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ABSTRACT 

This paper brought a new trend giving a baseline algorithm which yield an 
approach for the design of the near optimal controller for the short range 
homing, guided missile. This new trend is based on the minimal order obser-
ver as state estimator. The problem is studied based on a linear discrete 
model taking into consideration the dynamics of the missile motion, the 
target manuvering capability, errors of measuring sensors and launch init-
ial conditions. Quadratic criterion penalizing the state trajectory as 
well as the control is used. The near optimal control is derived through 
the linear quadratic Gaussian technique (L.Q.G.) and the minimal order 
observer as stato estimator. The derived control accounts for bounded con-
trol variable, Limited missile manuvering capability and bounded minimum 
terminal miss-distance at the intercept point. 

* M.T.C., Cairo, Egypt 
**Air Defence Forces Research Department. 
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SUMMARY 

This paper brought a new trend giving baseline algorithm which yield an 
approach for the design of the near optimal controller for the short rinse:, 
homing guided missile. This new trend is based on the minimal order obserer 
as state estimator. The problem is studied based on a Linear discrete model 
taking into consideration the dynamics of the missile motion, the target 
manuvering capability,errors of measuring sensors and launch linitial cond-
itions. Quadratic criterion penalizing the state trajectory as well as the 
control is used. The near optimal control is derived through the linear 
quadratic Gaussian technique (L.Q.G) and the minimal order observer as 
state estimator. The derived control accounts for bounded control variable, 
Limited missile manuvering capability and bounded minimum terminal miss-
distance at the intercept point. 

1- INTRODUCTION 

The task of guiding a missile to a target is affected by a number of factors 
and constraints;e.g. target manuvering capability, errors of measuring sens-
ors, autopilot dynamics, missil's aerodynamic frame, missil's thrust, 
bounded control variables, limited missile manuvering capability and launch 
initial conditions. Terminal guidance process has the function of guiding 
the missile to the intercept point with some required accuracy in the miss-
distance. Through the modern control theories and the Kalman filter as state 
estimator short range homing guided missile's optimal controller design 
algorithm has been declared (1). Kalman filter has much troubles in the real 
time mechanization especiayly in the case of large dimensional systems as 
it adds complexity in the hardware which increases the error and the time 
of calculation (2) . The minimal order obsserver is simpler but less optimal 
estimator (3). The principle contribution of this work is the investigation 
of the discrete minimal order observer as state estimator to achieve with 
the optimal feed back;derieved through the linear Quadratic Gaussian techn-
ique (L.Q.G);a near optimal Homing terminal stochastic guidance law that 
accounts for limited state trajectory as well as the bounded missile cont-
rol variables and minimum terminal missdistance. 

2- GUIDANCE PROBLEM MODEL 

Homing guidance problem for short range homing guided missile against manuv-
ering target is formulated (4) accounting for: 
(1) Cartizian control is used in which the guidance controller produces two 

controls for the missile motion in pitch and yaw plane independently 
(lateral control). 
(2) "X form" missile is considered so the pitch and yaw motion will De 

crosscoupled only due to roll rate, so we must have roll rate control 
besides, and then we have two identical lateral controllers and one roll 
control. 
(3) Vertical plane interception geometry is considered where a nonrotating 

orthogonal coordinate system is definecrwith the x-axis chosen along the 
line of sight between the intercepter and the target at the begining of the 
engagement. The centre of the coordinate system moves with the target but 
the coordinate axis donot rotate , if the guidance system works well, then 
the line of sight rotates very little along the missile's trajectory except 
near the end where the range to go becomes small. At "tf" the missile trajec-

tory intersects the y axis almost perpendicularly and the termi-:.11 miss 
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distance is approximatly y (tf), fig (2.1) 

a-let the guidance control variable available is the control surface defle-
ction "S" considering the autopilot with a constant unite gain. "S" acts 
through the dynamics of the missile producing the dynamic motion of the 
missile expressed in the normal acceleration "am(t)" that affect the inter-
ceptor flight path. 

b-let the missile is nonthrousting drag-free vichle and "am(t)" is approx-
imatly perpendicular to the missile's velocity as shown in (fig21), Hence; 

a 
my
(0 = - a

m
(t) cos y 

where 	am  (t) = / am(t) / 

If the orintation of V is assumed to be slowly varying cosy. can be 
treated as known scale

m 
 factor, let us assume costr= 1. 

c-In particular the target acceleration "at(t)" has an effect on the guid-
ance dynamics as shown in (fig2.1 ) as following 

y = - a
ty
(t) + a (0 

my 

(4) The airframe of the missile is shown in Fig (2.2) 

(2.1) 

Fig.(2.2) Missliz Atrframe. 

where : a= angle of attack 

L 	6= angel of missile flight path direction. 
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-\9= direction of missile axis 
6= deflection of control fin 

V = missile speed. 

w
zl 	

pitch rate of the missile. 

at = normal acceteration due to body wing lift 

La, Lcs, Ma, 146 , Mwzl are the stability drevatives with known 
values for specific missile airframe. 

Hence;the dynamics of the missile motion is formulated as following: 

a 
w
zl 

M
wzl 

. w
zl 

+ 
V L 
	 a

m 
+ M6. 6 

m 

am
• =V LaWzl 

	
- L

15
a
m 
- V

m 
L
a 
L
6° 

6 
m  

(2.2) 

a
m 
 = a

m 
 + V

m  L6
. 6 

(5) The manuvering terget motion has random structure and the target accel- 
eration is assumed to be a markove process of first order with the following 

mathematical formulation 

a
ty 

= f
t
. a

ty 
+ u(t) 
	 (2.3) 

where/i(t) is zero mean white Gaussian noise process having the following 

statistical parameters: 

E ( u(t)/Y(T)-= f
2 

15 (t-T) 	 (2.4) 

E ( a
2 
ty (T)).- 0

2 	 (2.5) 

(6) Considering the states describing the guidance problem of a short 
range homing guided missile against manuvering target in the pitch plane 

to be: 

y 	miss - distance measure 

W
zl 
	pitch rate 

as 
	normal acceleration of the missile due to body wing lift 

a
ty 
	target acceleration 

y 
	derivative of the miss distance 

let us define: 
• T 	(2.6) X = the state vector = ( y wz 	

a'
m
a
ty 

y) 

A= dynamics matrix = 	
-  c 

0 	0 	0 	0 1 
M
a 

0 	M 
L 	

0 
wz1V 

0 

m a (2.7) 
0 	V 

m 
 L -L

a 	
0 0 

0 	0 	0 	f
t 

0 

0 	0 	-1 	-1 0 

L 
B
c 

= control transion vector = (0 M 	-V
m
L
a 
L
6 
0 _J 



GC-7 	973 

= 	(0 0 

FIRST A.S.A.T. 

14-16 May 1985 

0 p(t) 	0)
T 

CONFERENCE 

r CAIRO 

(2.8) 

(2.9) 
(2.10) 

- Vm Ls 
)
T 

U(t) = control variable = S(t) 
W(t) = disturbance noise vector 

E(w(t). 	W(I) 	= Q
(t) 	

6(t 	-T)= 0 	0 0 0 

0 	0 0 0 0 

0 	0 0 0 0 

0 	0 0 f
t
2 0

2 
 0 

[0 	0 0 0 0 

(2.11) 
Hence;the state space model of the problem is : 

X (t) = Ac X(t) + Bc 
U(t) + W(t) (2.12 

(a) let us assume the
1 
 following given data for the problem : 

Mwzl = - 0.455 Sec 
 

M a = -8.4 	Sec
-2 

M 6 = -71.2 	Sec
-2 

La 	= -0.315 	Sec
-1 

L6 	= 0.058 	Sec 
-1 	 (2.13) 

V
m 	

= 1800 ft/Sec - 1.6 (Mach) 

V
c 	

= 2000 ft/Sec = 1.8 (Mach) 

f 	= -0.3 	Sec
-1 

 

2 
	= 9 x 10

3 
(ft/Sec

2
)
2 

(b) The initial condition of the problem X(0) is assumed to be random 
Gaussian vetor with the following statistical data: 

x(0) 	= Xo 	; • 	X
T 

= 	(0 0 0 90 0 ) 	(2.14) 

E(x0)=.  X0  3 Xo 
 - (0 0 0 0 0) (2.15) 

E(x x
T
)= M;M = 

o o 	o o 
0 	0 0 0 

0 10
-4 0 0 0 (2.16) 

0 	0 10
3 

0 0 

0 	0 0 9x10 
3 
0 

0 	0 0 0 
(7) The measurements avaliable are : 

X(t) = line of sight angle by a homing rader sensor (4) , which 
has a constant unite gain and measurement is corrupted 
with zero mean and variance 

2 	1.x102 
0
a 
= 	( rad)

2 	 (2.17) 
2 

ri1 _J L 
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where r" is the range to go. 

W
zl 	

pitch rate measured by a rate gyro (4) , which has a cons- 
tant unite gain and measurement is corrupted with white 
noise with zero mean and variance a- W2  

OW
2 = 0.5 x 10

-6 (rad/sec
2
)
2 	 (2.18) 

Hence;let us define: 
T 

Y(t) = the measurement vector = ( )1(t) Wzl) 

r 	 
H(t) = measurement matrix Vc(tf-t) 

0 	0 

L 0 	 0  

V(t) = noise measurement vector where : 

(2.19) 

0 	0 	(2.20) 

0 

E(v(t) 	v(T) 	R 

1-190 
= I-9 

r 
t, 

0 

-T) 	(2.21) 

o 
	

0.5 x 10 6  

Hence ;Y 

	

	= H (t) . X (t) + V(t) 	
(2.22) 

3- PROBLEM FORMULATION: 

Our task is to design a controller to guide the missile to the target mode-
led in section 2;(2.12,2.22) with the following main objects : 

(1) Bounded control variable d(t) r 0.3 rad. 

(2) Limited missile manuvering capability a
rn.C. 10 g 

(3) Terminal miss distance at tf 
is minimum y(tf):; 50 ft 

Through the linear quadratic Gaussian regulation problem we can achieve 
such mentioned requirements, using the minimal order observer as state 

estimator. 
Hence;the desired object is formulated mathematically using the quadratic 

perfomrance index: 

= 1/2 R (tf). S.x(tf) + z f
f X (t).Qc

. X(t)+U(t).Rc.U(t)dt 

0 	 (3.1) 

i.e we wish to bring the guidance system from an initial state x(o) to 
a terminal state x(tf) using acceptable level of control and not exceeding 
acceptable dispersion of states x(t) during the flight trajectory and 
realize the minimum miss distance at the terminal time. This task is 
accomplished by minimizing the performance index which is of quadratic 

form in states and control, where: 

S, Qc  are positive semidefinite matrices 

Rc  is a positive definite matrix. 

An appropriate choice of these matrices must be made to obtain acceptable 
levels of (x(tf), x(t) respectively. Such a choice have no well predeterminfd 
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6 

1 
	

1 

way, so we will depend on the computer simulation. 

4- DISCRITIZATION OF THE SYSTEM 

1- Through suitable choice of sampling period "T" the model of the guidance 
problem is discretized such that: 
(1) The controllability of the continous system must be preserved 

in the discretized model (5). 
(2) The optimal cost must not be missed as function of the sempling period 

(5)• 
(3) The uncertainty in the states of the system as a function of the samp- 

ling period must not exceed some required covariance. (6). 
(4) The time of the system's response must be less than the sampling period 

in the wide sence of control. But if it is not possible as in our case 
((Proportional + integral) control), controllability must be preserved and 
the states of the system must be constraind during flight to the acceptable 
levels by the optimal gaindesign (suitable choice of S, Qc, Rc). 
(5) The time of calculation of the control command must not exceed the 

sampling period by any way, and as we have to control the error in the 
trajectory in a very short time, the time of calcUlation must be as small 
as possible,(7). 

Hence; the sampling period is to be chosen to take values lie between two 
extremes: 

a- T 	= first time at which controllability is lost 
. max 

(5) . Hence;T
max 

= 1.08 sec. 	 (4.1) 

b- tc  = possible time of calculation, (7). 

available tc= 4.5 m sec. 	 (4.2) 

Hence;from (4.1), (4.2) we can say : 

4.5 m. sec< T < 1.08 sec 

let us choose T = 50 (101sec) as a first estimate for T and through computer 
runs for simulation '4,4can choose the most suitable T. 
2- Refering to (8) the discretized guidance problem of the continus guidance 
given by (2.12), (2.22), (3.1) is the following: 
tf = NT , N = number of the sampling periods 

x
k+1 

= A.X
k 
+ BU

k 
+

k
;x (0) = Xo 
	 (4.3) 

Yk 	
= H

k
.X
k 
+ v

k 	
(4.4) 

N-1 
J 	= 1/2 XN.S. XN  + 1/2 	E 	Xlc_ gxk  + 2 Xk  M Uk 

	k
+ II.  .R.0 

k 
A .T 	 (4.5) 

	

where :(1) A = I(T)) = e c 	

k=0 

	

T 	Ac  (T-S) 
(2) B = F(T-S) = I e 	. B

c
. ds 

T 	o 
(3) Qui..! (1)(T-S). Q. (Z,(T-S) ds 

o 

where :Qw  is the coveriance matrix of the white noise sequence .1(,  disturbing 

_J 
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the discrete model. 	
is the covariance matrix of the white noise ,l(t) 

disturbing the continuous model. 

(4) Q = J (P(S) .0 . 	(S) ds 

0 
T 

(5) M = f ci)(S). Q r(S) ds 

0 

(6) R = T.Rc 
+ I r(). Qr 	r(S) ds 

5- Near Opitmal Control Law (Guidance Law) Calculation 

5.1) 
U. ,= C (1)• X. 	

(  

where :1-C. is the feed back optimal gain (8) 

G(i) = - 	+ 13 . n(i+i) 	13)-1  (11::+ B. U(i+1).A) 	
(5.2) 

0(i) = A. n(i+1). A + Q - G (i). (R+B. n(i+1).B).(1(i) 	(5.3) 

with final condition 11(N) = S 	
(5.4) 

2- Xi 
 is the estimated state vector using the minimal order observer with 

the following algorithm (3) 

Given the linear discrete stochdstic system. 

Xi+1 
= A.X. + B.W. ,X(0) = Xo 	

(5.5) 

Y. - H. X. + vi 
i 

X. 
= "n" dimensional state vecotr at time instant "i" 

where: 

U. = "P" dimensional control vector at time instant "i" 

Y. 
= "m" dimensional measurement vector at time instant 

1 

 1 

	

H. 	measurement matrix of the form (I/O)(Im
/0) and if not it must be 

1 normilized (3). 
X = is a random vecotr with known mean and covariance 

	

o 	__,_,
0 	

— . 
E(X0)= X, E((X0-X0)(X0-X0)) = Mo 

w,,vi are assumed to be random vectors with known means and covariances: 
1 

where : 
6_ is the kronecker delta. 

R.ispositivedefinit",>0) 
 

Q. is positive semidefinite (Qi  > 0 ) 

The various random vectors are assumed to be mutually uncorrelated, that 

is to say: 

E (X0WI) = 0 

E (X011) o 
E(w 	= 0 

for all i 

for all i 

for all i,j 

for all i 
E(wi) = o , E(vi) =0  

.)= Q 	E(v.v. 	R. 6.. for all i,j 
. E(wiw3 	

13 
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and w.,v. are time wise uncorrelated sequances which shall be reffered as 
6 white sequences. To construct the minimal order observer's recursive 

algorithm we proceed as following : 

1 

where: 

Xi+1 
= A .X.+ P. .T. 	.B .0 +V 	(Y 	. A .X ) A. 
	i+1 i+1 i i i+1 i+1 i+1 i i 
A ■ 

0 = 0 

(5.7) 

P -- 
1+1 

 

1 
0 n 

   

     

T
i+1 	

- Ki+1 	
I
n-m 

K
i+1  Q21 (Q11 

+ R1+1 
)
-1 

Q. = A..P .6 s.. P..A.+ A..V..R..V..A. + Q 
iiii 1 iiiiii i 

>n ::---- 

= c2 11 I  Q12 _l"' 
 

21 1 X22 

". = A.M 'A 	Q  0 0 0 0 

-+!6i+1
= T1+1

.T
i+1 

6- Rc3ults, Discussions and Conclusions 

The :iesign objectives are achieved through the computer calculations for 
oecified preknown flight time in the interval tf  = 1 	.1 	5 	sec. 

1- The weighting matrix of the 
in the cost functional 	(3.1) Qc  

states 
is 	: 

during flight trajectories presented 

0.05 	O. 	O. O. O. 

Qc  O. 	1. 	O. O. O. 
O. 	O. 	1. -1. 0.1 
O. 	O. 	-1. 1. 
O. 	O. 	O. O. 

01..i 

The obtained Qc  is not a diagonal one but it has out-of-diagonal elements 
translating our requirement (minimization of the difference between the 
target manuverability and the missile manuverability/(a-at)/). Or gener-

ally speaking minimization of the linear combination of
m 
 states as follow-

ing? we can choose our P.I as a quadratic performance of the form: 
tf 2  

j = f 	q
l
y2 + q

2 
W
z1 

+ q
3 
(a

m
-a

t
)
2 
+ a

4 
jr
2
+ r

1
U
1
2 
 dt 

ci.e. we demand to minimize the difference between missile and targets _J 
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-1 
accelerations. 

2 
(at;a -at

)
2 
 -a

m
-2aa +a

2 
am 
 
at 	at 

 
tf . then J 	(q

l
y2 + q7 2 

W2 
1 + q3 

m2 
a + q

3  at 	 1

2
- 2q,a 	y9 

	

1 
a + c 	+ rU-) dt 

0 

tf 
.1 (X QcX + U Re  U ) dt 

9 
q1 	0 	0 	0 	0 

then Qe= 0ci2 
	

0 	0 	0 
0 0 q

3 
 -q3 0 

0 	0 	-q3 	0 
() 	0 	0

3 
0 	(1/, 

a) 
To properly choose the weighting factor upon y, (q

1 
in the Qc), we can 

consider the output of the missile as a dynamic system in Virly  L--_,  y. So the 
kinematic part of our problem is (y) which is the integration of the missile 
output (T) . The controller is designed by the L-Q technique, takes a feed, 
back from all states (both dynamics and kinematics) through the optimal 
gain matrix calculated. So our controller is in fact, a proportional-integral 
one. In the design of the cost functional of such a controller by the L.Q. 
technique, we have to separte the effect of proprtional part and the intrg-
ral action (9). Such separtion allows the integral part to operate only 
during the steady state period to eliminate the steady state error. This 
decoupling of borl -'- ' 	---, nearly be achieved by choosing the weighting 
factor .„. -pull cuu integral part to be -r).: 	..., 	au upon the propor- 
tional part (9). Doing this, we will be sure that the behavuoir of the 
system during the transiant period will be mainly given by the proportional 
part which have a good acceptable peluormance. While the integral action 
will interfere only at the final time to minimize the final miss-distance 
(y(tf). This is achieved ly;' p. .f ., ;: .-eighting factor on the integral part 
(y) at the final time and fIln the co - t, 'unctional will be :- 

tf  
J = 1/2 f(t

f .S.X (tf' + 1., I X
,
0
c 
 X+ U\ R

c U dt - 	' 
0 

2- S = 50 	0, 	0. 	0. 	0. 
lo. 	0. 	0. 	0. 	0. 

	

[

0. 	0. 	0. 	0. 	0. 
o. 	0. 	0. 	0. 	0. 
o. 	o. 	o. 	o. 	o. 

such a form shows that the integral action interferes at the final time, 
and hence the final time is still in the transiant period an error still 
exist and it is minimized by suitable choise of (S). 

3- R
c 
(0.2 x 105) 

R
e is the weighting factor on the control level. 

So the ratios (Qc/Rc), (S/Rc) are the compromize between acceptable level 
of states and acceptable level of control 

4- Using the minimal order observe:-  for state estimation the calculated 
and estimated states are presented in a group of figurs as following. 

L 	 _J 
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A 

a- Fig (6.1) shows the state "y" and the estimated state "y" with respect 
to time. It is clear that they coincide to each other as the line of sight 
angle " X" is measurable, then y is a measured state. 

b- Fig (6.2) shows the state "wzl"  and the estimated state "wzl" with resp-
ect to time. It is clear that they coincide to each other as wzi is measura- 

ble. 

L 



E 

c- Fig (6.3) shows the state "am  " and the estimated state "[fi -  ai 
respect to time. It is clear that both are very near to each other.  

are rapidly approaching the same value. This is due to the zero vilan 
the state as one state of the plant from point of view of plant disturb 

414 • ate noise. The small error is due to the random initial condition. 
(.rt,,ss , 

so 

n 

- 6o 

j 
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d- Fig (6.4) shown the state "ac y" and the estimatea 'at)," with rE.spacL 
to time. It is clear that the minimal order observer is an asymptotic 
estimator with speed of response dependent on the sampling period. 

e- Fig (6.5) which shows that the sampling period affects the estimation 
error and the speed of response. 

L 
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Fig. (6.5) 

 

f- Fig. (6.6) shows the state "y" and the estimated state "y" with respect 
to time. It is clear that the minimal order observer is an estimator for 
"y" and the error of estimation decreases with increasing the sampling 
period but the cost increases. Fig. (6.7). 

Fig. (6.7) 
Hence;we conclude that minimal order observer is an asymptotic convergent 
estimator. 

L 
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5- SYSTEM PERFORMANCE 

The system performances are measured by the states (y,l'in) with the cortroi 

"q," which are presented in a group of figures as follows: 

a- Fig. (6.8) shows the control "" with respect to time for different 

"tf". 

b- Fig. (6.9) shows the state "y" as a function of time for different "tf" 
It is clear that "y" during Flight gives a line of sight 'I)," which is 

always. 
L 	

_J 
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vissible to the homing seeker. (practically homing sseker maximum capabi-
lity for measurement is about 60° (10)). 

c- Fig. (6.10) shows the normal acceleration "4" as a function of time 
for different "tf". 

d- Fig. (6.11) shows maximum 
control /11.1a / as a function 
of "tf". It is clear that till 
tf= 6 sec, /S,max/ <0.3 rad. 

e- Fig.(6.12) shows the final 
miss-distance/y(tf)/as a funct-
ion of "tf". It is clear that 
till tf-6 sec, /y(tf)/ max<50  ft. 

L _J 
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1 

P1{ (6.13) 

f- 
Fig. (6.13) shows the maximum normal acceleration 4/ max as a function 

of "tf". It is clear that /am/ max<  10 g. 

g- Fig.(6.14) shows the 
performance of the 
system (/Simaxl/Y 
(tf)/max,/4/ max) with 
respect to the sampling 
period at tf=5 sec. and 
and for fixed initial con-
dition (X0),It is clear 
that the sampling period 
("T" -0.05 sec) is a 
suitable value to achieve 
all objectives of the design. 

Yid (6.14) 

(rtiw 
600 



60 

1 

P14 (6.15) 
?teas 

(sec.) 

100 

-100 

74 (6.17) 
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Hence;we conclude that the designed controller with the minimal order 
observer achieves the design objectives till tf= 5 with sampling period 
(T = 0.05 sec). 

6- TARGET MANUVERABILITY IS INCREASED 

The performances of the system when target manuverability is increased are 
presented in a group of figures as follows: 

a- Fig. (6.15) shows the state "aty" 
and the corresponding estimated 
state "A'ty"  .It is clear that 
the minimal order observer is still 
a convergent asymptotic estimator. 

b- Fig. (6.16) shows the normal 
acceleratioq "41" and the 
estimated "al". It is clear 
that they cooncide to each other 
rapidly. 

c- Fig. (6.17) shows the,.,"Y" 
and the estimated state y. 

L _J 
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The target manuverability increases the cost but to the acceptable limited 
when the manuverability is expressed as shown in fig. (6.15). And this 
is clear from the following figurs which shows the performances of the 
system (II) compared with that of the system when target manuverability is 
expressed as in fig.(6.4) (I), for tf=2 sec, T=0.05 sec. 

c x .  
(rot) 

a- Fig. (6.18) shows the 
control (SI'II

) 

P14 (6.18) 

b- Fig.(6.19) shows the 
state of the missdista- 
nce (y1, YII). 

c- Fig (6.20) shows the state 
of the normal acceleration 
(a7MI' 

amII
). 

_J 
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7- CONCLUSION 

(1) The controller for the short range homing guided missile against manu-
vering target is desinged by designing two separate components: 

a- Feedback optimal gain matrix using the minimum discrete principle. 
b- State estimation using the minimal order observer. 

(2) The target manuverability is simulated in two cases: 
a- Normal acceleration is simulated mathematically as exponential 

course with time. 
b- NOrmal acceleration is simulated mathematically as exponential 

pluse random white Gaussian sequence. 
(3) With the designed controller and the two cases of simulation the 
following objectives of the design are achieved: 

a- Bounded control variable/ (...:(0/<0.3 (rad) 
b- Limited missile manuvering capability /am(t)/<10 g. 

c- Minimum terminal miss-distance /y(tf)4(50 (ft). 
with the note that in the second case of target simulation the cost is 
increased more than the first case i.e. increasing the target manuverability 
causes the increase of the cost. Hence;the main conclusion is that the 
controller designed on the base of the linear quadratic Gaussian theory 
(L.Q.G.) with the minimal order observer as state estimator provides a 
theoritical base line yielding an approach which can be applied to the 
design of a near optimal controller for the short range homing guided 
missile against manuvering target. 
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