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THE THIRD FACE OF COMPUTER 

"COMPUTER SOLUTION OF SYMBOLIC PROBLEMS" 

M.I.WANAS 

ABSTRACT 

The purpose of the present paper is to bring to the atten-
tion of scientists and engineers the existence of systems 
capable of performing algebraic(non-numerical) and symbolic 
computations. These systems have been in use successfully 
in a number of fields such as: Relativity, Celestial-Mecha-
nics, Aerodynamics, Fluid Mechanics, Quantum Electrodynamics 
High Energy Physics, Astrophysics, and Cosmology. 
A brief review and comparison of several systems is given. 
The use of algebraic computing to solve diverse problems in 
scientific research is shown. To illustrate the use of such 
systems, an example of general interest to potential users 
is being discussed. That is the use of the algebraic manip-
ulation language REDUCE 2 to write a program for coordinate 
transformations. Input, output, and the structure of the 
program are being discussed. A copy of the program together 
with a sample of its results are presented. 

* Associate Professor,Dpt.of Astronomy and Meteorology, 
Faculty of Science, Cairo University, Guiza, Egypt. 
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INTRODUCTION 

In the last two decades a large number of computing systems 
has been constructed to carry out algebraic and symbolic mani-
pulation. The number of these systems is about to be of the 
same order as the number of users. This may be due to the com-
mon belief that the computer has only two faces: one for nume-
rical computations, and the other for data processing. Most 
of the users do not know that there are many programs and lan-
guages ready to manipulate non-numerical data. This represents 
the third face of computer. 

Languages which one can program in are being classified into 
the following 4-categories el]. The first is the Machine Code 
which varies from one computer to another. It consists of ins-
tructions to the machine in a number-coded form. It is very 
difficult to program using this type of languages. The second 
is the Assembly Language (e.g.FAB,MAP,COMPASS,...)which is 
similar to the machine code but less difficult to program in. 
This type of languages is also machine dependent. The third 
is the High-level Languages (e.g.FORTRAN and ALGOL for numer-
ical calculations; LISP, REDUCE, SHEEP, and MACSYMA for algeb-
raic manipulation) which enable the programmer to write in an 
english-like or mathematical-like notation. These languages 
possess compilers to translate into the machine code. Many of 
these languages are, in principle, machine independent. But 
not all high-level languages are available on all computers. 
The fourth is the Low-level Languages (e.g.CAMAL) which form 
an intermediate level between high-level and assembly languag- 
es. 

For the algebraic manipulation, the computer will be of great 
help in the cases of calculations which are tedious and some 
times impossible to be carried out by hand. Computers are sup-
erior to hand calculations in these areas because they are 
faster, error free, and the machine will not get tired. More-
over, round off is not a problem since the results may be obt-
ained in an exact form. Also the stability and convergence 
problems of numerical computations are not relevant [2]. 

In the following section a brief comparison of some of the 
algebraic manipulation systems is given. Fields in which alge-
braic manipulation are being used successfully are reviewed 
in the next section. An example to illustrate the use of one 
of these systems-REDUCE- is discussed in a separate section. 
A final conclusion is given in the last section. 

COMPARISON BETWEEN SOME ALGEBRAIC SYSTEMS 

Among systems used for algebraic manipulation, there are few 
which are applicable for general purposes (e.g.REDUCE, and 
MACSYMA). The majority are merely programs written to solve 
certain particular problems (e.g.LAM, SHEEP, ORTOCARTAN). 
The more general the capability of the system the less effici-
ent (the slower) the system is. For example Cl] the CPU-time 
L_ 	 _1 
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Table 1 Comparison Between Algebraic Systems 

Lang- 
uage 

Comp- 
uter 

Implim- 
entation 
Lang. Syntax 

Know. 
of 

Elem. 
Func. 

Memory 
in 

K.W. Notes Ref. 

ALTRAN Many FORTRAN FORTRAN 
PL/I 
like 

Non 65 on 
IBM 
360 

Matrix oper-[3] 
ations are 
built in. 

CAMAL IBM Most 18 on [1] 
360 TITAN 

FORMAC IBM IBM FORTRAN Most 40 on Not a compl-C3] 
360/370 Assemb- 

ler 
or PL/I IBM 

360 
ete program-
ming lang. 

LAM Many LISP LISP Most 38 on r33 
IBM 
360 

MACSYMA DEC LISP ALGOL Many 123 Not general-[5] 
KL 10 like ly available. 

Tensor oper-
ations could 
be carried 
out easily. 

ORTOCA- DEC LISP Mixed Most 29.69 Some tensor [4) 
RTAN Cyber 

73 
4.1 FORTRAN 

&LISP 
operations 
are built 
in. 

REDUCE Many LISP 
1.5 

ALGOL 
like 

Many 70 on 
DEC 
KA 10 

Matrix oper-[6] 
ation and -6 - 
matrix alge-
bra are bui-
lt in.Tensor 
operations 
could be 
carried out 
easily. 

SAC 1 Many FORTRAN FORTRAN 
ALGOL 
like 

Non 33 on 
IBM 
360 

It is a col-[3] 
lection of 
some subrou-
tines. 

SHEEP DEC 
PDP 10 

LISP 
1.6 

ALGOL 
like 

Most 25 Some tensor 
operations 

[71 

are built 
in. 

SYMBAL CDC 
6000 

CDC 
Assemb- 
ler 

Improv- 
ed 
ALGOL 

Non 25 [3j 
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for the standard Bondi-metric (in a certain problem in general 
relativity) is 30 seconds using SHEEP on DEC KA 10. The corre-
sponding time using REDUCE is 360 seconds on the same computer 
for solving the same problem. However, saving the user's time 
by the use of computers is much more important than reducing 
the computer's time by specifying the system used. 

Some of the high-level languages possess two important facili-
ties. The first is the "Garbage Collector" which is a device 
responsible of clearing the store occupied by unwanted expres-
sions. The absence of this device in the language causes a 
real problem of store and will affect the efficiency of the 
language. The second facility is the "Interactive Mode". It is 
an additional convesational component which helps as a medium 
for a dialogue between the user and the machine. This device 
enables the user to interact with the machine freely when com-
putations are being carried out. Systems possessing such faci-
lity has the advantage of mixing the experience of the user in 
his field and the (knowledge) built in the system. Interactive 
mode is ideal for running small jobs only since it is not pra-
ctical to wait 10 minutes for each responce. So, for large 
jobs, it is preferable to use the "Batch Mode". Unfortunatly, 
interactive mode can be implimented only on large computers. 

Table 1 gives a brief comparison of ten algebraic manipulation 
systems. Some of which are general purpose systems, and the 
others are programs written for specific problems. All systems 
are high-level languages except CANAL which is a low-level 
one. For more details, the reader is referred to tha referen- 
ces cited in the table. 

APPLICATIONS IN DIVERSE SYMBOLIC PROBLEMS 

Many mathematicians, astronomers, theoretical physicists,and 
engineers spend a large amount of their time carrying out 
routine algebraic calculations such as differentiation, integ-
ration, substitution in complicated formulae...etc. Systems 
such as those given in the previous section are being used 
successfully as tools for solving such problems. Moreover, 
they have been used in solving problems that were previously 
considered impossible to be solved by hand. 

In the following, we are going to outline briefly how algeb-
raic manipulation using computer has been introduced success- 
fully in some important fields. 

General Theory of Relativity (GR) 
One of the fields in which algebraic manipulation is being 
used successfully is the field of GR,(a theory which studies 
the gravitational fields), and its applications to astronomy 
and cosmology. The theory is based on a certain geometrical 
structure (a 4-dimensional Riemannian space) defined in terms 
ofa symmetric second order tensor-field (the metric tensor 
Jpv) giving rise to a symmetric affine-connexion (the Chris-

toffel symbols fa) ). To solve any particular problem in this 

L 	
(  
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domain, we have to calculate Einstein's field equations ( 10-
equations in general). Although the calculations is some what 
straight forward but it involves tedious processes of differe-
ntiation, summation, substitution, and matrix operations, sev-
eral systems have been designed especially to solve' such prob-
lems, e.g. the LAM-family (ALAM, ILAM, CLAM) and ORTOCARTAN. 
The most efficient system known to the author in this respect 
is SHEEP L71 which is the interactive adaptation for the DEC 
PDP-10 of the system LAM. For a full review in this area the 
reader is referred to d'Inverno's papers Ll] , [8] . 

Generalized and Unified Field Theories 
Another field which is similar to the the previous one is 
that of generalized and unified field theories, (concerned 
with the unification of gravitational and electromagnetic 
fields). In this area the geometrical structure is more compl-
icated than the Riemannian geometry used in GR. For example, 
in one of these theories pi , the geometrical structure used 
is the absolute parallelism space. Instead of the ten field 
variables of GR we have here sixteen field variables to start 
with. Also, instead of the 40-components of the symmetric aff-
ine connexion used in Riemannian geometry, we have 64-compone-
nts of a non-symmetric connexion. To manipulate the field equ-
ations of this theory and to get the type of the space used 
E10j , more than twinty geometrical elements (each of which 
has 30-components on the avarage) have to be manipulated. The 
author have [12] able to use REDUCE to manipulate these eleme- 
nts [11] , 

Aerodynamics 
The third field in which algebraic manipulation has been of 
great help is the field of aerodynamics. The typical problem 
in this field is to derive a simulator that will enable the 
engineer to know how an aerospace vehicle will behave under 
actual flight conditions [13] . This simulator is obtained by 
using the solution of the equations of a mathematical model 
representing the vehicle and its environment. This involves 
in general 12-equations: 3-for locating the body, 3-to deter-
mine the force, 3-for the moments, and 3-for Euler angles 
which determine the orientations of the body. In the aerostat-
ic case, certain quantities necessary to formulate these equa- 

tions (forcet , moments r, stability derivatives-7.- --- .4) 	'erl 
-D B 

where A 	are the angles of attack and sideslip respec- 

tively (see Fig.l)) are being given in the wind-tunnel stabil-
ity coordinate system (50), in which data is obtained. While 
the mathematical equations, describing the model, are formula-
ted in the aircraft body coordinate system (,0,). Each of the 
previous quantities transform from (2' ) to (x.1  ) as the comp-
onents of contravariant vectors. So, for each quantity we have 
3-transformation equations each of which has 3-terms. In the 
next section, an example of using computer for coordinate tra-
nsformation of a contravariant vector is being discussed in 

_J 

L12] 
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Fig.l.Angle of attack (A) and angle of sideslip (B) 

In the aerodynamic case the problem will be more complicated. 
Each of the aerodynamic stability derivatives of the problem 

(Dr z)i-  aT' ?)F t  -DP 2, P` 0-Pt 	V' ,A, 

	

, where , 	are the 
-2) Vj 	LC 	-0‘1.:1 	' 	?,0 
linear and angular velocity respectively, and 1/j, ;i1j are the 
linear and angular accelerations respectively) are being tra-
nsformed as the components of a mixed tensor of the second 
order [14] T =2x  a rc  ( 	=1,2,3) 	(1) 

J 
summation convention is being carried out over repeated indi-
ces. So, for each of the previous stability derivatives there 
will be 9-transformation equations each of which will consist 
of 9-terms. So for each quantity we have to calculate 81-terms 
in general. The most suitable systems for carrying out such 
manipulation are REDUCE and MACSYMA. 

Celestial Mechanics 
The problem in this field is to determine the position of any 
celestial body (e.g.a planet, the Moon, an artificial satell-
ite...) at any time. This needs solving the equations of mot-
ion of the body. The solution rarely exists in a closed form. 
One way out of this problem is to construct an analytic pert-
urbation theory. In other words, to get the solution in the 
form of a series in terms of some small parameter (eccentricty 
or inclination of the orbit). The series appearing frequently 
in such calculations is the Poisson series, which is a trigon-
ometric series with its coefficients as polynomials. Delaunay 
in 1860 had constructed a lunar theory up to the seventh order. 
His calculations were accomplished in twenty years. This work 
has been repeated by Deprit, Henrard and Rom [15] using algeb-
raic computation up to the nineth order. They have found one 
error in the work of Delaunay. The algebraic manipulation sys-
tem CAMAL was designed originally to perform such calculation. 
However, this type of calculations can also be done using 
MACSYMA or REDUCE. 

Quantum Electrodynamics (QED) 
This theory is concerned with the interaction of charged 
L 
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particles via photons in the framof relativistic quantum 
mechanics. The situation here is similar to that in celestial 
mechanics. That is in the case of elementary particles in 
interaction we do not know in general the equations of motion, 
and where we do, we can not solve them [16] . So, we have to 
use some perturbation technique. The most famous technique in 
this field is that due to Feynman. The expansion parameter in 
this case is the fine structure constant (1/137). The probabi-
lity of occurance of any physical event is given by 

	

= Kf IM I i>12 	 (2) 

where t:› ,<c I are the initial and final states respective-
ly, and M is the total amplitude given by 

M = m(1) + m(I) + m(2) + m(2) + m(2) + 	(3) 1 	2 	1 	2 	3 
m represents the amplitude of indevidual process, m.(1)  repres- 

ents first order diagram with two vertices, m.(2)  represents 
second order diagram with four vertices, and so on. Feynman's 
rules give a one-to-one mapping between diagrams and a compli-
cated mathematical expression involving the 4x4 non-commuting 
y-matrices. The calculations are straightforward but very ted-
ious. For example to match theoretical and experimental resul-
ts one has to evaluate some hundreds of Feynman diagrams which 
are generated within the first few orders. For a review of the 
use of algebraic computing in QED the reader is referred to 
reference [2] and references listed there in. The most suitab-
le system for such calculations is REDUCE, since it was desig-
ned originally to solve such problems. 

Fluid Mechanics 
Most of the calculations in this field are somewhat similar to 
those of GR and cosmology. Navier-Stokes equation [17] ,which 
is the basis of fluid mechanics, can be written in a tensorial 
form. In addition to this equation, an equation of state and 
the equation of continuity are required to complete the system 
necessary to solve any isothermal problem. In order to formul-
ate these equations, the only quantity needed is the metric 
tensor of the surface over which the fluid flows. From this 
tensor one can formulate Christoffel symbols of the second 
kind and hence write the previously mentioned equations. 
Although the equations are complicated, the only operations 
carried out by computer are summation and differentiation. 
Once a program is written for such a problem, the user has 
only to give the machine the metric tensor of the surface. 
The most suitable systems to write such programs are REDUCE 
and MACSYMA. 

Astrophysics 
The last application is in the field of astrophysics. One of 
the problems in this field, in which algebraic computing has 
been used successfully, is the problem of non-radial pulsation 

L 	 _J 
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of stellar models. Thorne and others [18,19,20]. have used the 
FORMAC pakage ALBERT to solve this problem. 

REDUCE AND PARTICULAR APPLICATION 

The most general systems known to the author at the time of 
writing this paper are MACSYMA and REDUCE. Unfortunately, the 
MACSYMA system is available only at MIT through ARPA network. 
But REDUCE is available on many computers. It was developed 
by A.C.Hearn in 1957 to carry out calculations of interest to 
high energy physicists, and it has been evolved since then 
untill 1967 when it was announced as a system for general alg-
ebraic manipulation. This system is continuously evolving to 
cover the needs of different users. It appears to the author 
to be the most promising system. 

To illustrate the use of REDUCE, we are going to discuss a 
sample program of general interest to many users. That is a 
program for coordinate transformation of contravariant vectors 
using a 4-dimensional space. Let):" •x') denote a tetrad of 
contravariant vectors defined in the coordinate system ()4 ) 

= 0, 1, 2, 3, where Ft (= 0,1,2,3) defines the coordinate 
components and i (= 0,1,2,3) defines the vector number. If 
we want to get the components of that tetrad in a new coordi-
nate system (A ? = 0, 1, 2, 3, the relation between the new 
and old components is 

Now 	
J  can be written as a 4x4 matrix. If we want to trans- 

form from ( ) to (x), we have 
tx 	._,,,,,, 	 v 

X (%) = 	 X (3 ) , 	IA = 0,1,2,3 	(5) -c> 3 '/ ' 	 M .-cl,cf 	 -?0 
Where the matrix 	 is the inverse of the matrix 	 . Let 

-Zyv 	 - : *21 
,2 	3 

the old coordinate system be r ( 3% t,.1 = x,J = y„Y = z ), 

c' 	f 
and let the new coordinate system be 7‘. (x. =t,x =r,x

z 
=0,-x,s.-3=0) 

where we have the transformation 

jc= 
0 

 7c 

x = r sin Q cos 0 

y 	r sin 0 sin 0 

z = r cos 0 

Let the tetrad vectors be given in the old system of coordin-
ates (jr.i) in the following matrix, where A, B, D are functions 

of r(=(x2+y2+z2)).  

L 

.p 	V 

■Ij- 	) 	>.; ( 	 0,1,2 , 3 	(4) 
Dx.4' 

(6) 
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D(r 
B(r).x 
	D(r).y 	D(r)..z 

) 	0 
( 0 	B(r) 	0  

0 	0 	B(r) 
(7) 

The program which is written to carry out such calculations 
is listed below. The statements 6,38 are control statments to 
reduce the form of the output. The statements 7,39 are to 
direct the output to a file and to shut it respectively. The 
statements 8,9 are to declair functions and matrices used. 

Extract from a REDUCE rogram 
6 ON NERO; 
7 OUT MENA8; 
8 OPERATOR X,Y,A,B,D; 
9 MATRIX TL(4,4),TLI(4,4),VMO(4,4),VM(4,4),  
10 Y(0):=X(0); 
11 Y(1):=X(1)*SIN(X(2))*COS(X(3)); 
12 Y(2):=X(1)*SIN(X(2))*SIN(X(3)); 
13 Y(3):=X(1)*COS(X(2)); 
14 VMO:=MAT((A(X(1)),D(X(1))*Y(1),D(X(1))*Y(2),D(X(1))*Y(3)), 
15 	( 0 , B(X(1)) , 	0 	, 	0 	),  16 	( 0 , 	0 	, B(X(1)) , 	0 	), 17 	( 0 , 	0 0 	, B(X(1)) )); 
18 FOR I:=0:3 DO FOR J:=0:3 DO TL(I+l,J+1):=DF(Y(I),X(J))$ 
19 LET DF(X(1),X(1))=1, 
20 	DF(X(2),X(1))=0, 
21 	DF(X(3),X(1))=0, 
22 	DF(X(0),X(1))=0, 
23 	DF(X(1),X(2))=0, 
24 	DF(X(2),X(2))=1, 
25 	DF(X(3),X(2))=0, 
26 	DF(X(0),X(2))=0, 
27 	DF(X(1),X(3))=0, 
28 	DF(X(2),X(3))=0, 
29 	DF(X(3),X(3))=1, 
30 	DF(X(0),X(3))=0, 
31 	DF(X(1),X(0))=0, 
32 	DF(X(2),X(0))=0, 
33 	DF(X(3),X(0))=0, 
34 	DF(X(0),X(0))=1; 
35 FOR ALL XL LET COS(XL)**2=1-SIN(XL)**2; 
36 TLI:=1/TL; 
37 VM:=VMO*TP(TLI); 
38 OFF NERO; 
39 SHUT MENA8; 
40 CLEAR TL,TLI,VMO,VM; 

Input of the program is given in the statements (10-13), and 
(14-17), which are just the transformation (6) and the tetrad 
(7) respectively. Statement 18 is to calculate the 4x4 matrix 
-20t' 

and to put the result in TL. The statement 19-34 represe 
-ox_11  
Lts the differentiation rules. The statement 35 is for using __I 
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E 

the identity sin2Q +cos
2Q. 1, for any Q. The statement 36 is 

an instruction to get the inverse of TL, as we need the inver-
se transformation (5) not the direct (4). The transformation 
(5) , given by the statement 37, is written in a matrix form, 
where TP(TLI) is the transpose of TLI matrix. The statement 40 
is to clear the store used. The following is a sample of the 
final results of the program. 

A(X(1)) 
D(X(1))*X(1) 
B(X(1))*COS(X(3))*SIN(X(2)) 
(B(X(1))*COS(X(2))*COS(X(3)))/X(1) 
( - B(X(1))*SIN(X(3))/(8IN(X(2))*X(1)) 
B(X(1)*SIN(X(3))*SIN(X(2)) 
(B(X(1))*COS(X(2))SIN(X(3)))/X(1) 
(B(X(1))*COS(X(3)))/(SIN(X(2))*X(1)) 
B(X(1))*COS(X(2) 
( - B(X(1))*SIN(X(2)))/X(1) 

The computer used for running this job is the IBM 360/168 
NUMAC at Newcastle, the operating system is MTS. The top 
level language version : REDUCE 2(Aug-12-75(MTS July-1-77)). 
The CPU time used is 4.742 seconds. 

CONCLUDING REMARKS 
The symbolic problems explained in the third section are 
mere samples of the particular fields. There are more problems 
which can be treated successfully using algebraic computing. 
There are also some systems for algebraic manipulation other 
than those discussed in the present paper. Furthermore, there 
are versions for most of the systems discussed, offering more 
facilities to users. For example, there is a new version of 
REDUCE, according to which the statement (19-34),given in the 
program of the previous section, will be deleated. 

One of the main difficultiesin using algebraic manipulation is 
that one cannot estimate the time that a certain process will 
probably take, and thus the user is unable to give an upper-
time limit for his job. 

Although algebraic manipulation has started more than twinty 
years ago, the number of users is still very limited compared 
with those dealing with the other two faces of the computer. 
Many users have not yet heared about the subject. Others can-
not obtain suitable systems, as most of them are not easily 
available. Even when a user may have access of a certain sys-
tem, other difficulties may arise with regard to the core size 
and the operating system used. We hope that by creating gene-
ral interest in algebraic computing, then potential users 
could find the way out of these difficulties. 
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70 VM(1,1):. 
72 VM(1,2):. 
74 VM(2,2):= 
76 VM(2,3):= 
78 VM(2,4):= 
80 VM(3,2):= 
82 VM(3,3):. 
84 VM(3,4):= 
86 VM(4,2):= 
88 VM(4,3):= 
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6 	the costs of using the computer, while the author was a visi- 
tor at the Mathematics Department there. 
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