

Г

4

5

MILITARY TECHNICAL COLLEGE CAIRO - EGYPT

AN INVESTIGATION OF HELICOPTER FUSELAGE NORMAL MODES OF VIBRATION

A. I. SELMY

ABSTRACT

This paper describes an experiemental study to compute the normal modes of vibrations of helicopters. The work presented herein details the normal modes characteristics between 5Hz and 50Hz of a developed helicopter. The Lynx helicopter airframe was used as the test aircraft. Each mode shape was recorded at 121 monitoring points on the airframe in the vertical, lateral and fore-and-aft directions. Complex response plots were obtained for each mode shape and the modal damping factors were estimated. The results of the experimental investigations were compared with a theoretical finite element modelling analysis. Good agreement between the finite element analysis and the experimental natural frequencies and mode shapes were obtained.

THEORETICAL INVESTIGATION OF THE NORMAL MODES

When all parts of a linear system are oscillating in phase with one frequency, such a state of motion is called normal mode or principle mode of vibration. Thus in the normal mode all parts of the system are oscillating in such a manner that they reach maximum displacements simultaneously and pass their equilibrium points simultaneously. The shape of each normal mode is fixed for a given system and is independent of the magnitude, frequency or location and direction of the applied external forces.

In the analysis of the airframe vibration it is common practice to consider the airframe as a linear system with proportional hysteretic damping. The hysteretic damping is assumed to be proportional to displacement i.e the damping force is proportional to the spring force but 90° out of phase with it.

When a linear system with proportional hysteretic damping is subjected to a set of sinusoidal forces the equation of motion in one mode may be written as: (1)

 $M \stackrel{\cdot}{x} (t) + (k + iH) \cdot x (t) = Fe^{iwt}$

* Doctor Engineer, Research and Development Sector, Arab British Helicopter Company, Arab Organization for Industrialization.

Г

Assuming a solution of x (t) = x e^{iwt} and substituting into Eq. (1) and removing the time dependence so:

$$-w^2M + (k + iH) x = F$$
 (2)

 $x = X_{REAL} + iX_{IMAGINARY}$ (3)

Substituting Eq. (3) into Eq. (2) and equating real and imaginary parts, then,

$$(k - w^2 M) X_R - H X_I = F$$

 $H X_R + (k - w^2 M) X_I = 0$
(4)

It is assumed that the mass, stiffness and damping matrices are symmetric and positive definite .It is required to show that for any forcing frequency w there exists a force set such that all elements of the displacement vector X are mutually in phase. The analysis is developed for two cases as follows:

CASE 1: When the forcing frequency is a natural frequency of the undamped system. Thus there exists a real non-trivial vector Z such that:

$$(k - w^2 M) = 0 \tag{5}$$

Thus suggests a monophase solution to Eq. (4), namely:

$$\begin{array}{c} X_{R} = 0 \\ X_{I} = Z = - F/H \end{array}$$
 (6)

<u>CASE 2</u>: When w is not a root of det $(k - w^2M) = 0$. Let $S = (k - w^2M)$, then S is symmetric and non singular and Eq. (4) is now:

$$S X_{R} - H X_{I} = F)$$

$$H X_{R} + S X_{I} = 0$$
(7)

If we assume that the response to be monophase, there will exist a phase $(\boldsymbol{\prec})$ such that:

$$X_{R} = -X_{T} \tan \propto$$
 (8)

Substituting Eq. (8) into Eq. (7) gives:

 $(S - H \tan \propto) X_{T} = 0 \tag{9}$

- (S tan
$$\propto$$
 + H) X_I = F (10)

Then, $S^{-1} H X_{I} = Cot \ll X_{I}$ from Eq. (9).

A possible solution to Eq. (9) and Eq. (10) is when:

VB-5 561

5

FIRST A.S.A.T. CONFERENCE

٦

14-16 May 1985 / CAIRO

Cot \ll is an eigenvalue of S⁻¹ H X_I is an eigenvector of S⁻¹ H F = - (S tan \ll + H) X_I

Since S is symmetric and non singular and H is symmetric and **positive** definite, then X_I and cot \propto are real. Since there are in general "n" eigenvalues of S⁻¹ H, then at any frequency "w" there are "n" possible force sets which produce a monophase.

Equation (6) shows that when "w" is a natural frequency of the undamped system, the displacement vector, which is in quadrature with the exitation, corresponds to the eigenvector of the undamped system. This leads to the following response criterion used as the basis for the normal mode experiments:

"For a linear system with proportional hysteretic damping, excited by a set of monophase harmonic forces, a sufficient condition for the response of the system to be a normal mode is that the displacement vector be in quadrature with the excitation".

EXPERIMENTAL INVESTIGATIONS OF NORMAL MODES

Structural State:

The aircraft was suspended from an overhead gantry by a heavy - duty rubber rope attached to the rotor head. This gave an approximately freefree condition as the suspension modes were of low frequency when compared with the elastic modes of the airframe. The total mass of the fuselage was equal to 3689.0 Kg as shown in Fig. 1 which shows the co-ordinates and mass of the monitoring points. There were 121 monitoring/ measurment points on the airframe as shown in Fig. 2. These points were unifomly distributed throughout the structure and included all large mass items.

The main rotor blades, the tail rotor, radio, batteries, pilots, instruments, servo jacks, cabin doors and pilots doors were all removed and represented by dummy masses. Tailboom stiffening struts were also used. These struts supplement the stiffness of the tailcone/ tailpylon joint and are pretensioned in order to tune the vibration characteristics.

Isolation and Measurement of Normal Modes:

The test apparatus was designed to provide multipoint excitations where an arry of up to 5 vibrators with their frequency and force output was manually controlled. Each vibrator is freely suspended from a mobile support and may transmit independant forces to any point on the structure. The testing set-up was equipped with channels, each one consists of a mobile triaxial accelerometer, a charge amplifier, an integrator and an oscilloscope. Note that the several exciters are operating in parallel

	I								τ.																													٦
Γ	Mass (Kg)	2.158	9.202	7.735	6.263	4.053	17.650	17.650	25.201	1.173	31.126	3.643	95.310	34.060	33.910	100.470	68.401	38.557	44.540	122.500	122.500	41.142	26.795	57.500	*	L		AR	A M)	X-AXIS	14	P.G.			ts.		
	z (سس)	1330	1320	1295	1270	1265	2450	2400	2195	2300	70	2320	2530	2340	2170	2230	2470	2545	2530	2830	2830	820	1630	1130			I				b	000 00	50° 303			poin	_	
	۲ (سس)	-270	-225	-195	-175	-170	-305	-305	470	-115	-1120	370	450	420	480	-500	-305	-200	-255	0	0	460	497	530						L			e = 302			coring		
	(mm) X	7305	7895	8635	9475	10020	4705	5685	3655	11635	2665	2235	4035	4705	5685	5185	4540	3485	11835	5105	2965	2225	2280	1775	5			Í		1	Å		rusetag			monit		
	Pos.	76	78	80	82	84	86	88	06	92	94	96	98	100	102	104	901	108	110	112	114	116	118	120				F		Ц		,	IO SS			ss of		
1	Mass (Kg)	2.357	9.482	8.035	8,872	4.053	11.575	1.640	33.080	25.389	31.840	48.209	38.357	68.40I	101.010	51.055	51.050	101.204	3.727	122,500	122.500	48.927	26.795	57.500	30*790			XIS	DEF	7	H		BW TBJOI			and ma:		
T	ر mm)	1750	1730	1650	1570	1480	1420	1430	2180	2195	2180	20	2545	2470	2230	2170	2340	2530	2320	2830	2830	820	1630	1130	2590			4-Z 4	1		-	0	(lates		
-	γ (mn)	-305	-225	-195	-175	-170	-188	-105	470	-470	-470	-1120	200	305	500	-480	-420	-450	-370	1070	-1070	-460	-497	-530	0							1				-ordir		
	(mm)	7305	7895	8635	9475	10020	10565	11015	4375	3655	43.75	4845	3485	4540	5185	5685	4705	40.35	2235	4015	4035	2225	2280	1775	11605			P	T	The	Þ	Y-AXIS	-			1. Co-		
	Pos.	75	77	62	81	83	85	87	89	16	93	95	26	66	101	103	105	107	109	111	113	11.5	117	119	121		4				Ž					Fig.	2	
	Mass (Kg)	4.500	0.365	0.365	1.673	4.860	2.05	5.59	6.330	4.053	6,262	7.735	9.193	2.143	13.148	19.133	40.287	15.499	142.046	23.531	84.608	59.180	3.868	11.500	48.142	51.670	31.126	57.428	11.500	3.932	61.404	24.309	83.526	141.964	41.643	15.521	31.157	12.252
	2 (mm)	2420	2450	2430	2300	2100	1920	1730	1180	1265	1270	1295	1320	1330	1150	1790	1980	810	1420	2070	820	725	1490	2130	840	1535	70	840	2130	1490	725	2070	820	1420	1980	810	1 000	1150
	Ү (тап)	960	260	1730	115	140	120	130	0	120	175	195	225	270	440	585	717	742	8 45	827	862	870	887	805	735	0	1120	-735	-805	-887	-870	-827	-862	-845	-717	-742	- 58 5	-440
A	Х (mm)	12335	11910	11910	11635	11345	11168	10935	10715	10020	9475	8635	7895	7305	6445	5735	4855	4855	4205	3605	3605	3065	2155	1705	925	955	2665	925	1705	2155	3065	3605	3605	4205	48 55	4855	5735	6445
	Pos.	2	4	9	80	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	99	62	64	66	68	70	72	74
	Mass (Kg)	0.365	0.365	4.500	2.345	1.910	2.05	1.320	11.575	4.052	9.122	8.035	9,533	2.343	7.945	17.620	27.093	18.759	38,801	97.486	8.412	12.550	6.510	30.129	14.880	3.830	48.449	62.040	12.850	6.580	35.217	12.890	8.458	100.120	38.903	18.041	19.487	8.367
T	2 (سس)	2430	2410	2440	2150	1820	1720	1430	1420	1480	1570	1650	1730	1750	1770	840	1000	1385	2050	770	1440	2000	2070	835	1220	2130	20	820	1220	2070	835	2000	1440	770	2050	1385	1790	1770
	Y (mn)	260	1730	960	75	75	70	105	188	170	175	195	225	305	440	0	585	767	795	815	887	805	827	862	870	0	1120	0	-870	-827	-362	-805	-887	-815	-795	-767	-585	-440
	(uau) X	12470	12090	11910	11765	11545	11325	11015	10565	10020	9475	8635	7895	7305	6445	6445	5735	4855	4205	4205	3605	3065	2175	2135	1465	1370	4845	185	1465	2175	2135	3065	3605	4205	4205	4855	5735	6445
	os.	-	т г	s	2	6	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	65	47	49	51	53	55	57	59	61	63	65	67	69	11	73

VB-5 562

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 , CAIRO

0

Ф.

VB-5 564

Г

14-16 May 1985 / CAIRO

that are driven from individual power amplifiers and a common exciter controller. Because the oscillator signal is used as the force reference it is necessary to ensure that there is negligible phase shift between oscillator signal and excitation force. Also, phase shift have been eliminated from the power amplifiers and vibrators.

Each mode shape was recorded using a triaxial accelerometer at 121 points in the vertical, lateral and fore and aft directions, giving a response vector of order 363. Complex plotting of response with change of frequency was achieved by splitting the signal into "in phase" and quadrature components. Modal damping factor (Q) was assessed by two techniques for each mode. Two methods were used: the rate of change of phase with frequency around the resonance and the half - power method.

The mathmatical expressions for the modal damping factor based on the stated two methods are respectively given by:

$$Q_{A} = w_{n} \cdot \frac{\pi}{360} \cdot \left(\frac{d\emptyset}{dw}\right)_{W} \longrightarrow W_{n}$$
$$Q_{B} = \frac{w_{n}}{\Delta w}$$

Where Δ w is the frequency difference between the half - power points where the amplitude is 0.707 of the peak amplitude.

Prior to the isolation of the normal modes an overall panorama of the sensitive frequencies for the dynamic characteristic of the helicopter was achieved by recording the complex frequency response of the airframe, at a number of positions, using a single point excitation.

The excitation of a normal mode of vibration of the airframe requires the finding of monophase sinusoidal force distribution and a frequency for which a monophase response occurs throughout the structure, with the displacement response in quadrature with the force input.

The acceptability or otherwise of each mode was based upon the characteristic phase - lag criterion with, in general, an allowable phase error of $\frac{1}{2}$ 10° in total in phase velocity response at all points.

RESULTS AND DISCUSSION

Eleven normal modes were experimentally isolated between 5 Hz and 50 Hz. For each mode shape, a set of modal information concerning the mode shape, the complex frequency response plot and the calculation of the modal damping factor was obtained.

In the experimentally measured mode shape, the elevation shows vertical and fore and aft deflections viewed from the port side. The plan shows lateral and fore - and - aft movement of the structure looking from above. The tailplane has monitoring points along its leading and trailing edges. All sectional views and the aft view are shown looking forward. The force

L

VB-5 565

Γ

6

FIRST A.S.A.T. CONFERENCE 14-16 May 1985 / CAIRO

distribution required to excite each mode is shown on the mode shape. The deflected and undeflected shapes of the airframe are shown by the solid and dotted lines respectively. Where there were direct comparisons between the Finite Element analysis and the experimental modes, the experimental values of damping were used as the damping values for the Finite Element mode. The deflections in the shake test were normalized to give a maximum deflection of one metre.

Table 1 shows the finite element and experimental mode shape comparisons and also shows the calculated damping values. As an illustration for the experimental results, only the 6.607 Hz mode and the 13.789 Hz mode are included as shown in Fig. 3 and Fig. 4 respectively. The estimation of the damping factors from experiments was dependent on modal purity and every care should be taken to ensure that all monitoring points fall withen the phase tolerance which was $\frac{1}{2}$ 10°.

CONCLUSIONS

Eleven normal modes of Lynx helicopter between 5 Hz and 50 Hz have been experimentally isolated. Comparisons between the shake tests and the finite element results have shown good agreement for frequencies and mode shapes. However, it can be seen that the finite element analysis have slightly higer frequencies than the experimental modes. This is primary because the finite element uses the displacement approach in its element formulation.

More work is required to establish better ways of evaluating damping factors.

It is felt that with the expertise and equipment acquired during these tests, the normal modes of vibration of any linear helicopter structure can be efficiently derived.

REFERENCES

- 1. Kennedy, C. and Pancu, C. "Use of Vectors in Vibration Measurement and Analysis". Aeronautical Sciences November, 1947.
- 2. Meirovitch, L. "Elements of Vibration Analysis. "Mc Graw Hill Book Company, Inc. 1975.
- 3. Proch, J. "Mechanical Vibration and Shock Measurements. "K. Larsen & søn A/S, Denmark, 1984.
- 4. Timoshenko, S., "Vibration Problems in Engineering., "John Wiley and Son, 1974.
- 5. Zienkiewicz, U., "The Finite Element Method in Engineering Sciences.", Mc Graw - Hill 1971.

VB-5 566

Γ

FIRST A.S.A.T. CONFERENCE

14-16 May 1985 , CAIRO

٦

0

Ŷ

1

Mode	Mode Frequency	(Hz)	Modal damping	Mode Shape							
No.	Finite Element	Experiment	Q-Factor	Description							
1	6.824	6.414	36.22	Fundamental Vertical bending of Fuselage.							
2	6.962	6.607	43.82	Fundamental Lateral bending of Fuselage.							
3	11.760	11.395	33.15	Vertical bending of tailplane.							
4	14.648	13.789	24.07	Second Vertical bending of Fuselage.							
5	17.895	16.956	48.10	Fore - and - aft bending of tailplane.							
6	22.485	21.299	14.25	Torsion of Fuselage							
7	23.760	23.551	13.40	Engine vertically antisymmetric.							
8	25.810	25.486	24.18	Engine Vertically symmetric.							
9	30.100	29.905	102.50	Tailcone struts							
10	33.628	33.311	90.85	Fuselage second lateral bending.							
11	48.869	43.498	23.90	Second vertical bending of tailplane.							

Table 1 Theoretical and Experimental Mode Shape Comparisons

NOMENCLATURE

F	Force amplitude vector.
Н	Hysteretic damping matrix.
k	Stiffness matrix.
t	Time.
W	Forcing frequency.
Wn	Normal mode natural frequency.
X(t)	Time dependent displacement vector.
Ø(w)	Phase lag between the response and the excitation.

Fig. 3. Experimental normal mode No2-frequency 6.607 Hz.

Ĺ

Q

Fig. 4. Experimental normal mode No 4 - frequency 13.789 Hz.

L

0

0