-0.1) F(pThdp] 

T j 	
81/2Rn(p0 )-I0

P,  
'(  

1
r.-) [ 	

(DF(p,T)]cip] 

	

P 	 P 	BT 
to the R.H.S. of Eqs (6) and (7) respectively. Also substituting 

	

1 	1  

	

v-v0=
P 	Po 	

into Eq. (2)., it reduces to : 

a = IT  c°(1- -4- )dT + T 0 R kn (-11-.) + 1)._1(_IIP  - 1)-1-1-P( 1  )[F(p T)+ 
To  v 	' 	PO 	PO P 	0 172- 	' 

T 	T  )  a F(p,T) ] dp 
— 

fP0 1  1  1  [F(p,T)] d p  
0
(1- 

 To / 	T 	0 	‘ p2  / 
	

(8 a) 

_J L 

(4)  

as 
) -(41 )T  +P .Using the av -r d 

above equality , then 

(5)  

(6)  

T 

T o  

p 
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(note that a=o at To and Po ). Equation (8) can be written in the compact form: 

z (a , p ,T) = 0 
	

(8 b) 

Mathematically , the above equation is a level surface in the z(a,p,T)-space, 
(since grad z=(az/aa , az/ a p, azial-)# (0,0,0)at every point in thez(a,p,T)- 
space).The equation for the available energy contour-lines(level curves) is: 

z( a , p, T) = 0, a = const 	 (9) 

Equation (9) is a nonlinear equation in p and T, and its degree of complexity 
depends on the expressions of ev  (T) and P(p,T) used in it, and a stable 
nonlinear technique must be used to solve it . 

The general technique for the case of a perfect gas will be outlined.Equat-
ion(8),for a perfect gas (with p=(-4-), and a = a*  = const.), reduces to : 

a
* 

= c
v 

To [ (—--1- zn( —)i+ RT0  [(—Y—)-1- zn 	] 	(10 a) 
To 	T 

I

o 	vo 	vo  

or 

a
* 

= c
v
T
0
f ( 

 T
T 	v  

0 	
)+ R To  f ( 	 ) 	 (10 b) 

v0  

where f(x) = [ x-1- tn(x)] is always a non-negative function for x>o. Since 

(—
I-) > o and (—v )>o, then Eq.(10b )gives bounds for f(I—)and f( To )as : 
To 

	T
o 
)>o, 

	v0 

o < f( —
T

) <( 
 a*

) , and o<f( 

vu 	

)<(a 
RT0 
 ) 

T
o 	

c 	
v 

T, 	vo  
 

This means that T and v can be defined only within these bounds. Also for any 
admissible value of v ( or T), Eq.(10b) gives two corresponding T(or v) 
values.The computational procedure , in a global sense , reduces to solving 
Eq. (10 b ) by assuming admissible values for T (or v) and solving for the two 
roots of the other variable . The procedure is to be repeated till the 
admissible domain of T and v is covered . 

CASE i. AIR AS A PERFECT GAS 

Figures (2a) and (2b) show five constant available energy contour-lines on 
the p-v and T-s planes, along with lines of constant p,v,T and s. In the 
first figure , the line T=To is the locus of points on the available energy 
contour- lines where (dp/dv) = m . Also in the second figure, lines of p=p0 
and v=v0 are the loci of points on the contour-lines where (dT/ds)=co, and 
(dT/ds) = o respectively. 	In Fig. (2a), as T decreases (below To) , the 
contour-lines approach each other very fast specially as p goes below po  and 
v goes above vo  . Similar situation exists in Fig, (2b). 

CASE ii. AIR AS A SEMIPERFECT GAS 

Temperature- dependent specific heats, (shown in Fig. (3a) and (3b), and the 
perfect gas equation of state , are used to representtheairasasemiperfect 
gas . The temperature range covered by the specific heat equation is 
273-3800 K, with maximum error 1.64 % . A comparison between the contour-lines 
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of this case and that of case i shows that there is no difference on the p-v 
plane, while on the T-s plane, the difference,(case i is greater than caseii) 
increases as T increases. The maximum difference is a temperature shift of 
12 K at T=680K for the contour-line a*=100.0 KJ/Kg. 

CASE iii. AIR AS A REAL GAS 

The Vander-Waals equation of state (given in Figs (4a) and (4b)) and the 
same temperature - dependent specific heat equations, used in case ii , are 
used to represent air as real gas . The contour - lines in this case are 
exactly the same as those of case ii . 

CONCLUSIONS 

The method presented in this paper for plotting the contour - lines is 
quite general and can be used for any non-reacting closed system . The 
importance of these contour-lines in second law (exergy) analysis of work-
producing and work - absorbing processes and cycles is comparable to the 
use of steam-tables and other thermodynamic charts in first law(energy) 
analysis . Finally, it is worth to mention that the graphes preseated here 
are computer plotted , and the computer program can be easily used to plot 
the contours for any non- reacting material , provided that c0 (T) and 
p- p - T relation are known . 
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NOMENCLATURE 

a 	sp. available energy 

c , 	const. vol. vc p 	and const. press. sp. heats 

co 	
const. vol. sp. heat at very low density 

Fv,f,  z functions 
KE, PE sp. kinetic and potential energies 

P 	pressure 

R,M 	gas constant and molecular wt. for air 

Ro 	universal gas const. 

sp. entropy 

T 	absolute temperature 

u 	sp. internal energy 

sp. volume 

0 	density 

Subscript: 

o 	condition at reference (dead) state. 

_J 
L 
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Fig. 2A. Available energy contour-lines on the P-v plane for air as a perfect. 
gas, vo  - 0.844 al/kg. 
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Fig. ad. Available energy contour- Lines on the ?-v plane for air as a 

real gas, v. - 0.844 cu m/kg, co•0.661•  01 -0.2130163  and 02- -0.031x1E6, 

and 9ander•Vaals constants: .1•0.1358 7Maa.(m3/kgmole)
2 and 640.0364 m3/kgmole. 

71g. 4a. available energy contour-lines on oh& T-S plane for air as 

real gas, v, - 0.844 cu m/kg, co-0.661, c,-0.213m2J3  and c24 -0.031010T! 

and Vander-Weals constants: a-0.1358 71.Pa.(m3/kgmole)z  and 640.0364 rJ/kgmole. 
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