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ABSTRACT 

A quantitative study of shape effect on the constant moment 
plate-bending element of Morley is presented. The so-called 
eccentricity coefficients were used to express in a very 
simple form the shape functions and the stiffness matrix of 
this triangular finite element. Eigenvalues of different 
shapes of triangles were calculated and the result of this 
study reaffirms the influence of the smallest triangle angle 
on the numerical deterioration of the element's properties. 
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INTRODUCTION 

The constant-moment plate-bending element of Morley Ell is 
the 'simplist' finite element for the solution of thin 
plates [2]. Its fields of application are the areas where 
two dimensional biharmonic equations appear [3], so it can 
be used for the solution of shell problems 	The conver- 
gence properties of this element have already been proven, 
both theoretically E51,E61 and numerically [1]. This paper 
presents a quantitative study of the stiffness matrix of 
this element by showing the influence of the shape of the 
triangle on its spectral properties. For this purpose, the 
shape functions of the element are formulated using the so-
called eccenticity coefficients E71,[8],f91. These coeffic-
ients express the deviation of the shape of a-triangle from 
an equilateral one. They simplify the expressions of the 
stiffness matrix and facilitate the study of shape influence. 

MORLEY'S ELEMENT 

Given a triangle T (Figure 1) with vertices Ai  whose coord-

ina rea coordinates relative 

to its vertices, where 

L1 = (a1 
+ b1 x + c1 y)/ 2A 

a1 = x2y3  - x3y2  

1)1 = y2  - y3  

cl = x3  - x2  

with the remaining expressions following by cyclic permuta-
tion of the subscripts. The area of the triangle is denoted 
by A where 

2A= c3b2  - c2b3  

= c1 b3  - c3b1  

= c2b1 
- c 1 b2 

Let 1.= the length of the edge opposite to the vertex A.1, 

where 

11
2= b12 + c12 
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and e = the eccentricity coefficients, where 

e1= (1 3 2 - 122)/ 112 

and as before cyclic permutation is used for the remaining 
expressions. 

Figure 1. Morley's element 

The degrees of freedom of this finite element 151 are the 
valuesofthefunctionatthevertices.A.-of the triangle: 
w(A) and the values of its derivatives at the mid-points 

B. of the edges of the triangle in the direction of normals 

:r114(B.).d7r. So the expression for the deflection w 

is written as follows: 

w = w(A1 )N1  + w(A2)N2  + w(A3)N3  + 

(Dw(B1 ).01 A1 )N4+(Dw(B2).02A2)N5+(Dw(B3
).03A3)N 

where the quadratic shape functions N1 ,...,N6  are given by: 
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where 
,w  

Dw(B).CA = =-(B) XCA + IE(B) YCA ax 	by 

and XCA is the x-component of CA while YCA is its y-compon-
ent. 

ELEMENT STIFFNESS MATRIX 

Using Morley's element to solve the plate-bending problem, 
the elementary stiffness matrix can be written as follows 
I11 : 

K = f f CTD C dx dy 

The flexural rigidity matrix D is defined for the isotropic 
plate as: 

*IOW 	 ■•••• 

D -  Et3  

12(1-.1)2) 

1 	 0 	y 

0 2(1-Y) 0 

0 	1 

  

where E is the Young's modulus, t the thickness, and)) the 
Poisson's ratio. The matrix C is given by: 

b2-)i(1+ e )b2-);(1-0 )b  
2 	3 3  biol-)4(1+ 02  )b2  o2  -}4 (133  )b3e3 	c 1-A(1+ 62  )c._3i( 1_0 c2 

	

b2-; 	e3  )b
2 -)4(1-e1  )b

2 

b-4(1+ o )1) -}k (1-e )b  

	

3 ' 	1 1 	2 2 

- 

- b2 
2 

- b3  

b2c2-)4(1+ 133  )133c5-A(1-el)biel  

b303-)4(1+ ol)biol-Y2(1-02)b202  

-b2o2  

-b3  

e2-'4(1+ o3)cl-}4(1_0
1)ci 

o1)e21-}4(1-82  )02 

2 -ol  

-°2 
 
2 

2 2 

2 A2  

Writing the symmeric stiffness matrix: 

- Et3  S 
24(1-P')A 
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6 and making the necessary calculations one obtains the follo- 
wing simple expressions: 

S(1,1)= - S(1,4) + (1+e2)S(1,5)/2 + (1-e3)S(1,6)/2 

3(1,2). - 3(1,5) + (1+e3)S(1,6)/2 + (1-e1 )S(1,4)/2 

S(1,3)= - S(1,6) + (1+e1 )$(1,4)/2 + (1-e2)S(1,5)/2 

S(1,4)= - (1-Y) (2+e2-e3) 

S(1 ,5)= (1-V) (1+e3) 

S(1,6)= (1-P) (1-e2) 

S(2,2)= - S(2,5) + (1+e3)S(2,6)/2 + (1-e1 )S(2,4)/2 

S(2,3)= - S(2,6) + (1+e1 )S(2,4)/2 + (1-e2)S(2,5)/2 

S(2,4)= (1-Y) (1-e3) 

S(2,5)= - (1-P) (2+e3-e1 ) 

S(2,6)= (1-Y) (1+e1) 

S(3,3)= - S(3,6) + (1+6. 1 )5(3,4)/2 + (1-e2)S(3,5)/2 

S(3,4)= (1-.0 (1+e2) 

S(3,5)= (1-Y) (1-e1) 

S(3,6)= - (1-Y) (2+e1 -e2) 

S(4,4)= 114/2A2  = 8(1-s3)/( (1+s1 )(3-e1+e3+e1 e3) 

= 8(1+e2)/( (1-s1 )(3+e1-e2+e1e2) 

S(4,5)= 2V + (1-e1)2  S(4,4)/4 

S(4,6)= 2Y+ (1+e1)2  S(4,4)/4 

S(5,5)= 124/2A2  = 8(1-e1 )/( (1+s2)(3-e2+e1 +e2e1 ) ) 

= 8(1+e3)/( (1-e2)(3+e2-e+e2e) ) 

S(5,6)= 2), + (1-e2)2  3(5,5)/4 

S(6,6). 134/2A2  = 8(1-e2)/( (1+e3)(3-ye2+e3e2) ) 

= 8(1+e1)/( (1-e3)(3+e3-e1 +e3e1 ) ) 
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Therefore, for an isotropic plate of constant thickness, one 
can easily see that the stifness of the element depends on 
its eccentricity coefficients, and is inversely proportional 
to its area. 

EFFECTS OF ELEMENT SHAPE 

To study the effect of the shape of the element, it is con-
venient to classify triangles into three main types: 
isosceles, right angled, and obtuse angled triangles ( see 
Figure 2 ). For each type, the eigenvalues of the stiffness 
matrix were calculated as function of eccentricity coeffici-
ents. 

Al 

(a) 

eFo.e2::-e3  

( c ) 

Figure2.(a)isosceles; (Wright angled; (c) obtuse angled triangles. 

It is obvious that each matrix has three zero eigenvalues 
corresponding to the rigid body motions. The remaining 
non-zero eigenvalues will be ordered as Ai 	A2  
Figure 3 shows the behaviour of the largest eigenvalue ,X1  
for different triangular shapes. One can easily see that 
the minimum value ofA

1 occurs for the equilateral triangle 
( ei  = 0, i = 1,2,3 ). Any deviation from this shape 
increases the value of ,Al. This increase of Ai  implies 
an increase of the largest eigenvalue of the global assem-
bled stiffness matrix 1103. It is clear that an increase 
of le1 1 corresponds to a decrease of the smallest angle of 

the triangle. Therefore, one concludes that as the triangle 
'deteriorates', i.e. its smallest angle decreases, the 
largest eigenvalue increases. Figure 4 shows that this 
'deterioration' corresponds not only to an increase of „A, 
but also to a decrease of .A 3 . 
L 	 _J 
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In addition, one can prove that if the area is not changed, 
at least one of the diagonal coefficients increases as the 
triangle 'deteriorates'. According to Cook [113 this implies 
an increase of the condition number of the global stiffness 
matrix. 

All the previous results were made for Poisson's ratio 
.1) = 0.3 . In fact, it is found that Y is of little effect as 
seen from Figures 5 and 6. 

CONCLUSIONS 

1. The stiffness of the constant-moment plate-bending element 
of Morley is inversely proportional to its area if the 
shape and thickness are not changed. 

2. The smallest angle of a triangle is responsible,to a 
large extent, for the possible bad performance of the 
element. A decrease of this angle leads to an increase of 
the maximum eigenvalue and the condition number of the 
global stiffness matrix. 
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