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ABSTRACT 

The manifest success of the Finite Element Method has led to progressively 
increased demands being made of it. In particular, there is increasing 
pressure to use sophisticated 3D models which result in large costly 
numerical systems. It has shown that the singular point of the fundamental 
solutions can validly be taken outside the domain of the problem thereby 
yielding regular boundary integral equations (1]. The location of the 
singular point outside the domain of the problem permits the use of harmo-
nic functions with higher order singularities, as kernels in the boundary 
integral equations. This possibility is attractive because the higher order 
singularities decay rapidly away from the singular point thereby resulting 
in more diagonally dominant algebraic equations. 

In this paper, a set of higher order functions are used as kernel functions, 
which still satisfy the governing equation (Lapalce's equation) with discre-
tization acheived as continuous, discontinuous and partially discontinuous 

elements. 
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INTRODUCTION 

The computational methods most widely used at present tackle the governing 
differential equations directly in the form in which they were derived with-
out any further mathematical manipulation. This is usually done either by 
approximating the differential operators in the equations by simpler, local-
ised algebraic ones volid at a series of nodes within the region (e.g.Finite 
Difference Methods, FDM) or by representing the region itself by noninfin-
itesmal (i.e.Finite) elements of material which are assembled to provide an 
approximation to the real system (Finite Element method, FEM). All such 
methods ( Domain methods) involve wholebody discretization schemes which 
require, finally, the solution of very large systems of algebraic equations. 
These methods unavoidably generate the solution at all the internal 'nodes' 
used, whether or not this information is required. 

The Finite Element Method has in recent years reached such a stage of deve-
lopment that many workers would doubt whether any equivalent, let alone 
superior, technicque could ever appear. However , we could return to our 
set of differential equations and, as an alternative approach, try to inte-
grate them analytically in some way before either proceeding to any discret 
ization scheme or introducing any approximations. We are ,of course, attem-
pting to integrate the differential equations to find a solution whatever 
method we use, but the essence of integral equation techniques is the trans-
formation of the differential equations into equivalent sets of integral 
ones as the first step in their solution. Intuitively one would expect 
from such an operation a set of equations which would involve only values 
of the variable at the extremes of the range of integration (i.e. on the 
boundaries of the region) with the implication that any discretization scheme 
needed subsequently would only involve subdivision of the bounding surface 
of the body[21. This exactly what happens and has let to the boundary int-
egral equation methods ( or the name Boundary Element Methods, BEM). Some 
of the attractive features of BEM are that, by using a boundary discretiza-
tion scheme, the effective dimensionality of any problem is reduced by one, 
which, especially in three dimensions, leeds to an appreciable reduction 
in the number of algebraic equations generated for the solution, as well 
as much simplified data preparation. In addition, the solution variables 
vary continuously throughout the region and therefore detailed output can 
be obtained at subsequently chosen internal points. The solution is , in 
principle, exact, and approximations need only be introduced if they are 
required either to deEclibe the boundary geometry or to evaluate the various 
integrals involved [31.At the very heart of the method is the fact that 
infinitely distant boundaries can be automatically accounted for without 
discretization, a property unique to BEM. 

THEORY 

The formulation of a potential problem (steady state heat conduction) using 
the BEM starts by considering a potential function (temperature) T over 
the domain Q which satisfies the governing equation of the probem. Consi-
der for instance, an equation such as Laplace's for simplicity; 

V2T =0 
	

in Q 
	

(1) 

The boundary Conditions for the problem are: 

L 
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(i) essential 	T = T 	on F
1 

	

a T 	T 
(ii) natural 	on F2  

	

n 	a n 

• 	(2) 

where T and a T are given temperature and temperature normal derivative 
on the boundary.

n 
 a&F2partition the boundary F( F= F1 + F2) , and n is outward 

normal (see figure 1.) 

Figure.l. Problem definition 

Now introducing a function T* for the numerical solution of the problem , 
one can write a weighted residual statement in which the Laplacian term is 
integrated by parts twice [4J. The resulting statement is then satisfied by 
the governing equation of the problem which is : 

'V
2 
T
* + A(x) = o 	 (3) 

in whicha(x) is the Dirac delta function and the function T*  depends upon 
two points, the 'source' point 'x' and the 'observation' point 'y'. To form-
ulate the boundary problem, the source point 'x' is taken on the boundary 
of the domain-a-and knowing the boundary conditions for respective parts 
of the boundary, the general Boundary Integral Equation is written as: 

N 	
3T (y) T* 

C
(x) 

T
(x) 

+ E 	T
(y) a n 

x,y) d F 
	= E 	

an (Y) 	(x,Y) 
d F

(37) j=1 	 J=1  

for all yeF 	 (4) 

where C(x) is an unknown coefficient and T(x) is the potential (temperature) 
at 'x' . 

N = Number of boundary elements. 
T*= is the fundamental solution (Kernel function) 

which for 3D case is given as: 

T* 	
1  

(5)  4,7rr(x,y) 

where 'r' is the distance between the 'source' and the 'observation' points 
aT*  

and 	
an 
 is the normal derivative of T* , given by 

aT* aT* 1 	3 n xz-yk  

an 	an 
(x
'
y) = 

47 r
2E=1 

n
Y 	

r 
(6)  _J 
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where x= (xl,x2,x3) is the source point 
Y= (Y1,3792Y1) is the field observation point 

n= n 	Is fhe normal at point 'y ( sec figure 2). 

A A A A 
n=n

y
(n

ly
,n2y'

n3y
)  

field observation 
point (integration 
point) 

3+ global co-ordinate system 
2. 

Figure 2. Normals at the source point 'x' and the 
field observation point 'y'. 

The integrals in equation (4) can easily be evaluated numerically for all 
segments except the one containing the source point (xl. The singular 
integrals is either computed analytically or by using a special integration 
scheme using higher order integration rules [5]. However, if the source 
point 'x' is located outside the domainA., the coefficient C(x) in equation 

(4) equals zero and we get: 

N  f 9T*  T d r= El
an  T* 

dr 	 (7) 
E 	an  

j=1 

which gives a system of 'Regular boundary integral equations, one for each 
singular point corresponding to the boundary node 'x' under the Boundary 
element discretization and located outside the domain,0  , of the given prob-

lem at an aribrary distance from 'x' and along the outward normal [61. Now, 
not only is no special attention required regarding singular integrands 
but also higher order hormonic functions can be empleyed as kernels. In 
this paper, a set of higher order functionsare used as kernel functions, 
which still satisfies the Laplace' s equation. 

The first higher order function used is obtained by the differentiation of 
scalar field function T* with respect to the normal 'nx'. Note that this 

differentiation with respect to 'nx' ,actually ,is a linear combination 
of the differentiation of T* with respect to the global Co-ordinate axes 
(1,2,3) in which there is no obligation to use 'nx' com 1pents (nlx,n2x'

n3x
). 

 41_ 
We can use any linear combination, for instance ( 	, 	9

) , to generate 

the same solution on the boundary provided that alr compenents exist. The 
differentiation can be preformed as in the following: 

r9V 



- 

=-. 

FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 , CAIRO 
TD -2 371 

  

r- 	 1 

* 3 	T
* 

* 1` 	1 	3 * x2,--y2, 
T - 	-VT . n

x 
- 	 E n 	 

I 	D n
x 	4ur

2 
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3n I', ny  
- 4}rr- 	e=1 x r k=l Y Y 

3 

k=1 nZx  112,3,3 

+ D , -I-  D . where V is the gradient operator ( V- D -T-  - 	) . 
ax
1 
 ax

2 ax3 
The remaining  higher order functions can also be deduced in the same way. 
Let us put all these higher order functions in a more compact form, as in 
the following  table 1). 

APPLICATIONS 

Two 3D steady state heat conduction problems are analysed to test the validity 
of the proposed technique 

Steady state heat conduction of a cube 

The cube is subjected to the boundary conditions shown in figure 3. Numerical 
values for the problem are assumed as: 

a=6 , T=To  = 300 

The exact solution is : 

T = (1- -)T0  
a 

o DT 	3T 
- - — 

T 
=-50 an 	ax 	a 

whilst this is a planar 
problem, it is analysed 
in 3-space and it is inte-
resting  as a validity test 
on the coding  and as an 
investigation of the suita-
ble number of higher order 
kernel and its critcal 
radius. 	 Fig.3 Boundary conditions. 

For three-dimensional problems, using  the higher order kernels as the fund-
amental solution,the order of inter rations Xl,X2 and the precision of 
integration coefficient 'k' [5 ,7,8j will be higher than that of the corr-
esponding  values of the conventional kernels. The higher order kernels will 

1 	
n+ 
1  
2 

be of the order 
n+1 

 and 	 depending  on the type of the kernel used, 

where nell,2,3,E,5,63, is tfie order of the new kernel. On the light of expe-
rience it was found that the location of the singular point, the precision 
of integration coefficient and the order of kernel functions are three relat-
ed parameters in the program. Le us fix the location of the singular points 
as discussed before in [1]. After a systematic study, it was found that for 
the orders [1,2,3,1 and [5,6] of the kernel functions, the precision of 
integration coefficients 5.0 and 6.0 , respectively, are relatively suitable 
for the integration process (see Table 2). 

L 
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Table 	1 nigher order kernels 

order function (kernel) Normal derivative of the function,where 
(n = n ) 
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Table 2. Order of the kernel function test 

Order of 
kernel 
functions 

Executicn 
time 
(sec) 

errorl 6x1 	where Other parameters 
x / 
3T 

x = 	
8
T1- 

0 

1 

2 

3 

4 

5 

6 

245 

ti 

II 

I, 

If 

II 

II 

0.10x10
-3
% 

• 

0.70x10
3
% 

0.80x10-2% 

0.70x10
-1
% 

0.65 % 

5.2 % 

27.6 	% 

- location of singularity 
coefficient = 1.0 

-precision of integration 
coefficient 7-- 5.0 
-discontinuous elements 
are used 
-matched mesh 
-quadratic freedom 
functions 
one subdomain 

-the aspect ratio 
of an element ._. 	1.0 

-Test example:the 
same example as shown 
in figure 3 is 	used. 

-exact value at the 

test node ( 
2I 

--) -50.0 
3n 

This method seems to be more expensive than using the conventional kernels. 
However it is not,as these higher order functions decay more quickly with 
distance than does the fundamental solution, and thus improve diagonal 
dominance in the algebraic system. More importantly, they offer the possib-
lity that the equations need only be evaluated up to some distance from the 
singularity, the remaining contributions effectively vanishing. This dista-
nce will be called the 'critical radius'-see figure 4. 

Figure 4. Critical radius for higher order kernels. 
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This incomplete integration procedure reduces the labour required to set up 
the algebraic equation (central processing time) depending on the required 
accuracy. On the light of experience it was found that the critical radius, 
equal to half of the greatest dimension of the current subdomain ,is relat-
ively suitable for the integration process with a significant 15% reduction 
of the execution time (third order kernels). However this is without apprec- 
iable deterioration of the accuracy compared to the boundary values of the 
conventional kernels (see Table 3). 

Table 3 Critical radius coefficient test 

Critical 
radius 
coefficient 
(R 	) 

cr 

Execution 
time 
(sec) 

6x  Other parameters error 	,where x , 
_ 9T 

x 	= _ 	.3-- n 

- location of singularity 
coefficient E 1.0 

0.3 653 2.1% - precision 	of integration 
coefficient = 3.0 

- partially discontinuous 
0.4 704 0.85% elements [9] 	• 

- matched mesh 
- quadratic freedom 

0.5 774 0.54% functions are used. 
- one subdomain. 
- the aspect ratio of 

0.6 822 0.42% an element = 1.0 
- Test example: heat 

conduction of a cube 
0.8 896 0.16% 

1.0 913 0.11% 

test 
node 

AIWA, 
AIM, 
1111111 

IN  E10 

- exact value at test node 
aT 

node 	(---) 	= 50.0 an 
where R 	is a factor multiplied y the largest dimension 

cr 
of the domain (subdomain) 

Steady State Heat Conduction in a Glandless Motor Circulating Pump Case 

Including Hot Neck 

The glandless motor circulating pump case with its hot neck to be analysed 

Lis the pump which was subject to research and study by [10,11]. The 
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glandless motor circulating pump is used in modernelectrical power genera-
ting stations where steam, the product of combustion of a fossil or nuclear 
fuel, drives the turbo-generators (see figure 5). 

Figure 5. G.M.P. Pump and Motor Unit Assembly. 

The pump case with the hot neck arrangement is symmetric with respect to 
its own axis, so only a 30 degree sector (say) needs to be considered here. 
The dimensions of the problem, and the boundary element discretization 
employed are given in figure(6 and 7). Ninety six 8-freedom nodes of dis-
continuous and partially discontinuous elements, in which three are degener-
ate ( triangular), that is 625 freedom nodes for seven subdomains, are taken 
using a mismatched mesh. The assumed boundary values of temperature and 
of its normal derivative are shown in figure 8. In reality, there were radii 
at most of the corners of the arrangement, but some of them could not be 
modelled numerically. The problem is analysed by the Regular Boundary 
Method using discontinuous and partially discontinuous elements in conjunc-
tion with conventional and higher order kernels. Although it is relatively 
suitable to solve this problem by the domain methods (finite elements), 
since the surface/volume ratio is relatively high, and the band width is 
relatively small. In the analysis by the Boundary Element Method, most 
of the computing time is spent integrating for the matrix, whereas from 
previous experiences of finite element analysis, the reduction of the 
system of equations is the longest calculation.However, by using the higher 
order kernels in the Regular Boundary Element Method, computing time 
needed for integration to form the matrix will be reduced according to the 
required accuracy. and the problem of high surface/volume ratio will be 
suitable for the demonstration of such an advantage. In the present analy-
sis a precision of integration 5'0 is used for quadratic functional variation 
in the case of the conventional kernels, while a precision of integration 
6.0 is used for the 3rd order kernels. The contour plotting of temperatures 
(isothermal lines) on a 15 degree plane of this problem is shown in figure 9. 
It is interesting to note that the same isothermal lines are obtained by 
using the 3rd order kernels , with change of temperatures by not imore than 
5.0 %, from the results obtained by using the conventional kernels. The 

L
execution time, however, decreases by about 15%. 
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Fig.6 Pump Case Including Hot Neck-Problem Definition. 
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Fig.7 Boundary element discretization. 
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Fig.8.Boundary conditions. 

Fig.9 Isothermal lines for a 15 degree plane. 
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DISCUSSION AND CONCLUSIONS 

In this paper a Higher order BEM has been presented.Here a set of higher ord-
er Fundamental solutionsare used as kernel functions with its singularity 
taken outside the domain of the problem, giving an infinite system of higher 
order regular integral equations. On disretizing the system using continuous, 
discentinous and partially-Discontinuous elements [9] The resulting higher 
order kernels are everywhere regular over the boundary. The case study 
results presented here, for 3D steady state heat conduction problems, show 
that the conventional and higher order kernels have similar convergence cha-
racteristics. On the boundary, variations of around 3% were found using quad-
dratic elements , but the computed interior results were in close agreeement. 
It should be noted that for the 'Higher order regular method', these results 
correspond to the best location of the singular point which was found to be 
the shortest dirtance between any two neighbouring freedoms away from the ele-
ment along the outward normal [41 . 

For these higher order kernels as fundemental solutions the precision of 
intevation(the number of integration points in the Gaussian integration 
formuta[8])will be higher than that of the corresponding value for the con-
ventional kernels . This method seems to be more expensive than the use of 
conventional kernels. However, it may not be so,as these higher order funct-
ions are of potentially great interest because they decay more quickley with 
distance than does the fundamental solution (see figure 4) and thus improve 
the diagnnal dominance in the algebraic system. Moreover, they ofter the 
possibility that the equations need only be evaluated up to some distance 
from the singularity, the remaining contributions effectively vanishing . 
If this is so, then the labour required to set up the algebraic equations 
(central processing time) can be reduced. The results are promising. We 
should not forget in the Regular BEM to generate solutions only on the 
boundary. After that, we can use the conventional kernels to find the 
internal solution of the problem using Grean's identity [7]. In conclusion: 
A higher order boundary Method has been presented and used in the analysis 
of two test problems. Results show that the method is vdlidly be employed 
for the regular method. The use of higher order kernels in the boundary 
integral equations involved no incre.a;edcomputing time for a given quality of 
solution and is potentially advantageous because of improved diagonal 
dominance in the algebraic equations. 
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