

OPTIMUM POLICIES OF REPAIR RATES FOR

AIRCRAFTS AND ITS COMPONENTS

T. M. METWALLY

ABSTRACT

Aircrafts and or its components are subject to failure during its normal operation. These failures may be rectified at different repair rates $A_{1}, A_{2}, A_{3} \ldots A_{k}$ with corresponding repair costs $r_{7}, r_{2}, r_{2} \ldots . r_{c}$. If a unit fails, (A/C or component), it costs C_{n} per unit time, where n is the state of the system. The problem is to choose repair policy; as a function of the state of the syatem; which minimizes the long run expected total costs of the system repair.

A model is constructed to deal the problem in two cases:

- Case of poission arrivals and exponential repair time.
- Case of general arrivals and exponential repair time.

An optimization procedure is deduced for both cases, then the problem is computerized through a PORTRAN IV program, the model is then applied through a case study on EGYPTAIR fleet and the optimum policy is deduced through the model's computer program.

MATERIAL PLANNING MANAGER, EGYPTAIR, CAIRO, EGYPT.

Consider a Bystem consisting of M units (Aircraft or come ponent) from which R units at least should be operefing properly. In case of no failures, the R units are in actual operating conditions and the ($M \infty R$) are stand by. A Pailed unit is repaired in the repair Pacility at a repair rate A_{n} mich depends on the state of the syititem. Let also:
$Q(t)=$ the otate of the system at time (t)
m = the capacity at the repair queue
s = the set of all possible states (state space)
m_{n} = the mean failure rate when the system is in state n
A_{a} m the service rate whon the system is in atate n
$\mathbb{K}^{\infty}=$ the number of the available repair rates
re se the coot per unit time incurred is the repair rate K is used. It is assumed that $\mathrm{I}_{1}<\mathrm{x}_{2}<\mathrm{I}_{3}$
$C_{x}(t)$ a cositrate incurred by the system owing to looming production when the state of the system is n at time t 。
$z=$ decision space (Action apace), a set of all nonrandomized action.
$=1,2, \ldots \ldots \ldots \mathbb{K}$
$S_{n}(t)$ a function mapping from S to Z with clear meaning that:
$f_{n}(t)=\mathbb{R}$ means that whenever the state of the mytem is n, the service rate AK in used.
F =the set of all functions (f)
THE PROBLEM
If the system is in state n at time t and a repair rate
Ar is used, the costr of the system at time t will be:
$C_{n}(t)+\mathrm{F}_{\mathrm{a}}(t)$
The average cost of the system during a period (O, T) will be:
. \int_{0}^{T}

$$
\left(C_{n}(t)+x_{I_{n}(t)}\right) d t
$$

and the expected coat of the systam will be
$G_{f}=\operatorname{Lim}_{T \rightarrow \infty} E(I / T) \quad 0 \int^{T}\left(C_{n}(t)+I_{n}(t)\right) d t$
The problem will be so: minimize gi over all possible $f \in \mathbb{E}$ THE MODEL

Two cases at the repair quoue are studied:

- case of poission arrivals and exponential repair time.
- case of general arrivals and exponential repair time.

The Model With Poisson Arrivals And Exponential Repair Time:
A system of m unit is considered. Given the number of failed unite n, the failure distribution is egative exponential with a parameter depending only on that number n. Let the repair mervice has the same property. In particular when the state of the system is n, let E_{n} be the hazard rate for the unit and A_{n} be the service rate for the mame unit.

One can deduce from the first principales that the stationary probability of being in state n, P_{n} is given by:
$P_{n}=\frac{B_{0} B_{1} B_{2} \ldots \ldots B_{n-1}}{A_{1} A_{2} \ldots \ldots A_{n}} P_{0}$
where P_{0} is calcalated
from the very known relation:
$\sum_{n=0}^{m} P_{n}=1$
Now; if a policy $f: s \longrightarrow Z$ defines a certain repair rate A_{k} corresponding to every atate of the system, then the long mun expected average costs of the system corremponding to this policy will be:
$g_{P}=\sum_{n=0}^{n=m}\left(c_{n}+r_{n}\right) \quad P_{n}$
The objective is to find the policy (f) which minimizes ge
The Model With General Input And Exponential Service Distribution:

Consider the case of exponential service and general input distribution where one examines the system at its regeneration points. The regeneration point occures when a new arrival is joined the repair queue. Let us denote: $n=$ tne number of units in the repair queuce in front of a new arrival at time T. That is the atate of the $I=$ system just before a regeneration point.
$n^{I}=$ the number of units in the repair queue in front of a new arrival at time $t+h$.
$j=$ the number of units boing serviced during the interval h including the unit arriving at time T if its service is completed during $T+h$, thus:

$$
\begin{equation*}
n^{1}=N+1-j \quad \text { with o }<n^{1}\ulcorner n+1 \tag{1}
\end{equation*}
$$

Assuming that the service distribution is exponential with mean A_{n} (depends on the state of the system), then:
$P(J$ being serviced / interval h) $=$

Γ
The unconditional probability
$P(J$ being serviced $)=\int_{i}^{\infty} \frac{\left(h A_{n+1}\right)^{J} e^{-b A_{n+1}}}{J} d F(b)$

$$
\begin{equation*}
=K_{J} \text { sor } 0 \leqslant J \leqslant n+1 \tag{3}
\end{equation*}
$$

Where $F(h)$ is the distribution function for interarrival times.

One may represent the system in terma of an imbeded Markovian chain. The Markorian chain matrix is

Define P_{n} as the atationary probability of n units in front of a unit arriving at regeneration point. Uoing the matrix (4), one can calculate the values of P_{n} which satisfiem the steady state equations:
$P_{n}=\sum_{i=0}^{n-1} P_{i+n-1} \quad E_{i} \quad$ for $n \geqslant 1$
$P_{0}=\sum_{i=0}^{m-1} P_{i}\left(1-\sum_{i}\right)$
$\sum_{i}=\sum_{J=0}^{i} \mathbb{K}_{J}$
The solution of the stationary distribution given in -quation (5) may be written in the form:
$P_{n}=C \quad s^{n} \quad$ for $C>0$
Where C \& S satisfy both equations (5) \& (6)
It can be shown [8] that
$P_{n}=\left(\sum_{n=0}^{m-I} s_{0}^{n}\right) s_{0}^{n}$

With $S=F^{*}\left[A_{n+1}(1-S)\right]$
Where F^{*} is the Laplace-Stieltjes transtormation of the interarrival distribution $F(h)$ and S_{0} is the unigue solution for equation (10) with $0<S_{0} \leqslant 1$
P_{n} is the steady state stationary probability of n unitis in front of a mit arriving at a regeneration point.

If a policy $\mathrm{P}: \mathrm{S} \longrightarrow$ Z defines certain repair rate A_{k} correse ponding to every state of the system, the expected average costs of the system corresponding to this policy will be:
$B_{1}=\sum_{n=0}^{n=1 n-1}\left(c_{n+1} * r_{k}\right) P_{n}$
The objective is to find the policy f that minimizes g_{f} over all possible function mappings

OPTIMIZATION PROCEDURE
The following is a summary for the steps of optimization: i - Determine all possible decisions giving the values of $\left.^{\left(A_{1}, A_{2}\right.} \ldots . . . A_{k}\right)$ and ($r_{1}, r_{2}, \ldots . . . r_{k}$).
ii - Use the rule of elemenating a deciaion given in reference [10] to determine the eleminated decisions and 80 the set of extreme admissable decisione.
111 - Determine the parameters of the system $\mathrm{Bn}_{\mathrm{n}}, \mathrm{C}(\mathrm{m}), \mathrm{M}$, R, m and H_{n}.
Iv - Determine the set of atationary probabilities P_{n} for all states of the system.

* - Examin the existence of simple optimal policy as per reference [11]. If there exists a simple optimal policy, calculate g f for possible simple policies only. If the policy is not simple, $g 9$ is calculated for all possible policies.
Vi - The optimum policy in all cases is the one which correponds minimum value of $g f$.

CASE STUDY
A semi-artificial case study is considered due to lag of accurate data.

A fleet of 12 A/C is assumed to be operated properly without stand by (i.e. $R=0$). Two service rates in the mystem:
First rate is of 20 HR mean service time i.e. .
$A_{1}=0.05$ unit $/ \mathrm{HR}$
The cost corresponding to this rate is found to be L.E. 30 per HR.

FIRST A.S.A.T. CONFERENCE
14-16 May 1985 , CAIRO

Second rate is of 12 HR mean mervice time i.e.
$A_{2}=0.083$
The cost corresponding to this rate is found to be L.E. 50 per HR.
The Pailure rate is 0.01 per HR
The cost due to lost production of an A/C i.s 500 n for $0 \leqslant n \leqslant 6$
$\mathrm{C}_{n}=$
∞
for
n 76

Where n is the no. of tailed aircrafta.
We mall so have the states $0,1,2,3,4,5$ and 6 .
Using the model with Poisson input and exponential service time, one has:
$P_{n}=\frac{B_{0} B_{1} \ldots \ldots \ldots \ldots B_{n-1}}{A_{1} A_{2} \cdots \cdots A_{n}} \quad P_{0} \quad$ and
$P_{0}=\left[1+\frac{B_{0}}{A_{1}}+\frac{B_{0} B_{1}}{A_{1} A_{2}}+\ldots \ldots .\right]^{\infty}$
The possible function mapping f from the state S to the action space Z will contain 64 function mapping with $S=0,1,2, \ldots \ldots .6 \& Z=I, 2$

We call these function mappingis $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}, \ldots \ldots . \mathrm{I}_{64} \cdot$
It is clear that the set of admissible decisions is the set of both available decisions i.e. service ratea (Al, (2) with service costs (II, r2)

For the existence of a simple optimal policy, one has to study H_{i}, $\mathrm{C}(\mathrm{i})$:
C(i) $\quad=C_{n}$ is obviously nondecreasing
$C(i+1) \sim C(i)=500 \quad$ for $i=1,2, \ldots \ldots .6$
$\mathrm{H}_{1}=-\infty$ $\& H_{2}=\frac{r_{2}-r_{1}}{A_{2}-I_{1}}=\frac{20}{0.033}=600$
$\mathrm{BH}_{2}=0.01 \times 600=6$
So $\quad C(i+1)-C(i) 7 \mathrm{BH}_{2}$
And there exists a simple optimal policy where $f(i)$ is a nondecreasing function with $f(i) \longrightarrow f(i-1)$ for all possible states of the system. The set of all simple optimal policies will be:

Table 1: Set Of All Simple Optimal Policies

State	Function mapping (action taken either policy 1 or						
	I_{1}	${ }^{1} 7$	I_{12}	${ }_{41}$	\pm_{55}	I_{58}	${ }^{1} 64$
1	?	1	1	1	1	1	2
2	i	1	1	1	1	2	2
3	1	1	1	1	2	2	2
4	1	1	1	2	2	2	2
5	1	1	2	2	2	2	2
6	1	2	2	2	2	2	2

The correaponding expected long run average costa for these palicies will be:

| Simple optimal
 polici | \mathbf{I}_{1} | \mathbf{I}_{7} | \mathbf{I}_{12} | \mathbf{I}_{41} | \mathbf{I}_{55} | \mathbf{I}_{58} | \mathbf{I}_{64} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~g}_{\mathrm{f}}$ | 130.95 | 130.84 | 129.38 | 129.42 | 125.13 | 121.24 | 74.15 |

The optimal policy is so, $\mathbf{P}_{64}\left(\begin{array}{lllll}2 & 2 & 2 & 2 & 2\end{array}\right)$ which means that the second repair rate $\left(\mathrm{A}_{2}=0.0833\right)$ should be used for all states of the system.

COMPUTER PROGRAM
A computer package is specially designed in FORTRAN IV for the model. The program is designed for as large no of system states as possible also for as large no of available service rates as possible.

The computer program is shown in appendix l. The expected long run costs computer output is shown in appendix 2.

REFERENCES
[1] Bahat, U. Nayrun,"Elements of Applied Stochostic Prom cesses" J. Willey \& Sons, Inc. N.Y. I972.
[2] Barlow, R. E. and Proschan, r., "Mathematical Theory of Reliablity" J. Wily, 1965.
[3] Beveridge, Gordon S. G. and Schechter, Robert S., "Optimization: Theory And Practice" Mc. Gear-Hili Book Company, N.Y. 1970.
[4] Buffa, Elwoods S., "Operations Management: Problem and Models", J. Wiley \& Sons Inc. N.Y. 1972.
[5] Cox, D. R. "Renewal Theory", Methuen \& Co., London, 1970.
[6] Feller, W., "An Interoduction To Probability Theory And Its Application" Vol. 1, John Willy \& Sons, Inc. N.Y., 1968.
[7] Ogata, "State Space Analysis of Control Systems", Englem-Wood-Clifis, Prentice-Hill, 1967.
[8] Wagner, Harvey M., "Principles Of Operations Research With Application to Managerial Decisions" Prenticem Hall of India Private Limitted, 1973.
[9] Mettwally, T. M., NOptimum Control Of Aircraft Maintenance Policies" Ph. D. thesis, 1978.
[10] Thomass B. Grabill, Mptimal Control Of A Maintenance System With Variable Service Rates", Opns, Res. 4, 736-745, 1974.
[11] Grookes, F.C. I., "Replacement Strategies" O. R. Q. Vol. 14, 1963.
[12] Egyptair Technical Records, Cairo Airport.

Appendix 2

POLICY	NO.	AxPrcreo	cosis
1		130.958	
2		87.787	
3		114.816	
4		126.187	
s		129.700	
6		130.868	
7		130.850	
8		76.440	
9		111.86 .9	
10		189.437	
11		129.519	
- 12		130.680°	
13		87.799	
14		04.501	
16		86.958	
26		87.597	
17		114.041	
18		114.831	
19		119.780	
20		126.005	
21		126.152	
82		129.865	
23		74.876	
24		76.326	
29		76.718	
26		76.416	
27		84.083	
28		84.470	
29		84.987	.
30		80.838	
31		86.935	
82		17. 574	
33		111.401	
34		111.757	
35		111.847	
30		113.976	
37		114.020	
38		114.609	
39		125.318	
40		129.989	
41		129.998	
42		125.408	
43		74.566	
44		74.802	
45		74.861	
46		76.253	
46		76.812	
49		76.703	
$\$ 0$		84.011	
31		886.824	
52		118.114	
53 34		111.388	
35		113.917	
36		125.305	
37		113.917	
58.		118.3,6	
59		84.002	
60		76.244	
61		74.793	
63		74.557	
84		74.521	-

