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4 	 ABSTRACT 

The characteristic feature of the phase change problems is the 

coupling of the temperature field with the rate of propagation 

of the phase boundary between the solid and the liquid phases. 

With regarding to the nonlinear nature of these problems, the 

solutions are expected to be obtained by analytical approximat-
ions and numerical methods. An analytical approximate method 

for one dimensional phase change utilizing a new series for the 

temperature field in terms of the interface position is presen-

ted. Simple and accurate formulas were obtained and solved 

numerically by a computer program for a wide range of paramete-

rs wh 4.sn cover all ranges of practical systems. The resulting 

dj.,grams of the melting or solidification times for the cylind-

erical and spherical bodies initially at the fusion temperature 

are given. The boundary conditions of the first, second and 

third kind are considered. Evaluation of error and comparison 

with other approximations are presented. 
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INTRODUCTION 

The phase change problems are of great practical importance. 

They are encountered in applications such as casting thermoplas-

tices and metals, freezing of foods, freezing of soil, thermal 

storage devices for space vehicles etc. The characteristic feat-

ure of such problems is the coupling of the temperature field 

with the rate of propagation of the phase boundary between solid 

and liquid phases. With regard to the nonlinear nature of these 

problems, solutions are expected to be obtained by analytical 

approximations and numerical methods. Among analytical methods 

the approach of Brovman and Surin [1] appeared to be superior in 

simplicity and accuracy to any approximations known as yet. This 

method was however used for plane cases. An approximate relation 

in Lin [4] to obtain the solution for cylinderical and spherical 
problems from the corresponding plate cases was applied in the 

previous works [2-3] . This method does not yield so accurate 

results as for plane problems. In the present work the approach 

[1] is extended to cylinderical and spherical bodies. The exam-

ple which is used to demonstrate the method refers to the same 

kind of the problem as in Stefan [3] and Tao [5] . 

PROBLEM FORMULATION 

The inward phase change in the plane, cylinder and sphere regions 

is considered by introducing the following assumptions: 

a-All properties of the material are constant. 

b-Initially t'=0 the old phase, occupying the entire space 

04;r'4R is at fusion temperature Ts'. 

The energy equation for the new phase is then; 

; 	/ - a r 	r Bt' 	9r 	9r Y fir ' R 	(1) 

With 1.0,1,2 for plane, cylinder and sphere respectively. 

At the moving boundary r'= y'(t') the conditions are; 

T'( y' , t') = Ts' 	 (2) 
r•  = y' (t') 

a T" ( 
 y' , 

t') 	h  
L 	 r 

dy ' 
dt' 

(3) 
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6 	Where a,A and I are the thermal diffusivity, the thermal cond- 

uctivity and density respectively, and h is the latent heat of 

fusion. The initial condition has the form; 

y'( 0 ) = R 	t' = 0 	(4) 

Introducing the following dimensionless variables and parameters; 

t = (Ja) 
 

at 	
, 

r= r
, 

--- 	7 	y= y
, 

R2 	R 	R 

T = T' - Ts' 	
, (Ja) =  c (To' - Ts') 

The above 

forms as follows; 

(Ja) 

T ( 

9 T ( 

To'- Ts' 	h 

equations can be transformed to 

2 T 	-1 	a 	1 	aT 	‘ 
- 	r 	( 	r 

the dimensionless 

y‹r<1 

r = y 

= 0 

second and third 

r = 1 

(5)  

(6)  

(7)  

(8)  

(9)  

J 

	

dt 	9r 	9r 

	

y , 	t) = 0 

y 	, 	t ) _ 
- 	3.1  

9r 

y ( 

External 

kind, treated 

2 T 

0 ) 	= 	1 

boundary conditions of the first, 

in common, are; 

- B T(1,t) 
1 r=1 r  

Where; 
q R  and d B 0 for the condition of 

A(To' - Ts') 

the second kind and Q = B = (Bi) = oG R / ) 	for the condit- 

ion of the third kind. The -ymbols are as, q' for the heat flux, 

T' for the surrounding temperature and cc for the heat transfer 

coefficient. 

The asymptotic case (Bi) --.4-00 corresponds to the constant 

wall temperature. 

An interesting physical approximation, which is frequently used 

consists of assuming (Ja) = 0 . Then the heat flow is a steady 

type as indicated by Carslow and Jaeger [6] . 

L 



(Ja)j-1 	a j  
j=1 (2j ) ! 	9tj 

- y)
2j 

 

w 	ty (1 2 • 
r 

R0  = 0 , 	R1  = 1 - w 

1 1 R3  = 7 ( 1 - w3 ) + 

For sphere 	1 = 2 ; 

dw 2 
cTT = 	Y and 

, R2  .4 (1 - w2) , 

9 w ( 1 - w ) 	etc. 
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TEMPERATURE FIELD 

In the spirit of Hill [ 7] Eqs. ( 5-7) can be regarded as a speci-
fic example of the non-characteristic Cauchy problem for the 
heat Eq. ( 5) in which the Cauchy data Eq. ( 6 ) and Eq. ( 7) are 
asigned along the non-characteristic curve r = y ( t ) . The final 
formula from which the function T ( r , t) for 1 = 0, 1, 2 will 
be determined as; 

co 
T(r,t)= 9j  

j=0' 	r=y(t) 	x=y (t ) 

9T .(x 
tj 9r 	

Si  ,r) (10) 

Where . are the coefficients of expansion 
solution for Eq. ( 5 ) in the Laurent series. 
are derived explicitly by Hill[ 7] for 1=0, 
Eq. (10) yield; 
For plane 1 = 0 

T(r,t). 

of the fundamental 
The coefficients S., 
in conjunction with 

But the coefficients Si  for 1 = 1, 2 can be derived and in conj-
unction with Eq. ( 10 ) it can be written as follows; 
For cylinder 1 = 1 ; 

oo  

	

'(Ja)  (r 	 [ 	

0
w 1n w, 

2 	
90+1) 

jr.d 01) 	2 	Oti k=0 

w+ 2 R ( ) 
Where; 

T (r,t)= "k)  
2 

w 
 j-k 

(1 2) 

	

1 	( J a) j  

	

T (r,Y) = - 7 	
1
, (2,1+1 ) ! 	YY(r-Y)

2j+1 
(13) 

The solution of Eq. ( 2 ) was given by Hill [ 7 } ,but the results 
Liq. (12) and Eq. ( 13 ) are new. 



oa  

k=1 

(Ja ) j-1  j! 
j=entire(141) 2 

-y )k 
 

For plane 1 = 0 

T ( r, t) = 

Where: 
	j=k 

(14 ) 

f k 	k! 
(-1) 

(16) 

00 

 

1.1 
(17) 

denote to 
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6 	The series Eq. ( 11) and Eq. ( 13 ) can be written in the more use- 
ful form as a series expansion in space about the moving face 
r = y(t ) as follows; 

For sphere 1 = 2 ; 	\co  

1 	 u
k 
 ( r - y ) T ( r,t ) = 

k=1 
  

Where: 
(r) 1 (1+r) 

u - (-1) 	 Y 	2  
(Jak),j  1! 

k 	k! 	 xi  ! 2  ty ! 
j=entire(-2) 	/11 +..+ 5.2j+1-k 

1 Pii-..+j A -1-"tc+.1(?j 

Where, symbols: 
and 

P14-..+)9,1=2j+1-k 
1/314....+jfiii-X1 +22=j 

sequences of nonnegative integers 
respectively,which 

)92 • 

Pf2j-k 
1,1+..+j )5.=j 

the summation over all 
Ai  and f31  , /32,...., 	• ?r • 7r2 

satisfy the system of Diofantic equations given below the summa-

tion sign. 

It should be noted that the functions fk and uk are expressed in 

the close form. It differs from the previous solutions [ 2 - 41 
obtained only for plane 1 = 0 where the functions f k are to 

be found by a recursive method. 

In the series Eq. ( 11 ) , Eq. (13) and Eq. ( 14 ) , Eq. (16) the 
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interface position. yet ) is unknown function of time. These expr-
essions can be applicable to the solution of the two category 
of phase change problems in which either r = yCt ) is assumed 
to be known a primarily or as a alternative where a condition 
at a fixed boundary r = 1 is prescribed. In the first case is 
a simpler one, the above formulas are directly provide, whenever 
this make sense, explicit solution fot T (r,t) . It means, they 
can be considered as the general solutions of the inverse Stefan 
problem [3] , for 1 = 0, 1, 2 . The present work considered the 
later case in which y(t) is to be determined as a part of the 
solution from the boundary condition Eq. ( 9 ) at r = 1 

APPROXIMATE ANALYTICAL AND NUMERICAL SOLUTION 

Substitution of Eq. (14) , Eq, (12 ) and Eq. (16) into Eq. ( 9) 
yields a nonlinear ordinary differential equations of infinite 
order, which determine the function v(t ) ,for 1 = 0, 1, 2 
respectively. It is not easy to obtain an exact analytical sol-
ution for equations of this type. Therefore, resort must be had 
to an approximate analytical procedure. 

Here, having Eq. ( 12) and Eq. ( 16 ) , we can extend the truncat-
ion method of Brovman [ 1 3 for the cylinderical and spherical 
symmetry. Let us assume that the temperature field in the cyli-
nder and sphere can be approximated by the first two terms of 
the series Eq. (12)(without the term containing W) and Eq. ( 16). 
We thus obtain: 
For cylinder 1 = 1 ; 

1 ) T =(2)2 	In w + (ua) (1) 
	

(ln w - 1 + 	(18) 2 	 2 	 w 
For sphere 1 = 2 ; 

1 	 • T= r  [-ycr (r-y)+ 	yy2  (r-y)
2] 	(19) 

These expressions directly satisfy the boundary conditions 
Eq. ( 6 ) and Eq. ( 7 ) , but the energy Eq. 5) is only satisfied 
at the phase interface r = y(t ) This 
nt, particularly .for the derivation of 
Ends on the internal energy stored near 

should be quite releva- 
ly.  
dt ,which strongly dep- 
the interface and not J 
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so much on the energy stored in more distant volume elements. 
Substitution of Eq. ( 18) and Eq. ( 19 ) into Eq. ( 9 ) yields an 
equation of the following type: 

dz _ 
dt F ( z 	Q 	13) 	 (20) 

for 1 = 1 , 2 , with a new variable z = 1 - y . Direct integ-
ration of this relation with the initial condition z = 0 for 
t = 0 yields the final results: 

For cylinder 1 = 1 ; 
- the second boundary condition 

1 	1  
(Ja)  t 	2w { 7 z ( 2-z) + 	1- (1-z) I (1-z)2  -2Wz (1-z)+ 

111111 
 

	 W 

Where: 

  

{ 4(1-z)2  +2Wz(2-z) +(1-z)41-2W  
1 - 41 - 2W 

1  N In 

   

(21) 

for W<2 (22) 

1 N 2W-1  - 	
2W arc sin j 1- -2-wl 	arc sin(1-z)111- 	for W,„T (23) 

and W = (Ja)(q) 
- the third boundary condition 

t 

With: 

1 2(131i) ji; [(2+(Bi))z (2-z ) +2 C131) (1-z2) ln ( 1-z ) 

z-1 
Xi(x,(Bi),(Ja)Ydx } (24)  

2 
X1= (1-x )2 11-(Bi)ln(1-x)] + (J a) (Bi)[(2+ (Bi)) ( 2-x)x 

+2 (Bi) (1-x)2  In (1-x) rz 
The integral OJ )—"1  C dx  can be determined by the numerical 
integration using a computer program. 
For sphere 	1 = 2 : 

t 	[ 	1 z 1-z+-5 z2 	1 +Bz(7 - 1  {  
rz 

z)j+ oj (25)  X2  [x, B,Q, (Jq dx 
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With: 
2 

)(
2
. ( 1-x )2  I(1-x)+BxJ +2 (Ja) Qx (1-x ) [(2-x)+Bx J  

rz 
The integral 0) -Pc dx for the constant wall temperature 
(B = Q = (Bi)-moo) is an elementary -type. For other cases it can 
be expressed in terms of standard elliptic functions. 

It is seen that the approximate solutions Eq. ( 12) and Eq. ( 13 ) 
are convergent to the quasistationary solution if (Ja) 00 
Putting z 0 into Eq. ( 12) and Eq. ( 13) we obtain the expres-
sions for calculating the time tF required to complete the pha-
se transformation in the sphere and the cylinder. 

RESULTS AND DISCUSSION 

Figs. ( 1 - 2) show the time required to complete the phase cha-
nge in the cylinder and sphere, calculated from Eq. (24) and 

Eq. ( 25 ) , for the boundary condition of the third kind. The 
obtained results cover all ranges of practical systems with 
(Ja) up to 6 and (Bi) from 0.2 to oo . It is clear that for 
(Ja) 	the required time tF can be twice greater than that bas- 
ed on neglecting the heat capacity of the new phase ((Ja) = 0 ). 
Therefore, the quasistationary approach cannot be applied to 

such materials as steel, nickel and other metals. The very accu-
rate difference solution of Tao [5] can be used to estimate the 
relative errors of the discussed solutions, for values of (Ja) 
and 1/(Bi) up to 3 and 5,respectively. Percent relative errors 
of the time required to complete the phase change in the sphere 

% are shown in Fig. ( 3) . Where C =[(tF -t
o
F 
 ) / to

F 
j 100% . The 

error of tF for the results of Stefan[ 3] represented by a cont-
inuous lines in Fig. ( 3) . The agreement with Tao [5] is suffic-
ient, maximum error is about 6%. It can be observed in Fig. (3) 

that for examined values of (Ja) and (Bi) , the errors of tF, 
calculated from Eq. ( 25) are about fourfold smaller than those 
of Stefan [ 3 . Maximum deviation of Stefan [3] is about 32%. In 
the case of the cylinder, results of the comparison are similar 

to that of the sphere. It is clear that the present analytical 

approximation and numerical computations yields a satisfactory 
results. 	 _J  
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Fig.l. Time required to comp-

lete the phase change 

in the cylinder. 

(3a) 

Fig.2. Time required to comp-

lete the phase change 

in the sphere. 

/e/ //"%/e;rio iireit'cid.r'es'po;74614( i  ./ Me present solutroo 
Allifiamammirm 

foi-OF .741(7 
to / 

( 4)07  

(Jd)s0.5 

(Jd)=. 4 

(J0)=2  

(Ja)st 

2 	3 	4 
f/(13d 

Fig.3. Percent relative error of the time required 

to complete the phase change in the sphere. 
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NOMENCLATURE 

a - thermal diffusivity. 
(Bi) - Blot number. 
B - constant connected with Bi and q 
c - specific heat. 
h - latent heat of fusion. 
(Ja) - Jacob number. 
1 - configuration parameter. 
q - heat flux. 
(q) - heat flux parameter. 
rte, r - position coordinate. 
R - radius, half-width of the plane. 
t', t - time. 
T', T - temperature. 
tF - time required to complete the phase change. 
Ts'- fusion temperature. 
To'- surrounding temperature. 
y', y - coordinate of the phase boundary. 
oC- coefficient of heat transfer. 

- thermal conductivity. 
- density. 

Note: Primed symbols as T', To', Ts', r", y' denote to dimensi-
onal quantities and non-primed symbols denote to dimensionless 
quantities. 
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