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AN INVESTIGATION OF HELICOPTER
FUSELAGE NORMAL MODES OF VIBRATION
*
A. I. SELMY
ABSTRACT

This paper describes an experiﬁhenta] study to compute the normal modes
of vibrations of helicopters. The work presented herein details the
normal modes characteristics between 5Hz and 50Hz of a developad
helicopter. The Lynx helicopter airframe was used as the test aircraft.
Each mode shape was recorded at 121 monitoring points on the airframe in
the vertical, lateral and fore-and-aft directions.

Complex response plots were obtained for each mode shape and the modal
damping factors were estimated. The results of the experimental
investigations were compared with a theoretical finite element modelling
analysis. Good agreement between the finite element analysis and the
experimental natural frequencies and mode shapes were obtained.

THEORETICAL INVESTIGATION OF THE NORMAL MODES

When all parts of a Tinear system are oscillating in phase with one
frequency, such a state of motion is called normal mode or principle
mode of vibration. Thus in the normal mode all parts of the system are
oscillating in such a manner that they reach maximum displacements
simultaneously and pass their equilibrium points simultaneously. The
shape of each normal mode is fixed for a given system and is independent
of the magnitude, frequency or location and direction of the applied
external forces.

In the analysis of the airframe vibration it is common practice to
consider the airframe as a linear system with proportional hysteretic
damping. The hysteretic damping is assumed to be proportional to
disnlacement i.e the damping force is proportional to the spring force
but 90° out of phase with it.

When a linear system with proportional hysteretic damping is subjected to
a set of sinusoidal forces the equation of motion in one mode may be
written as:

MX () + (k + iH)-x (t) = Fe'"t (1)
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Assuming a solution of x (t) = x e ! and substituting into Eq. (1) and
removing the time dependence so:
-w2M+(k+1'H)x=F (2)
X = XpeaL * X imagInaRY (3)

Substituting Eq. (3) into Eq. (2) and equating real and imaginary parts,
then,

(k - wlM) X

~-HX, =F )

R i}

) ) (4)
H XR + (k - wM XI =0 )

It is assumed that the mass, stiffness and damping matrices are

symmetric and positive definite .It is required to show that for any

forcing frequency W there exists a force s2t such that all elements of the

displacement vector X are mutually in phase. The analysis is developed

for two cases as follows:

CASE 1: When the forcing frequency is a natural frequency of the

undamped system. Thus there exists a real non-trivial vector 7 such that:

(k - woM) = 0 (5)

Thus suggests a monophase solution to Eq. (4), namely:

XR =0 )

X; = Z=-F/H)

I
CASE 2: When w is not a root of det (k - wZM) =0. LetS = (k - w2M),

,\
o

then S is symmetric and non singular and Eq. (4) is now:

L

S Xp - H X[ = Fg
H Xz +S X; = 0)

If we assume that the response to be monophase, there will exist a phase
(e¢) such that:

(7)

Kpy = = XI tan o< (8)

Substituting Eq. (8) into Eq. (7) gives:

(S-Htane) X, = 0 (9)
—(Stano<+H)XI=F (10
Then, ™' H X, = Cote X, from Eq. (9).

A possible solution to Eq. (9 ) and Eq. (10) is when:
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Cot o< is an eigenvalue of 5”1 H

X is an eigenvector of 57! i

I
F=- (S tan X + H) XI

Since S is symmetric and non singular and H is symmetric and positive
definite, then Xy and cotx are real. Since there are in general "n"
eigenvalues of S-1'H, then at any frequency "w" there are "n" possible
force sets which produce a monophase.

Equation (6) shows that when "y" is a natural frequency of the undamped s-
ystem, the displacement vector, which is in quadrature with the
exitation, corresponds to the eigenvector of the undamped system. This
leads to the following response criterion used as the basis for the

normal mode experiments:

"For a linear system with proportional hysteretic damping, excited by
a set of monophase harmonic forces, a sufficient condition for the
response of the system to be a normal mode is that the displacement
vector be in quadrature with the excitation".

EXPERIMENTAL INVESTIGATIONS OF NORMAL MODES

Structural State:

b

The aircraft was suspended from an overhead gantry by a heavy - duty

rubber rope attached to the rotor head. This gave an approximately free-
free condition as the suspension modes were of Tow frequency when

compared with the elastic modes of the airframe. The total mass of the
fuselage was equal to 3689.0 Kg as shown in Fig. 1 which shows the
co-ordinates and mass of the monitoring points. There were 121 monitoring/
measurment points on the airframe as shown in Fig. 2. These points were
unifomly distributed throughout the structure and included all large

mass items.

The main rotor blades, the tail rotor, radio, batteries, pilots,
instruments, servo jacks, cabin doors and pilots doors were all

removed and represented by dummy masses. Tailboom stiffening struts were
also used. These struts supplement the stiffness of the tailcone/
tailpylon joint and are pretensioned in order to tune the vibration c-
haracteristics.

Isolation and Measurement of Normal Modes:

The test apparatus was designed to provide multipoint excitations where
an arry of up to 5 vibrators with their frequency and force output was
manually controlled. Each vibrator is freely suspended from a mobile
support and may transmit independant forces to any point gn the structure.
The testing set-up was equipped with channels, each one consists of a
mobile triaxial accelerome:er, a charge amplifier, an integrator and an
oscilloscope. Note that the several exciters are operating in parallel
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that are driven from individual power amplifiers and a common exciter
controller. Because the oscillator signal is used as the force reference
it is necessary to ensure that there is negligible phase shift between
oscillator signal and excitation force. Also, phase shift have been
eliminated from the power amplifiers and vibrators.

Each mode shape was recorded using a triaxial accelerometer at 121
points in the vertical, 1lateral and fore and aft directions, giving

a response vector of order 363. Complex plotting of response with
change of frequency was achieved by spliting the signal into "in phase"
and quadrature components. Modal damping factor (Q) was assessed by two
techniques for each mode. Two methods were used: the rate of change of
phase with frequency around the resonance and the half - power method.

The mathmatical expressions for the modal damping factor based on the
stated two methods are respectively given by:

T (dp)
Qp = Yo 30 - ™
e Wn
Wn
%= Xw

Where A w is the frequency difference between the half - power points
where the amplitude is 0.707 of the peak amplitude.

Prior to the isolation of the normal modes an overall panorama of the
sensitive frequencies for the dynamic characteristic of the helicopter was
achieved by recording the complex frequency response of the airframe, at
a number of positions, using a single point excitation.

The excitation of a normal mode of vibration of tne airframe requires the
finding of monophase sinusoidal force distribution and a frequency for
which a monophase response occurs throughout the structure, with the
displacement response in quadrature with the force input.

The acceptability or otherwise of each mode was based upon the
characteristic phase - lag criterion with, 1in general, an allowable
phase error of - 10° in total in phase velocity response at all points.

RESULTS AND DISCUSSION

Eleven normal modes were experimentally isolated between 5 Hz and 50 Hz.
For each mode shape, a set of modal information concerning the mode shape,

the complex frequency response plot and the calculation of the modal
damping factor was obtained.

In the experimentally measured mode shape, the elevation shows vertical
and fore and aft deflections viewed from the port side. The plan shows
lateral and fore - and - aft movement of the stru:ture looking from above.
The tailplane has monitoring points along its leading and trailing edges.
A1l sectional views and the aft view are shown looking forward. The force

L -
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distribution required to excite each mode is shown on the mode shape.

The deflected and undeflected shapes of the airframe are shown by the
solid and dotted lines respectively. Where there were direct comparisons
between the Finite Element analysis and the experimental modes, the
experimental values of damping were used as the damping values for the
Finite Element mode. The deflections in the shake test were normalized
to give a maximum deflection of one metre.

Table 1 shows the finite element and experimental mode shape comparisons
and also shows the calculated damping-values. As an illustration for the
experimental results, only the 6.607 Hz mode and the 13.789 Hz mode are
included as shown in Fig. 3 and Fig. 4 respectively. The estimation of
the damping factors from experiments was dependent on modal purity and
every care should be taken to ensure that all monitoring points fall
withen the phase tolerance which was - 100,

CONCLUSIONS

Eleven normal modes of Lynx helicopter between 5 Hz and 50 Hz have been
experimentally isolated. Comparisons between the shake tests and the
finite element results have shown good agreement for frequencies and
mode shapes. However, it can be seen that the finite element analysis
have slightly higer frequencies than the experimental modes. This is
primary because the finite element uses the displacement approach in its
element formulation.

More work is required to establish better ways of evaluating damping
factors.

It is felt that with the expertise and equipment acquired during these
tests, the normal modes of vibration of any linear helicopter structure
can be efficiently derived.
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Table 1 Theoretical and Experimental Mode Shape Comparisons

: Modal
Mode Mode Frequency (Hz) dampi g Mode Shape
No. Finite Element | Experiment | Q-Factor Description
1 6.824 6.414 36.22 Fundamental Vertical
bending of Fuselage.
2 6.962 6.607 43.82 Fundamental Lateral
bending of Fuselage.
3 11.760 11..395 33,15 Vertical bending of
tailplane.
4 14.648 13.789 24.07 Second Vertical bending
of Fuselage.
5 17.895 16.956 48.10 Fore - and - aft bending
of tailplane.
6 22.485 21.299 14.25 Torsion of Fuselage
7 23.760 23551 13.40 Engine vertically
antisymmetric.
8 25.810 25.486 24.18 Engine Vertically
symmetric.
9 30.100 29.905 102 .50 Tailcone struts
10 33.628 33.311 90.85 Fuselage second lateral
bending.
11 48.869 43.498 23.90 Second vertical bending
of tailplane.
NOMENCLATURE
F Force amplitude vector.
H Hysteretic damping matrix.
k Stiffness matrix.
t Time.
W Forcing frequency.
W Normal mode natural frequency.
X(t) Time dependent displacement vector.
P(w) Phase lag between the response and the excitation.
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