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ABSTRACT 

In this paper the problem of pole-assignment in linear time invariant multi-
variable systems is generalized to include the case of systems incorporating 
integral control action. In some control system design poroblems, integral 
feedback is introduced in conjunction with proportional one in order to ele-
minate steady-state errors arising from sustained disturbances. 
Most published work deals with the introduction of integral as well as pro-
portional feedback of some or all of the state variables of the system under 
control. This paper establishes a new design procedure of proportional plus-
integral controllers (PI-controllers) based on the feedback of system output 
variables. - 
The controllability of the compensated system is investigated and a necessary 
and sufficient condition for the augmented system to be controllable is deri-
ved. The existance problem of such type of modal-controllers is discussed and 
a necessary condition for complete pole-assignment of the closed-loop system 
is derived. 
A pratical design algroithm of this type of controllers is developed, and it 
is used to design a PI-controller for a VSTOL aircraft. 
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1. INTRODUCTION 

The problem of pole-assignment using integral feedback control in conjunc-
tion with proportional one was investigated by Porter and Power [5] . Porter 
and Crossley [6] have shown that if the feedback control matrix for propor-
tional-plus-integral control is a single dyadic product, then the integral 
of no more than one state variable can be fed back. Park and Seborg [7 ] 
tried to bypass this limitation by feeding q-state variables, providing that 
the integral control matrix has full rank q, and q <m, where m is the dime-
nsion of the control vector. These design procedures ([5 ]- [7] ) were 
based on the application of the system state-feedback. 
In the present paper we introduce a new design procedure of PI-modal contro-
llers using the feedback of system output vector, where deep insight of the 
problem is given, and the existance problem of such type of modal-controll-

ers is discussed in more detail. In sec.2, theoritical formulation of the 
problem is estabilished and the main results of this paper are given in the 
form of a lemma and a proposition. A practical design algorithm is developed 
in sec.3, and it is applied to design a PI-controller for a VSTOL aircraft 
in sec.4. 

2. THEORITICAL ANALYSIY 

2.1. Compensation Problem 

Consider the controllable and observable linear-multivariable system gover-
ned by the following equations 

(t) = A x(t) + B u(t) 

y 	C x(t) 

where x(t) is the nxl state-vector, u(t) is the mxl control-vector, y(t) is 
the 2,x1 output - vector, A,B, and C are constant real matrices of appropri-
ate dimensions, matrices B and C are of full rank m,k respectively. A is 
assumed initially to be non-singular, and k < m. 
Suppose that it is required to eliminate the steady-state errors among the 
system output variables.Hence, the integral of the output vector is to be 
fedback, and the resulting state vector will consist of x(t) augmented by 
the Rx1 vector C(t), where 

5C(t) = - y(t) + ye 	 (2) 

y is the Zxl constant steady-state value of the output vector . Eqn.(2) can 
alternatively be written as 

(3) 

then clearly 

(4a) 

(4.b) 

= -C x(t) + ye  

The state and output equations of the augmented system are 

k(t) A 0 x(t) 

	

(t) 	-C 	0 	C(t) 

[y(t)1 [C 0 LW] 

	

C(t) 	0 I F,(t) 

where It is the identity matrix of dimension ba, 
LIntroducing the following abbreviations: 

B 
	

0 
u(t)+ 	Yc  

0 
	

I
R 
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KW 
x(t) = [] ;(n +k) x 1 state-vector 

(-t)  

Y(t) t(t)] ;2Z x 1 
c(t) output-vector 
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(5.a)  

(5.b)  

(6.a) 

(6.b)  

(6.c)  

(6.d) 

(7.a)  

(7.b)  

and 

A 
 = [

A 0 

C 	0 	;(n+k)x (n+k) plant-matrix 

I 
E =

[ B 	
;(n+k) x m control-matrix 

0 
[ C 	0 

C = 

	

	;2Z x(n+k) output-matrix 
0 It] 

[° 

R = 	; (n+Z) x Z matrix 
] 

Then, eqn.(4) can be written as 

x(t) = A X(t) + B u(t) + R ye  

Y(t) 	= C 3-(( t) 

2.2. Controllability and Compensation 

It was shown that [6] the introduction of the integral control action may 
destroy the controllability of the system. From the mode-controllability 
matrix of the augmented system-egn.(7)-, we can reach the following result 

Lemma 

The system (7) will be controllable if and only if the system (1) is contro-
llable, and 

rank [CA-113] = k 	 (8.a) 

Proof 
The proof is straight forward and it can be found in a similar way to that 
one introduced in [6]. It will be omitted here for brevity. 
It is necessary to notice that the preassumption of matrix A to be non-sing-
ular is not a limitation, since we can initially introduce a constant output 
feedback such that the plant-matrix (A-BKC) will possess n non-zero eigenva-
lues, where K is an mxk constant output feedback matrix. 
Then , the above mentioned lemma can be rewritten as: The system (7) will be 
controllable if and only if the following conditions are satisfied: 

1. the system (1) is controllable; 
2. there exists a matrix K such that thi matrix (A-BKC) is non-singular; 
3. the k -rows of the matrix [C(A-BKC) B] are linearly independent.In 

other words 

rank [C(A-BKC)-1B] =k 	 (8.b) 

L 
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Remark (1) 

If the matrix A is a singular one, we can easily find a matrix K such that 
A = A-BKC is non-singular.In the case that A is non-singular matrix, take 
K = 0, and A = A. In all the following equations and expressions, the 
matrix A will replace the matrix A. 

Remark (2) 

Condition (3) of the lemma - expressed by eqn.(8.b)-can equivalently be 

written as [71 

rank 	
A 	B] 

= n+Z 	 (8.c) 

[C 0 

2.3. Existante Conditibus 

Now, the problem is to design a proportional-plus-integral output-feedback 
controller, having the control law 

	

u(t) = -K
1 
y(t) - K

2 
(t) 
	

(9) 

such that the resultant closed-loop system has a specified set of stable 

poles, where K1  is the proportional output-feedback matrix (of dimension 
mx Z), and K2 is the integral output-feedback matrix ( of dimensions mxZ ). 
The following proposition provides a statement of the additional restrict-

ion which the matrix K2 
must satisfy when a control law of the form (9) is 

applied. 

Proposition 

Having the system (7) to be completely controllable, then a linear feedback 
control_law of the form (9) shifts all the (n+k) eigenvalues of the plant 
matrix A such that they will be arbitrarily close to (n+Z) preassigned 
non-zero value (subject to complex pairing) If the rank of the m x Z matrix 
K2 is equal to Z , where Z< m as it was assumed before. 

Proof 
We shall prove that if rank K2<Z , then the modes (eigenvalues) of the 
closed - loop system matrix are not completely controllable. 
Apply the control-law (9), to the system (7), the composite state-equation 

will be 

x(t) = A x(t) - E [Ki 	21 Y(t) + R yc 
Or 

X(r) = A X(t) - ii [Ki 	K2] Z 40 + R yc 
Now, the closed-loop system matrix will be given by 

A
c 

= A - ii [K1 	K
2] C 

 
Or 

	

A 0 	B 	 [ C 	0 
_ Ac= [ -C 	0 	

1(2] 0 [I( 1 	0 	I
1 

which can be rewritten as 

(10) 

L 
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0 
= Act 
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I 
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A
c 	 

[ A-BK 

- C 

Let rank K, 4, ; Z < k.In this case, the right block matrix Ac, in eqn. 
(12) will have (k - k) linearly dependent columns, which means that the 
matrix Ac  has at least (2 - k) zero-eigenvalues, i.e. there are at least 
( k- 0 poles of the closed - loop system which cannot be altered by appl-
ying feedback. This means that the system is not completely controllable 
which contradicts the initial assumption. Therefore, the matrix K2 must be 
of full rank k . 
This proposition gives a necessary, but not a sufficient condition for 
arbitrary pole-placement using PI-controllers. 

2.4.Form of Controller 

Now, we can rewrite eqn (9)as 

u(t) = -[K1  (13)  K2  ][y(t)] 

(t) 

or 
u(t) = - k 	Y(t) (14)  

where 

= [K K
2
] (15)  

We see from eqn.(14) that the problem of designing a PI-modal controller is 
reduced to find an equivalent proportional output-feedback controller K-
where R is an (mx 22) constant matrix - in order that the (n+k) poles of 
the closed-loop system are arbitrarily close (but not necessarily equal) 
to (n+k) preassigned values. 
As it is known that the complete pole-assignment problem via constant out-
put-feedback still remains unresolved, we have the following alternative 
approaches for constructing the required matrix K. Different cases may 
arise 
(1) For ( m + 2 2-1) ?.(n+k) , complete pole-placement can be achieved, 

using for example the algorithm of [2] or [12] . 
(2) For ( m+2 2-1)‹ (n+0, we can try to use the algorithm of [3] or [8]or 

(3)[
9] • 
Otherwise, we can work over the whole set of (n+k) poles to be approxi-
mately assigned close to a desired set of prescribed locations in the 
complex plane using for example the algortihm of [1] directly, or the 
algorithm of [10] after a little adaptation to the present problem. 

3. DESIGN ALGORITHM 

The theoritical analysis of the problem introduced in the previous section 
leads to the following design algorithm. 
1- The plant matrix A is checked to be non-singular. If A is singular, find 

a mxk constant matrix K of output-feedback such that the matrix A=A7BKC 
is non-singular. If A is non-singular, set K=0 and A=A. Notice that A 
will replace A in all the following steps. 

2- Check the controllability of the augmented system, eqn.(7), by verifying 
the condition (8.b) or the condition (8.c). 

3- Construct the matrices A, E and E according to eqn.(6). 
L4- Find the matrix K, eqn.(14) , as explained in paragraph 2.4. 
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5- The obtained matrix R can be partitioned according to eqn.(15) to get 

the matrices K1 and K2. 
6- Resultant proportional output-feedback matrix Kr  will be 

K
r 
 = K

1 
 + K 	 (16) 

4. PRACTICAL APPLICATION 

We shall consider the problem of pole-assignment of a VSTOL aircraft using 
a PI-modal controller. The dynamics of the uncontrolled aircraft can be 
modelled by an equation of the form (1) 	, where the state vector, 	x(t) 	, 

the input vector, 	u(t), 	the matrices A,B, and C are given as (c.f. 	[6] ) 
-8(t)- 

p(t) 
x(t)= 

[CO] 
; 	u(t)= 	 (17) 

r(t) n(t) ~(t)  

- 0.0506 	0 	-1 	0.238 

A = - 	0.7374 	-1.3345 	0.3696 	0 (18.a) 

- 0.01 	0.1074 	-0.3320 	0 

0 	1 	0 	0 

0.0409 	0 

1.2714 	-20.3106 
B = (18.b) 

-1.0625 	1.335 

o 

C = 

where 

1 	0 	0 	0]  

0 	0 	1 
(18,g) 

8(t) = sideslip angle; 
p(t) = roll rate ; 
r(t) = yaw rate; 
gt) = bank angle; 
ip(t) 	= rudder angle ; 
n(t) = aileron angle. 

The eigenvalues of A are the set [6 

{0.047 + 0.3147 	i 	; 	- 0.4023 	;- 	1.4083} 

It is desired to find a PI-controller such that the six 
closed loop poles of the matrix Ac,eqn.(11) 	, will be located at 

{-0.1063 + 0.3717 	i ;- 0.1416 + 2.2029 i 	;- 0.6587 + 4.9412 1) 

We shall proceed by following the steps of the algorithm described,in sec.3. 

1- It is clear that the matrix A is non-singular, hence K=0 , and A=A. 
2- The augmented systm (7), is completely controllable as 
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A 	13 

	

rank LC 	01 = 6 = n + 
3- We easily construct the matrices A, B and C as given in eqn.(6) . 

4- To find the equivalent matrix K ; eqn.(14) ; we follow-for example-the 

R 
[0.048 	-1.33 	0.163 	0.189 

5- From eqn. (15) we get 

and 

	

[2.35 	-1.47 
K
1 
- 

	

0.048 	-1.33 

(20.4) 

0.0126 2.7302 

  

0.163 	0.189 

We find that the poles of the closed-loop system are exactly assigned. 

5. CONCLUDING REMARKS 

In this paper we have presented the control technique that makes use of 
integral as well as proportional feedback of the output variables of the 
system under control in order to assign the closed-loop system poles.We 
have tried to give deep insight of this modal control problem which has not 
yet beenexplored enough. Two main results appear in this paper 
1. a lemma which establishes the necessary and sufficient conditions for 

a system to remain controllable in the presence of feedback from the 
integral of its output variables; 

2. a propositon giving the necessary condition for complete pole-assignment 
of the augmented system to be achieved using PI-controllers. 

It is worthy to mention that after the development of the material of this 
paper, the author's attention was drawn to two papers which tackle with 
the same problem. The first one is due to seraji [11], which presents a 
multi-stage frequency domain technique to design a PI-controller that assi-
gns (2m 44, -1) poles of the (n+Z) poles of the augmented system. The second 
one is due to Novin-Hirbod [4] , where a similar approach to that of [11j 
has been introduced to find a PI-controller that assigns (21+m-1) poles of 
the composite system. The desired controller is constructed from a sequence 
of dyads and it is carried out in the frequency domain. Here, an equivalent 
proposition to that of Sec.2. appears in the form of a lemma, but with a 
different proof, which-in fact-is similar to the proof given in [7] dealing 
with the case of PI-state feedback. 
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