A ROTATING MASS-SPRING-DAMPER SYSTEM UNDER COMBINED HARMONIC AND RANDOM EXCITAIIION

Prof.Dr. S.D.HASSAN ${ }^{*}$

Eng. M.S.BAYOMI

ABSTRACT

A vibratory system of mass-spring-damper rotates about an axis perpendicular to its plane of vibration, and is subjected to harmonic forces in that plane. By taking into consideration the various coupling terms that may be present, we can measure the small rate of turn around the axis perpendicular to the plane vibration from the amplitude and phase angle relations. It was found previously that the phase angle is independant of the damping factor (i.e. independant of the transiant response) at the value of the rate of turn which is smaller than the system natural frequencies.
Therefore, we can improve the transient performance without affecting the sensitivity of the devise.

In this work, we study the sensitivity of the system when it is subjected to random noice.
\# Chairmen, Dept. of Aeronautics, Faculty of Engineering, Cairo University.
F. Assistant teacher, Faculty of ingineering, Cairo University.

Introàuction

The purpose of this paper is to study the effect of random noise on the measurment of small rate of turn by vibratory system.

This system, described by Linnett (19E9), is used to measure a small rate of turn. It is a two degrees of freedom vibratory rate sensor which consists of a single mess mounted at the point of measument. The mass is deduced from the anslysis of the effect of coupling due to inertia; damping; and stiffness.

It is possible to measure very small rate of turn about an axis perpendicular to the plane of vibration, by means of the phase relationship between the induced and exited vibrations.

The phase relationship, unlike the amplitude ratio, is independant of the damping present in the system. Hence the sensiflvity of the instrment is not affected by the increase in damping.

This system measures small rates of turn by a mass-spring -damper system under some simplified assumptions. One of these, is that the excitation acting on the vibratory system is hermonic. This assumption, however, can lead to the system resporse directly by assumine e hemonic solution. This paper is cevotez to study the capability and the efficiency of the mess-springdamper system to measure rates of turn when excited by small randam forces in addition to the harmonic forces.

Equations of mution and system describtion :-

The system is in the figure. It consists of ε point mass m constrained to move in the plane $O X Y$ of a rectanguler set of axes OXYZ, which is rotating in space at an anguler velocity Ω about a non-accelerating origin 0 .

When the mass is displaced from equilibrium a distance r where r is measured from the origin 0 . the mass will be subjected to the forces F_{X} and F_{Y} in the $O X$ end OY directions respectivily due to the effects of stiffness, damping, inertia and the coupling terms.

The forces in relation to the displacement, velocity end acceleration are expressed es :

$$
\begin{align*}
& F_{x}=c_{1} \dot{x}+K_{1} x+c_{i} \ddot{y}+c_{d} \dot{y}+c_{s} y \\
& F_{y}=c_{2} \dot{y}+K_{2} y+c_{i} \ddot{x}+c_{d} \dot{x}+c_{s} x \tag{1}
\end{align*}
$$

Where

The exciting forces which act on the mass are harmonic forces in the $O X$ and $O Y$ directions. The forces ere of the same frequency ω, but have a phase difference ψ between them

$$
\begin{align*}
& P_{x}=I_{1} e^{j \omega t} \\
& P_{y}=P_{2} e^{j(\omega t+\psi)} \tag{2}
\end{align*}
$$

The equations of motion for the system are obtained by applying Newton's second law as follows :

$$
\begin{align*}
& m a_{1}=P_{x}-F_{x} \\
& m a_{2}=P_{y}-F_{y} \tag{3}
\end{align*}
$$

Where

$$
a_{1} \text { and } a_{2} \text { are the absolute accelerations of the }
$$ system in the $O X$ end $O Y$ directions

The absolute accelerations of the mass, in general, can be written in a vector form as :

$$
\begin{equation*}
\vec{\varepsilon}=\frac{\partial^{2} \vec{r}}{\partial t^{2}}+\frac{\partial \vec{\Omega}}{\partial t} \times \vec{r}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})+2 \vec{\Omega} \times \frac{\partial r^{\prime}}{\partial t} \tag{4}
\end{equation*}
$$

Winery

$$
\begin{aligned}
\vec{\Omega} & =\Omega_{1} \vec{i}+\Omega_{2} \vec{j}+\Omega_{3} \vec{k} \\
\vec{r} & =x \vec{i}+y \vec{j}
\end{aligned}
$$

(Since the mass is constrained to move in the OXY plane, then the displacement in the Z-direction equals zero)
and s, equations (I) are reformed Du the eevivition as follows:

$$
\begin{aligned}
\ddot{x} & +2 \xi_{I} \omega_{n I} \dot{x}+\omega_{n l}^{2} x+u_{i} \ddot{y}+\left(\omega_{n l} u_{d I}-2 \Omega\right) \dot{y} \\
& +u_{s I} \omega_{n I}^{2} y=\omega_{n I}^{2} X_{s} e^{j \omega t}
\end{aligned}
$$

Similarly the second equation are :

$$
\begin{align*}
\ddot{y} & +2 \zeta_{2} \omega_{n 2} \dot{y}+\omega_{n 2}^{2} y+u_{i} \ddot{x}+\left(\omega_{n 2} u_{d 2}+2 \Omega\right) \dot{x} \\
& +u_{s 2} \omega_{n 2}^{2} y=\omega_{n 2}^{2} Y_{s} e^{j\left(\omega t+\psi^{\prime}\right)} \tag{6}
\end{align*}
$$

There $\omega_{n l}$ and $\omega_{n 2}$
ere undamped natural frequencies in of and 0 : directions.

$V B-4$	549

The effect of random forces is studied by adding a small random force term to the harmonic force term. These random forcing functions are expressed as Gaussian stochastic processes.

When small random force terms are added, the equations of motion becomes as follows :-

$$
\begin{aligned}
\ddot{x} & +2 \xi_{I} \omega_{n l} \dot{x}+\omega_{n l}^{2} x+u_{i} \ddot{y} \div\left(\omega_{n l} u_{d l}-2 \Omega\right) \dot{y} \\
& +u_{s l} \omega_{n 1}^{2} y=\omega_{n l}^{2}\left(X_{s} e^{j \omega t}+\epsilon w_{l}(t)\right) \\
\ddot{y} & +2 \zeta_{2} \omega_{n 2} \dot{y}+\omega_{n 2}^{2} y+u_{i} \ddot{x}+\left(\omega_{n 2} u_{d 2}+2 \Omega\right) \dot{x} \\
& +u_{s 2} \omega_{n 2}^{2} x=\omega_{n 2}^{2}\left(Y_{s} e^{j(\omega t+\psi)}+\epsilon \because_{2}(t)\right)
\end{aligned}
$$

(7)

Where ; $W_{1}(t)$, and $W_{2}(t)$ are Gaussian or Normal stochastic processes with zero mean and spectral density $\sigma=.2$.

By using the state space method, these two erurtions Ere rewritten as follow :

$$
\begin{aligned}
& \dot{Z}_{R}(t)=\underline{F} \underline{Z}_{R}(t)+\underline{G} \underline{u}_{R}(t) \\
& \dot{Z}_{I}(t)=\underline{F} \underline{Z}_{I}(t)+\underline{G} \underline{u}_{I}(t)
\end{aligned}
$$

Vinere subscripts R and I refire to the real and the imaginary parts

Vinere,

$$
\begin{aligned}
& \underline{F}=\frac{1}{1-u_{i}^{2}}\left[\begin{array}{ll}
0 & 1-u_{i}^{2} \\
-\omega_{n 1}^{2}+\omega_{n 2}^{2} u_{s 2} u_{i} & -2 \int_{2} \omega_{n 1}+u_{i}\left(\omega_{n 2} u_{d 2}+2 \Omega\right) \\
0 & 0 \\
\omega_{n 1}^{2} u_{i}-\omega_{n 2}^{2} u_{s 2} & 2 \int_{1} \omega_{n 1} u_{i}-u_{i}\left(\omega_{n c} u_{i c}+2 \Omega\right)
\end{array}\right. \\
& 0 \text { 0 } \\
& -\omega_{n 1}^{2} u_{s I}+\omega_{n 2}^{2} u_{i}-\left(\omega_{n 1} u_{d I}-2 \Omega\right)+2 \xi_{2} \omega_{n 2} u_{i} \\
& 0 \\
& \omega_{n 1}^{2} u_{s l} u_{i}-\omega_{n 2}^{2} \\
& 1-u_{i}^{2} \\
& u_{i}\left(\omega_{n 1} u_{d 1}-2 \Omega\right)-2 \xi_{2} \omega_{n 2} \\
& \underline{G}=\frac{1}{1-u_{i}^{2}}\left[\begin{array}{ll}
0 & 0 \\
\omega_{n 1}^{2} & -\omega_{n 2}^{2} u_{i} \\
0 & 0 \\
-\omega_{n 1}^{2} u_{i}^{2}
\end{array}\right] \\
& \mathrm{ZR}_{\mathrm{R}}^{\mathrm{T}}(\mathrm{t})=\left[\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{x}_{3} & y_{1} & y_{3}
\end{array}\right] \\
& \underset{-}{2}(t)=\left[\begin{array}{llll}
x_{2} & x_{4} & y_{2} & y_{4}
\end{array}\right] \\
& {\underset{\sim}{u}}_{T}^{T}(t)=\left[X_{S} \cos \omega t+\epsilon W_{I}^{\prime}(t) \quad Y_{S} \cos (\omega t+\psi)+\epsilon w_{2}^{\prime}(t)\right] \\
& \underset{\sim}{u} \underset{I}{T}(t)=\left[X_{S} \sin \omega t+\epsilon w_{1}^{\prime}(t) \quad y_{S} \sin (\omega t+\psi)+\epsilon \#_{2}^{\prime}(t)\right]
\end{aligned}
$$

Simulation: :-

The numerical method can be effeciently used in solving the system of equations. A case study must be considered for solving the system equations numerically. The performance of the system at any case will be estimated after we know the performance of this case study.

A case study:-
The parameters of the system are selected as follows: Frequencies ;-

The natural frequency in $O Y$ direction ($\omega_{n 2}$) must be equal to the frequency of the exciting forces (ω) which is very important to be at resonance. The amplitude of
(Y) is maximum at resonance and the \arg (Y / X) not Effected by the change of the damper charactristic.

The natural frequancy in $O X$ direction $\left(\omega_{n l}\right)$ can have any value winch will not affect the system solution. The natural frequancy $\omega_{n l}$ must not be equal to the frequancy of the exciting forces (ω).

The assumed values of the frquancies are as follows :-

$$
\begin{array}{ll}
\omega_{\mathrm{n} 1}=3 & \sec ^{-1} \\
\omega_{\mathrm{n} 2}=2 & \sec ^{-1} \\
\omega=2 & \sec ^{-1}
\end{array}
$$

Damping factors:- $\left(\xi_{1} \& \xi_{2}\right)$
The damping factors in $O Y$ and $O Y$ directions are assunted equal to 0.1 . The change in this values does not change the phase ancle.

$$
\text { Coupline terms :- }\left(\ln _{i}, u_{s}, \& u_{d}\right)
$$

The system responses are obtained at different values of coupling terms．

Results

Using the computer program，the responses of the system are obtained with respect to the rates of turn．Some of the obtained results will be discussed as follows．

The Effect of Inertia coupling ：－

The coupling terms $u_{i}=0.01$ and the rest equal zero insertei into equations（ 7 ）we obtein ：－

$$
\begin{aligned}
\ddot{x}+2 \xi_{1} \omega_{n 1} \dot{x}+\omega_{n 1}^{2} x & +u_{i} \ddot{j}-252 \dot{y} \\
& =\omega_{n 1}^{2}\left(x_{s} e^{j \omega t}+\epsilon \ddot{i}_{1}(t)\right) \\
\ddot{y}+2 \xi_{2} \omega_{n 2} \dot{y}+\omega_{n 2}^{2} y & +u_{i} \ddot{x}+2 \Omega \dot{x} \\
& =\omega_{n 2}^{2}\left(Y_{s} e^{j \omega t}+\left(V_{i 2}(t)\right)\right.
\end{aligned}
$$

Figure（ l ）shows plots of the magnitude｜Y／X｜ versus Ω with some selected values of ϵ ．From figure（ 1 ），note the error in measurine rates of turn． The symmetry about the vertical line $\Omega=0$ is lost． Figure（ 3 ），shows plots of the percentage error in the magnitude．We nowe that the error percent in measuring the nagnitude of the rates of turn is increased while the para－

$V B-4$	553

meter ϵ increased. The error percent winen Ω positive is less than when Ω negative.

Figure (2) shows plots of the $\arg (Y / X)$ versus Ω with the same selected values of t. Figure (4) shows plots of the error percent in the phase angle shift between Y and X. this figure shows the percentege error in the direction of the small rates of turn. Note that the error percent is increased wille the renamness increased.

The Effect of Stiffness coupling :-

Introducine the coupling terms $u_{s l}$ and $u_{s 2}$ not equal zero End the rest equal zeros into equations (7) we obtein :

$$
\begin{aligned}
x+2 j_{1} \omega_{n 1} x+\omega_{n 1}^{2} x & -2 \Omega y+\omega_{n 1}^{2} u_{s l} y \\
& =\omega_{n 1}^{2}\left(X_{s} e^{j \omega t}+\epsilon w_{1}(t)\right) \\
y+2\}_{2} \omega_{n 2} y+\omega_{n 2}^{2} y & +2 \Omega z+\omega_{n 2}^{2} u_{s 2} \overline{ } \\
& =\omega_{n 2}^{2}\left(\overline{7}_{s} e^{j \omega t}+\epsilon w_{2}(t)\right)
\end{aligned}
$$

Typical plots of the magnitude of the solution |Y/X| versus Ω for $u_{s 1}$ and $u_{s 2}$ equal 0.01 and various velues of ϵ are show in figure (5). Fote that the symmetry about the vertical line $\Omega=0$ is lost and there are certain error in measuring the magnitude of the small rates of turn.

The error percent in measuring the magnitude and direct－ ions of the small rates of turn are shown by the two figures （ 7 ），and（ B ）．Figure（ \bar{Y} ）shows plots of the two curves of the percentage error related to the parameter equal 0．1，and 0．2．We note that the error percent are increased wile rendomess increesed．Figure（ 8 ）shows plots of the error percent in the direction of the sameil rates of turn for the same selected values of ϵ Es tre previous amplitude curves，which permit the observation that the percentage error have negative values up to Ω near to zero anà then have positive velues．

Conclusions ：－

The percentage of error of the measurments of the mass－ spring－damper system with harmonic forces and small random forces does not exceed ． 15 percent，rian the random forces ale equal 20 percent of ine narmonic forces．It has been recommended to be used in measuring both small and very small rates of turn．

REFERENCES
I－BAYOMI，E．S．（1982）
＂Effect of random noise on the measurment of small rate of turm by vibratory system＂ m．Sc．thesis，Cairo University

2－HARRIS，C．M．，and CRELE，C．E．，
＂Shoek and vibration heidbook＂，vol． 1. McGraw－Hill， 1961

3－LINTETT，J．A．，
＂Irethods of using a vibrating system to measure small rates of turn＂，J．Lech．Eng． vol．Il．No．5．October，1969，526－533．

Fig. 1 Variation of $|Y / X|$ versus Ω for $r_{2}=1$, $\int=.1, u_{i}=.01, u_{s_{1}, 2}=u_{d_{1,2}}=0$, and verious velues of ϵ.

 megnitudt versus Ω for $C=0.1,0.2$.

Fig. 2 Variation of $\operatorname{urg}(Y / X)$ versus Ω for $r_{2}=1$, $u_{i}=.01, u_{s_{1,2}}=u_{d_{1,2}}=0$, end verious velues of ϵ :

íL.
ULTILIIOR Of tlet perceintele erior in direction versus Ω for $\epsilon=0.1,0.2$.

Fig. 5 variation or $|Y / X|$ versus Ω for $r_{2}=1$,

$$
\begin{gathered}
S=.1, u_{s_{1,2}}=0.01, u_{i}=u_{d_{1}, 2}=0 \text {, end verious } \\
\text { values of } \epsilon .
\end{gathered}
$$

 versus Ω for $\mathrm{c}=0.1$, ¿.z.

Fig. 6 Variation of $\operatorname{erg}(Y / X)$ versus Ω for $r_{2}=1$,

$$
\mathbf{a}_{\mathrm{g}_{1,2}}=0.01, u_{i}=u_{d_{1,2}}=0 \text {, and verious }
$$

$$
\text { velues of } \epsilon
$$

T1己. \& Vuriction of perco:.teze eiror ir. wounituete
versus Ω for $\epsilon=0.1,0.2$.

