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ABSTRACT 

A vibratory system of mass-spring-damper rotates about an axis 

perpendicular to its plane of vibration, and is subjected to 
harmonic forces in that plane. By taking into consideration 

the various coupling terms that may be present, we can measure 

the small rate of turn around the axis perpendicular to the 

plane vibration from the amplitude and phase angle relations. 
It was found previously that the phase angle is independant 
of the damping factor (i.e. independant of the transiant res-

ponse) at the value of the rate of turn which is smaller than 

the system natural frequencies. 

Therefore, we can improve the transient performance without 

affecting the sensitivity of the devise. 

In this work, we study the sensitivity of the system when it 
is subjected to random noice. 
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Introduction 

The purpose of this paper is to study the effect of random 

noise on the measurment of small rate of turn by vibratory 

system. 

This systems  described by Linnett (19G9)1  is used to meas-

ure a small rate of turn. It is a two degrees of freedom vib-

ratory rate sensor which consists of a single mass mounted at 

the point of measurment. The mass is deducea from the analysis 

of the effect of coupling due to inertia;damping; and stiffness. 

It is possible to measure very small rate of turn about 

an axis perpendicular to the plane of vibration, by means of 

the phase relationship between the induced and exited vibra-

tions. 

The phase relationship, unlike the amplitude ratio, is 

independant of the damping present in the system. }ence the 

sensitivity of the instrument is not affected by the incre-

ase in damping. 

This system measures small rates of turn by a mass-spring 

-damper system under some simplified assumptions. One of these, 

is that the excitation acting on the vibratory system is har-

monic. This assumption, however, can lead to the system response 

directly by assuming a harmonic solution. This parer is Cevatcf 

to study the capability and the efficiency of the mass-spring-

damper system to measure rates of turn when excited by small 

random forces in addition to the harmonic forces. 

Equations of motion and system describtion 

The system is in the figure. It consists of a point 

mass m constrained to move in the plane OXY of a rectangular 

set of axes OXYZ , which is rotating in space at an angular 

velocity SI about a non-accelerating origin 0. 
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'When the mass is displaced from eqilibrium a distance 

r where r is measured from the origin D. the mass will 

be subjected to the forces 	FX and 	F in the OX and 

OY directions respectivily due to the effects of stiffness, 

damping, inertia and the coupling terms. 

The forces in relation to the displacement , velocity 

and acceleration are expressed as : 

Fx  = Cl  x + Kl  x + Ci  "y:  + Cd  Sr + Cs  y 

F = C2  y + K2  y + Ci 	+ c 	+ Cs  x 	( 1 ) 

There 
can(51C2 are the viscous damning  coefficie:.-  

the OX and OY directions respecif 

K1 and K2 are the spring constants in OX and OY 

directions respectivily ; 

Ci 3 Cd 9 and C, 
are inertia, damping, and stiffness 

coupling coefficients; and are assu-

med equal in both OX and OY dire-

ctions. 

The exciting forces which act on the mass are harmonic 

forces in the OX and OY directions . The forces are of the 

same frequancy oi , but have a phase difference yi between 

them 
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The equations of motion for the system are obtained by 

applying Newton's second law as follows : 

m al Px - Fx 

m a2 = Py - Fy  

2 ) 

( 3 ) 

a1 
and a2 

are the absolute accelerations of the 

system in the OX and OY directions 

The absolute accelerations of the mass , in general , can 

be written in a vector form as : 

Where 

= 
2 r 
t 2 	-ot 

r +51)(0-xr) + 2 X ( 4 ) 

Where, 

=C-21 
	-J• 	 (5 ) 

? 
r xl+yo 

( Since the mass is constrained to move in the OXY plane 

then the displacement in the Z-direction equals zero ) 

ef7uat1ons (1) are reforDed 

as follows: 

x 	2 	Lona x 	t3L x3' 	( Lonl udl 
- 2 S-) y 

+ usl wnl y = Unl 
Xs 

e 
j Lk) t 

Similarlly the second equation are : 

(1-3n2 
ud2 + 

2 S/ ) 
n2 

u 4)2  + s2. n2 -  
= 2 ijj 

n2 
e
j (zt + 4' ) ( 6 ) 

el-ivation 

"here W ill. and Wn2 
are undamped natural frequencies in OY and 07: Lirections. 
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The effect of random forces is studied by adding a small 

random force term to the harmonic force term. These random 

forcing functions are expressed as Gaussian stochastic 

processes. 

When small random force terms are added, the equations of 

motion becomes as follows :- 

- 2  S1 ()nl X + LO1211  x + Ui  Y + (1°111 udl 	2Q) 

	

2 	2 	j (-3  t 
+ uslnl y = b)nl ( Xs 	+ E V.' (t) ) 

29_) t LO 	Lo2  y 
Y 	2  '2 n2 	— n2 	ui 	10n2 1-1  

2 	
s e sz n2 	

= U.) 	y 
n2 	

i(bjt 	(11) + U 63   +- C 	 ) 

( 1  ) 

Where ; Wl(t), and W2(t) are Gaussian or Normal stoch-

astic processes with zero mean and spectral 

density 0-- ,.2 . 

usi-nE the state space method, 	two 

are rewritten as follow : 

zR  (t) = 1? zot) 	G 11.0(t) 

Z_ (t) = F Z1 	+ G u- (t) 

Where subscripte R and I refere to the real and the 

imaginary parts 



F - 	2 - 1 - u. a 

1 

1 

G - 	2 1 - u. 3_ 2 2 U. nl 	
(-0n2 

 

0 

L) 2  n1 
0 

0 

- LO c  n2 u i 
0 
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''mere, 

01 - u. 3_ 
2 	2 	 - 2 - Lt.)nl  + 6-)n2 Us 2 ui 	c nl + u. ( Li n2  u a2 + 252) 

0 

45 2 u. - 2, u nl a u 

- U 

	 ur, 2+ 2S 2 ) a n1 i 	 QC 

O 0 

-On'  use + ().)2 u. n2 3_ 	
-( cOnl  u-2 	1- 2c2 ``n2 111 

2 

O 2 1 - u2  
Lk) 	 . 	L.02 

n1 u u - 

	

sl a 	n2 	u.a. ( (.0 	Udl  -2 9- ) 	2 2(-3n2 n1  

   

(t ) X1 	:3 53  

    

Z T (t) 12 	 Y 2 	Y4i 

u T  (t) = [Xs cos Lit +E 1 t 	Ys  cos( tot+ ) +C 1.72( ) —F.  

u 1  (t) .  = I Xs sin Wt +E V.'1(t) 	Ys :.:a.n( Lot+ Le) +f 7.'s2Zt)] 
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Simulation::- 

The numerical method can be effeciently used in sol-

ving the system of equations. A case study must be considered 

for solving the system equations numerically. The performance 

of the system at any case will be estimated after we know the 

performance of this case study. 

A case study:- 

The parameters of the system are selected as follows : 

Frequencies ;- 

The natural frequency in OY direction ( n 

must be equal to the frequency of the exciting forces ( w ) 

which is very important to be at resonance. The amplitude of 

( y P3  is maximum at resonance and the arg ( Y/X ) not 

affected by the change of the damper charactristic. 

The natural frequancy in , OX direction ( L)nl ) 

can have any value which will not affect the system solution. 

The natural frequancy w n1 must not be equal to the frequancy 

of the exciting forces (-0) 

The assumed values of the frquancies are as follows :- 

sec,-'LL) nl = 3  

sec.' 6.3n2 	
2 

sec G3 	2  

Damping factors :- ( J 1  & J 2  ) 

The damping factors in OX and OY directions 

are assumed equal to 0.1 . The change in this values 

does not change the phase angle. 
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Coupling terms :- ( u. , u , 	ud ) 

The system responses are obtained at different values 
of coupling terms. 

Results 

Using the computer program, the responses of the system 

are obtained with respect to the rates of turn. Some of the 

obtained results will be discussed as follows. 

The Effect of Inertia coupling :- 

The coupling terms u. = 0.01 and the rest equal zero 

inserted into equations 	( 7 ) 	we obtain :- 

X 4- 1 k-̀3n1 
2
1 	

•• 	• 
Y. 	U . y — SL y n 

j 6.)-t 
= n1 (Xs e 	+ E ■71(t) ) 

• y+ 2 2  (0,12  y+ (-0L y 	x -F 2.Q )_ 

jwt  
= CA3  2 ( s e' 	

W
2  (t) ) n  

Figure (. 1 ) 	shows plots of the magnitude IY/XI 

versus a with 	some selected values of ( . From 

figure ( 1 ) ,note the error in measuring rates of turn. 

The symmetry about the vertical line 12- = 0 is lost. 

Figure ( 3 ) , shows plots of the percentage error in the 

magnitude. We nose that the error percent in measuring the 

magnitpde of the rates of turn is increased while the pare- 
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meter C increased. The error percent when 52 positive is 

Tess than when S? negative. 

Figure ( 2 ) shows plots of the arg (Y/30 versus 	with with 

the same selected values of 	. Figure ( 4 ) shows 

plots-of the error percent in the phase angle shift between 

y and X. this figure shows the percentage error in the dir-

ection of the small rates of turn. Note that the error 

percent is increased while the randomness increased. 

The Effect of Stiffness coupling :- 

Introducini: the coupling terms usl and  us2 not equal zero 

and the rest equal zeros into equations ( -1 ) 	we obtain : 

2 	jot 

	

4)nl ( Xs e 	
+ E V.71  t) ) 

	

2 	2 
y -+ 2  2 n2 Y 	W ri2 	2C2 :)1 	W n2 

j t _ = (.0 n2 ( 	e 	+ E W2(t) ) 

Typical plots of the magnitude of the solution 1Y/XI 

versus S/ for usl and u
s2  equal 0.01 and various values 

of E are shown in figure ( 5 ). Note that the symmetry 

about the vertical line = 0 is lost and there are cert-

ain error in measuring the magnitude of the small rates of 

turn. 
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The error percent in measuring the magnitude and direct-

ions of the small rates of turn are shown by the two figures 

( 7 ), and ( 8 ). Figure ( y ) shows plots of the two 

curves of the percentage error related to the parameter 

equal 0.1, and 0.2 . We note that the error percent are 

increased 	randomness increased. Figure ( 8 ) shows 

plots of the error percent in the direction of the s;:lal 

rates of turn for the same selected values of E as the 

previous amplitude curves, which permit the observation that 

the percentage error have negative values up to El near to 

zero and then have positive values. 

Conclusions :- 

The percentage of error of the measurments of the mass -

spring -damper system with halmonic forces and small random 

forces does not exceed .15 percentwhen the random forces 

ale equal 20 percent of tine narmonic forces. It has been 

recommended to be used in measuring both small and very 

small rates of turn. 
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