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NEW CONDITIONS FOR OUTPUT FEEDBACK DECOUPLING

M. B. Argoun*

ABSTRACT

New necessary and sufficient conditions for decoupling of multivariable
systems by constant precompensation and output feedback are derived in
both the frequency and time domains. The conditions, given in terms of
the open loop parameters of the system, are simple and do not require
prior knowledge of a state feedback decoupling compensator. Together
with these conditions a complete characterization of the decoupling
compensators is given.

1. INTRODUCTION

The problem of decoupling a multivariable system by means of constant
precompensatiQn and constant output feedback has been considered by
several authors, both in state space and in the frequency domain. In
state space the problem was first considered by Falb and Wolovich [1] and
by Gilbert [2]. Their approach involved first decoupling the system by
state feedback and then obtaining a correspondence between state and
output feedback. A similar approach was later used by Hazlerigg and
Sinha [3] and by Sinha [4]. A more direct approach was employed by Howze
[5] but his derivation and the resulting expression for the feedback
compensator are rather involved.

In the frequency domain, Wang and Davison [6] presented a decoupling
algorithm which utilizes a direct expression of the transfer function
while Wolovich [7] and Bayoumi and Duffield [8] wused an inverse
formulation of the transfer function matrix. Using the inverse
formulation also, Argoun and Van de Vegte [9] derived necessary and
sufficient conditions for output feedback decoupling in terms of the open
loop parameters of the system.

In this paper a simple solution to the output feedback decoupling problem
in both state space and frequency domains is presented. Using the
inverse formulation, new conditions are derived for output feedback
decoupling in the frequency domain. Those conditions are then used to
derive equivalent conditions in state space for controllable-observable
systems with no integrators. The new conditions are in terms of the open
loop parameters of the system [A,B,C], and do not involve the inversion
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of the system transfer Ffunction. For systems which satisfy the
decoupling conditions a complete characterization of. the decoupling
compensators is also given. Several numerical examples are solved to
i1lustrate the features of the approach.

2. DEFINITIONS AND PROBLEM FORMULATION

Consider the linear multivariable time-invariant dynamic system described
by
x=Ax+Bu ¥ =0Cx (M)

where xeRM, ucRM™, yeR™ and A, B, and C are real constant matrices of

appropriate dimensions. It is required to find the conditions under which
this system can be decoupled by the control law

u=6Gyv+Ky (2)

where G and K are constant mxm matrices and veR™ is some new input.
The closed loop system is given by

x =(A+BKCOx+BGyv ,y¥y=Cx (3)

In the frequency domain, the open loop and closed loop systems are
described by

y(s) = I(s)uls) (4)
and y(s) = T .(s)v(s) (5)
respectively, where

I(s) =C(sL- A8 (6)

T (s) = (L- L)) 'T ()6 (7)

3. THE INVERSE FORMULATION
The inverted closed loop transfer function matrix is given by
-1 L P B
T.7N(s) = 6 [T (s) - K (8)

If I(s) = N(s)/d(s) (9)

where d(s) = det(sl - A), then the inverted transfer function matrix T(s)
can be written as:

1 V(s) = P(s)/a(s) (10)

where P(s) = d(s) adj N(s) and a(s) = det N(s).

Pap Pl

t =
Le B(s) = PsP + By

]s + go (11)

-
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- -1 12
and A(s) = Adg + Ad_]g LTI M g _ (12)
where Py, . - ., Py are constant mxm matrices and Ad, . - -, g are

scalers. The degree p of P(s) is generally higher than the degree d of
a(s) and therefore, the expression for I“](s) is, in general, imgro-
per in the powers of s. Using (10), (11) and (12) the expression (8) can
be written as:

A, 1Ny p-1 ) d
Ic (s) = K-(-ETQ tgps + gp_]s + . .. .+ (gd 5Ad)s
...+ (D - kay)s + (g, ~ K Ao)] (13)

This expression is wused 1in the following section to develop the
decoupling conditions in the frequency domain. .

4. DECOUPLING IN THE FREQUENCY DOMAIN

The following theorem establishes necessary and sufficient conditions for
output feedback decoupling.

Theorem 1
The system given by (1) is decouplable by output feedback compensator

K
and precompensator G if and only if there exists a nonsingular matrix G
such that the following conditions are all satisfied:

6P = =p, . . ., d+1
6P =4 . % =P,
(14)
6P /8, — By 178, 1] = B, L =d, .. ., )
where Ag, & = p, . . 1 are constant diagonal matrices and

Py. B8y, are defined by (11) and (12). In this case the output
feedback compensator K can be obtained from any of the expressions

K=By/8, -6 A Le=d, .., 00 (8)
i
where A is an arbitrary constant diagonal matrix and
6=[6. (16)
Proof
Necessity: For decoupling, IE‘(S) must be diagonal and finite,

i.e., the matrix coefficients of all powers of s in (13) must be
diagonal. The expression IE](S) is diagonal only if there exists a
matrix G such that

G, =4 :

and

o
-~
o
|
|>=
=
e’
i
-

¢ =d, ... ,0 (17)
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where Ag, & =P, . . . , 0 are constant diagonal matrices. From the Jast
expression in (17),
I PP PR _ &) _ = Yp —etay
k= Ad(gd & Ay = -1(Ed—1 G B4qd = - 5, (B - o

which results in the following equation:

~ ) PP _ ol =d, . .. ,1(8)
(Py/dg = Pyy/8y ) =6 (& - A 1) =6 = Gy

2-1 = Ay

which yields the second expression in (14? A precompensator G will exist
only if G is nonsingular since G = [G] This completes the necessity
part of the proof.

sufficiency: If the above conditions are satisfied then G is obtained
from G~!' and K can be obtained from any of the last (d + 1) equations
in (17).

= - =d, ..., 0 (19)

Borty — 8 4, o B
Since the matrices Ay are required only to be diagonal, Ay in
(19) can be taken to be an arbitrary constant diagonal matrix A, hence
expression (15). This completely characterizes the output feedback com-

pensator and completes the proof of the theorem. =

Remarks

1. The decoupling matrix G is related to the decoupling matrix B* [1]
through the relationship G = A B* where A is a constant diagonal ma-
trix. However, G was derived here directly from the decoupling condi-
tions and therefore its meaning is more clear.

2. The coefficients A, .. Ay appearing in (17) determine
the stability and the location of the poles of the closed loop decoupled
system.  The improper coefficients Ay .o Agyy  are

not affected by output feedback. Hence the foT?ow1ng theorem

Theorem ?

A necessary condition for the stability of the closed loop system is tpat
the coefficients Ap, . Ad+1 satisfy Routh-Hurwitz
conditions. @

3. K is determined within a free diagonal matrix A. If K is chosen

such  that K = Pg/Ay, then the corresponding Ay in  Lhe
closed loop system w111 be equal to zero. On the other hand, the coef-
ficients of sd .+ ., s9 in the closed loop system can be arbitrar-

ily changed by appropriately setting A in equation (19).

4. The elements of K can be chosen one row at a time, i.e.,

e - Beks (20)
Ej [Bi]j/°l Gik
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Remarks:

1. Using the output feedback compensator K;i given by (30) yields
integrator decoupled system in the sense that each of the resulting sub-
systems has & pole at s = 0. As seen from (13), with this compensator
the inverted closed Tloop transfer function contains an sIpxm factor,
i.e., T.(s) contains m integrators. This system can be modified using
(25), 1i.e., by adding the feedback. compensator Ky = - G A where 4
is an arbitrary diagonal matrix. A will be chosen based on single
input-single output considerations.

2: The case where all the matrices
[Q Riﬁ] s =01, o < 45 ] (32)

are singular is treated in the following theorem. Denote by [C

Blj = Ly,j the matrix obtained from [C RgB] with the j-th row
deleted. L[et rj be the matrix,
- ;
L
L 7| b2, -
: _th i

Then we have the following result.

Theorem 4

The system given by (1) is decouplable by constant precompensator G
constant output feedback K if and only if

Rank Lj <mforall j s d=1,2, ..., m

IS

In this case, the j-th column g; of the decoupling compensator
obtained such that it lies in the K%r

<

nel space of the above matrix, i.e
g ¢ Ker I (35)

and K = - [C A71B]T -G a

]

where A is an arbitrary diagonal matrix.

Proof:
Considering the set of equations (23) one column at a time, the system is

decoupled if and only if all the elements of the J-th column, but the
J-th element, are zeros, i.e.,

1 .
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(CI B].g. =(00. . 0]T m-1 elements
n =3 % _ a7
(37} 1
— T o L
[C gﬂ_zg]j gj =[00 . . 0]} m-1 elements
[CR,Bljg =[00. .. 01" m-1 elements
This can be written as
(C ln E)j 0
CR B . =T.g. = 0 n(m-1) elements 38
€R-Bj 9= g Q¢ BhemER e
(C R_B) 0
- 3 Ynm-1)xm
There exists a set of vectors 9j. J =1, . . ., mwhich satisfies the %
above equation if and only if
Rank I'j <m (39) i

The columns g3 of the matrix G are obtained such that they satisfy
(38), i.e., théy lie in the Kernel space

9j ¢ Ker T (40)

K is computed as before. ®

6. EXAMPLES

The following examples illustrate the results of this paper.

Example 1. Falb and Wolovich [1] and Sinha [4].

1 1 0 1]
1 0 0O
A=]10 2 0[,B=(-1 1/{,¢C=
0 0 1
0 1 3 0 0
0 1 3
[—0 5 1.5] R
K, = A=|0 2 & ., R,=1
I L-0.5 a.5 2
0 1 3
-5 1 3
a, = - tr ; = -5 R, = -51 + ; =10 -3 ) , é R. =0
2 = =1 n 2 1
0 1 -2
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where [.]j indicates the j-th rew and A3 is an arbitramy scaler.
Aj can be used to alter the response charatteristics of the . -thosub-
system in much the same way as is done 1in single-input sinoie-cutput
system design.

5. DECOUPLING CORDITIONS IN STATE SPACE

Consider *the system given by {1} where A i< nonsingular. In stzte spacc
the closec loop transfer functiion of the system given by (3) 1s

-

T(s) =¢fsl-(A+BKGY € (21)

It is required to find conditions under which Tc(s) is decouplable.
The following theorem gives necessary and sufficient conditions for
decoupling system (1) by constant precompensation and constent output
feedback and characterizes these compencators. First, let Rp-a.

Rp-2. - ©es Ry b@ the cc?ff1c18§L: of FORETS of s 1in the Souriau-
Frame Faddeev expansion of [sI - A7V1, [10], i.e.,
& 3
= c = '—'.':‘f 5
En_] lﬁ ' c-r_*l £ E_ _“‘)
= a3 ; : 2 = '-_H"“‘\ R )
Bio = 8paly v £ 8 4 ¢ B2 (& R, »)
(22)
R =al +AR a ==Ltr(AR)
-0 = - =~ =l o n = =0

Then we have the following theorem:

Theorem (3): The system given by

X=4A+Bu X =Lz
is decouplable by constant precompensation G and constant output feedback
K if and only if there exists a constant matrix G such that

LCR B} G =4, L=n-1, . . ., 1 (23)
where Ap_7, . . ., A are constant diagonal mafrices, Rp-7. . - .. By are
defined by (22) and where

<}

=A-B[ca B

c (24)

1>

If these conditions are satisfied then the decoupling compensators are
given by G and

K=-[cAB) - 64 ; (25)
where A is an arbitrary diagonal matrix. ¥,

L _
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Proof: )
Necessity: The closed loop transfer function of system (3) is
T (s) - ClsL- (A+BKOI'BE (25)
de
Let A=A+BKC (21)
Then Ic(s) js given by:
r(s) = —cps"+cr Bs"Pa. . rCRBsHCE 816 (28)
S a(s) = ~ = =n-2= L2 L Eymi2
_ N n-1
where a(s) = s +a 45 + ... ¥ A+,
and ap_y, ., a, and Rp-2, - - - Ro are given by (22). The

problem in obtaining decoupling conditions from equation (28) fis that the
expressions for Rp-2, - - -» Ro contain the unknown compensator K.
Recalling from theorem (1) that the decoupling output feedback compen-
sator K is given by equation (15), one particularly useful form of (15)
is that which does not include G, i.e., A= 0 and

- = ..., 0 29)
K =P /8, , v =d, (

Moreover, if & = 0, K can be obtained explicitly in terms of the open
loop parameters of the system. Thus, 1f A~ exists

-1 IRPURES P
K= /o, =T (o) = [C(sL- ) Bl o= -[CATE]

This compensator will be called Ky, Ty

Ky = -[C A18)! (30)
substituting (30) in (27) yields the form of A given by (24). The neces-
sary conditions for decoupling the system (A, 8, C] by means of a con-
stant precompensator G are those of (23). This completes the necessary
part of the proof.

Sufficiency: G is obtained by inverting any nonsingular matrix of the
matrices appearing in (23), i.e.,

- -1 & [ N
G = [CRB] A L a=n-1, . . ] (31)

where A is an arbitrary diagonal matrix. If none of these matrices is
nonsingular, G can still be obtained as shown by theorem 4 below. The
general form of K is given by (25) which is directly obtained from (19).
[ ]
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N i _ N
a, = 2 tr A R] =0 50 =0
0 1 -6 -4 0 0
CB= . C Elﬂ = s € Rzﬁ =
0 o0 -1 0 0
0 0] 1
L= 1-1 1 o rank [, o= »L,=|-6 -4, rankr, =2=m
0 0 0 O

i.e., the system cannot be decoupled by constant K and G, which is the
same conclusion reached in the above references.

Example 2.
F<1 0 4 _21 - 1 _lq
0o -2 0 0 0 0 [—1 1 0 OJ
A = 0 B_ . » E =
1 -1 -4 0 2 -1 0 0 2 =1
.."2 2 0 _54 .‘4 2J
4 2 3.1
KI = -(C A 8) =
3 5.1

[0 - 0 0
. 0 =2 0 0
Au
0 0 -1.7778 1.1
L0 0 -4.444  -2.7778.
[-6.5556  6.5556
] .CRB=
2 I 52 -26
[-9.1111 9.1111 "
§.3§= .Q_R_B_‘—'Q_
L 72 -36 4 0
8 -4 y
ry=\|5 -26 » rank ., g
1 1* 4 5
12 -3
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r. =|-6.5556 6.5556 |, rank ', =1, g, =
=2 2 2 +
-9.1111  9.1111 -
1 1
i.e., the system is decouplable by G =
2 1

2 3.1 L S 0
and K = - :
3 5.111 2 110 A,
7. CONCLUSION

In this paper new necessary and sufficient conditions for decoupling by
means of constant precompensation and constant output feedback in both
the frequency domain and state space are presented. In both cases the
conditions are in terms of the open loop parameters of the system and do
not require any knowledge of the state feedback compensator. Moreover,
explicit computation of the decoupliing matrix B* is not required and its
meaning is made clear by relating it to the decoupling precompensator
derived here.

Theorem 3, the main result of this paper, has the advantage of being easy
to check because of the particularly simple form of Ky. In addition,
complete characterization of all possible feedback compensators is given.
The problem of stability of the decoupled system ijs also addressed. The
results of this paper can be extended to the important problem of
approximate decoupling by output feedback which is the subject of current
work .
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where [.]j indicates the Jj-th row and Aj 1is an arbitrary scaler.
Aj can be used to alter the response characteristics of the _-th sub-
system in much the same way as is done in single-input singie-output
system design.

5. DECOUPLING CONDITIONS IN STATE SPACE

Consider the system given by (1) where A is nonsingular. In state space
the closed loop transfer function of the system given by (3) is

T.(s) =ClsL-(A+BKOI 'BG (21)

It is required to find conditions under which T.(s) is decouplable.
The following theorem gives necessary and sufficient conditions for
decoupling system (1) by constant precompensation and constant output

feedback and characterizes these compensators. First, let Rp.1.
Rp-2, . . ..+ Ry be the coefficients of powers of s in the Souriau-
Frame Faddeev expansion of [sI - A~1], [10], i.e.,
A "
Bo-1 = 1y » 3pq = ~tr(A Ry )
. A T A
B2 = 2l v AR, L a5 = Str(A R )
(22)
- A s =1 A
By =83l ARy » B % T FLA R)

Then we have the following theorem:

Theorem (3): The system given by

X=Ax +Bu » ¥ =0Cx

is decouplable by constant precompensation G and corstant output feedback
K if and only if there exists a constant matrix G suwch that
[CR, B]G =4, E=m0-1, . . ., ¥ (23)

where Ay, . . ., A are constant diagonal matrices, Rp-y, . . ., Ry are
defined by (22) and where

A=4a-8lcA'B e (24)

If these conditions are satisfied then the decwpling compensators are
given by G and

817! - 6 a (25)

where A is an arbitrary diagonal matrix.

K=-[CA"

| A |
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Proof:
Necessity: The closed loop transfer function of system (3) 15
&wb=gu—(a+gagfﬁg (25)
Lt A=A+BKC (27)
Then T (s) is given by:
1 -1 n-2
- R 28
T.(s) = greyle Bs  +CR Bt scRBs+CRBIE(28)
n n-1
W =
here a(s) = s + 3, 45 + ... vas +
and ap_y, - - -+ 30 and Rpp, . - R, are given by (22). The
problem in obtaining decoupling conditions from equation (28) js that the
expressions for Rp-2, - ., Ry contain the unknown compensator K.

Recalling from f‘heorem (1{ that the decoupling output feedback compen-
sator K is given by equation (15), one particularly useful form of (15)
is that which does not include G, j.e., A =0 and

K = Ellbl ,v=d, . . - 0 (29)

Moreover, if & = 0, K can be obtained explicitly in terms of the open
loop parameteirs Of the system. Thus, if A”' exists

- e P Conler o e a7 '8!
k=B /8, =1 (o) = [C(sL - &) Blog [C A B]
This compensator will be called Ky, 1.e.4
Ky = ~[C AT'B]7 (30)

Subst:tuting (30) in (27) yields the form of A given by (24). The neces-
sary conditions for decoupling the system [A, B, C] by means of a con-
stant precompensator G are those of (23). This completes the necessary
part of the pronf.

Sufficiency: G 1is obtained by inverting any nonsingular matrix of the
matrices appearing in (23), j.e.,

= = N~ e s =93 3]
G = [CRB]I A 4=, 1 (31)

where A is an arbitrary diagonal matrix. If none of these matrices 1is
nonsingular, G can still be obtained as shown by theorem 4 below. The
general form of K is given by (25) which is directly obtained from (19).
[ ]
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