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ABSTRACT 

New necessary and sufficient conditions for decoupling of multivariable 
systems by constant precompensation and output feedback are derived in 
both the frequency and time domains. The conditions, given in terms of 
the open loop parameters of the system, are simple and do not require 
prior knowledge of a state feedback decoupling compensator. Together 
with these conditions a complete characterization of the decoupling 
compensators is given. 

1. INTRODUCTION 

The problem of decoupling a multivariable system by means of constant 
precompensation and constant output feedback has been considered by 
several authOrs, both in state space and in the frequency domain. In 
state space the problem was first considered by Falb and Wolovich [1] and 
by Gilbert [2]. Their approach involved first decoupling the system by 
state feedback and then obtaining a correspondence between state and 
output feedback. A similar approach was later used by Hazlerigg and 
Sinha [3] and by Sinha [4]. A more direct approach was employed by Howze 
[5] but his derivation and the resulting expression for the feedback 
compensator are rather involved. 

In the frequency domain, Wang and Davison [6] presented a decoupling 
algorithm which utilizes a direct expression of the transfer function 
while Wolovich [7] and Bayoumi and Duffield [8] used an inverse 
formulation of the transfer function matrix. Using the inverse 
formulation also, Argoun and Van de Vegte [9] derived necessary and 
sufficient conditions for output feedback decoupling in terms of the open 
loop parameters of the system. 

In this paper a simple solution to the output feedback decoupling problem 
in both state space and frequency domains is presented. Using the 
inverse formulation, new conditions are derived for output feedback 
decoupling in the frequency domain. Those conditions are then used to 
derive equivalent conditions in state space for controllable-observable 
systems with no integrators. The new conditions are in terms of the open 
loop parameters of the system [A,B,C], and do not involve the inversion 

*Department of Mechanical Engineering, The University of Wisconsin--
Milwaukee. P. O. Box 784, Milwaukee, Wisconsin 53211. This work is 
supported by the National Science Foundation Grant #MEA 83-07310. 

L 



FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 r CAIRO GC-14 1048 

  

r- 

of the system transfer function. For systems which satisfy the 
decoupling conditions a complete characterization of the decoupling 
compensators is also given. Several numerical examples are solved to 

illustrate the features of the approach. 

2. DEFINITIONS AND PROBLEM FORMULATION 

Consider the linear multivariable time-invariant dynamic system described 

by 

X=Ax+Bu 	,y= C x 	 (1) 

where xce, uce, yam and A, B. and C are real constant matrices of 

appropriate dimensions. It is required to find the conditions under which 

this system can be decoupled by the control law 

u =Gv+Ky 	
(2 

where G and K are constant mxm matrices and yam is some new input. 

The closed loop system is given by 

	

= (A +BKC)x +BGv ,y=Cx 	 (3) 

In the frequency domain, the open loop and closed loop systems are 

described by 

y(s) = T(s)u(s) 	 (4) 

and 	y(s) =.4(s)i(s) 	 (5) 

respectively, where 

Ic
(s) = C(sI - A)

-1
B 
	

(6) 

it(s) = (I - T(s)K) 	I (s)G 	 (7) 

3. THE INVERSE FORMULATION 

The inverted closed loop transfer function matrix is given by 

T 
-1
(s) = G

-1
[1
.-1

(s) - K] 	 (8) 

If 	T(s) = N(s)/d(s) 	 (9) 

where d(s) = det(sI - A). then the inverted transfer function matrix T(s) 

can be written as: 

T
-1
(s) = P(s)/A(s) 
	 (10) 

where P(s) = d(s) adj N(s) and a(s) = det N(s). 

Let 	P(s) =P
P
sP  +P

P 
 sP-/  + . . . +P

1
s+ Po 
	

(11) 
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and 	A(s) = A
d
g + A

d-1
g-1 + . . . + A

l
s + A

o 
	(12) 

where p, . . 	p0  are constant mxm matrices and Ad, . . 	
ad  are 

scalers. The degree p of P(s) is generally higher than the degree d of 

A(s) and therefore, the expression for T-1(s) is, in general, impro-

per in the powers of s. Using (10), (11) and (12) the expression (8) can 

be written as: 

1
(s) = 	 --G rP s + P 	s

p-1 
+ . 	

4- (13-d - Ad)sd 
1 	 1 	p 

_t 	A(s)_ 	__i 

(13) +
. • • 4. (21 - IgAl)s 	(2o 	Ao)3  

This expression is used in the following section to develop the 

decoupling conditions in the frequency domain. 

4. DECOUPLING IN THE FREQUENCY DOMAIN 

The following theorem establishes necessary and sufficient conditions for 

output feedback decoupling. 

Theorem 1 

The system given by (1) is decouplable by output feedback compensator K 

and precompensator G if and only if there exists a nonsingular matrix G 

such that the following conditions are all satisfied: 

G P = A 
1 1 

G[P A 	P 	/A 	] = A 
-1 t 	1-1 -t 

where At, = p, . . 1 are constant diagonal matrices 
and 

Pt, At, are defined by (11) and (12). In this case the 
output 

feedback compensator K can be obtained from any of the expressions 

K = Et/AI  - g A 	 , A= d, . . 	0 	(15) 

where A is an arbitrary constant diagonal matrix and 

G = [G]-1. 	 (16) 

Necessity: For decoupling, IE1 (s) must be diagonal and finite. 

diagonal. The expression IE1 (s) is diagonal only if there exists a 

Proof  

i.e., the matrix coefficients of all powers of s in (13) must be 

matrix G such that 

and 	
G [P - KA

L
) = A

t 	
, Q = d, . . . , 0 	(17) 

L 	 _J 
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where Ai, 	= P, . . . , 0 are constant diagonal matrices. From the last 
expression in (17), 

-1 	1  
= ii(Ed  - 	Ad) -

d-1
(Pd_l -  G 	. = —

1
(P - G 'A ) 

Ao 

which results in the following equation: 

(Pi/Ai - Pt-1 /A9.-1 )  = 	(Ai - IL-1 )  = 	Ai' 
	= d, . . . , 1 (18) 

which yields the second expression in (14). A precompensator G will exist 
only if G is nonsingular since G = [G]-I. This completes the necessity 
part of the proof. 

Sufficiency: If the above conditions are satisfied then G is obtained 
from G-I and K can be obtained from any of the last (d + 1) equations 
in (17). 

= 	g Ai 	 = d, . . 	0 	(19) 

Since the matrices Ai are required only to be diagonal, Ai in 
(19) can be taken to be an arbitrary constant diagonal matrix A, hence 

expression (15). This completely characterizes the output feedback com-
pensator and completes the proof of the theorem. ■ 

Remarks  

1. The decoupling matrix G is related to the decoupling matrix B* [1] 
through the relationship G = A 8* where A is a constant diagonal ma-
trix. However, G was derived here directly from the decoupling condi-
tions and therefore its meaning is more clear. 

2. The coefficients A ., no  appearing in (17) determine 

	

—P. 	° 	• 
the stability and the location of the poles of the closed loop decoupled 
system. The improper coefficients Ap, 	. . 	&HA are 

not affected by output feedback. Hence the following theorem: 

Theorem 2  

A necessary condition for the stability of the closed loop system is that 
the 	coefficients 	Ap, 	At+1 	satisfy 	Routh-Hurwitz 
conditions. m 

3. K is determined within a free diagonal matrix A. If K is chosen 
such that K = Pi/ei, then the corresponding Ai in Lhe 
closed loop system will be equal to zero. On the other hand, the coef- 
ficients of sd, . . s° in the closed loop system can be arbitrar-
ily changed by appropriately setting A in equation (19). 

4. The elements of K can be chosen one row at a time, i.e., 

K—J 	J 
= [P ]./A - .x. 

—J J 
(20) 

L 	 _J 
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Remarks: 

1. Using the output feedback compensator KI given by (30) yields 
integrator decoupled system in the sense that each of the resulting scb-

systems has a pole at s = 0. As seen from (13), with this compensat..),' 
the inverted closed loop transfer function contains an sImxm  factor, 
i.e., I(s) contains m integrators. This system can be modified 

(25), i.e., by adding the feedback compensator K1 = - G A where A 
is an arbitrary diagonal matrix. A will be chosen based on singl,e 
input-single output considerations. 

2. The case where all the matrices 

[C RiB] 	, E = n-1 , . . 	1 	(3:2) 

are singular is treated in the following theorem. Denote by [C 
B]1 = Lt  j 	the matrix obtained from 	[C RtB] with the j-th 
deleted. Let rj be the matrix, 

L 	" 
-n-1,j  

r. = 

 

L 
-n -2,j 

   

- Ll 	- 

Then we have the following result. 

Theorem 4 

The system given by (1) is decouplable by constant precompensator 
constant output feedback K if and only if 

Rank fj < m for all j , j = 1, 2, . . 	m 

In this case, the j-th column si of the decoupling compensator 	IS 
obtained such that it lies in the Kernel space of the above matrix, 

ai c Ker rj 

and K = - [C A-1 8]-1  - G A 

where A is an arbitrary diagonal matrix. 

Proof: 

Considering the set of equations (23) one column at a time, the system 

decoupled if and only if all the elements of the j-th column, but 
j-th element, are zeros, i.e., 



= [0 0 	. 	. 	0]
T 

m-1 elements 

- 	[0 0 	. 	. 	0]
T m-1 	elements 

= [0 0 	. 	0]
T m-1 elements 

[C I
n 
 B]. 2 

j j 

[C R 	 ] 2. 
-n-2- j j 

[C R 0 
	J 
B]. 2.

J  - 

(37) 
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This can be written as 

(C I B) 
-n j 

(C 	R 	B). 

(C Rn-2- 
B). 	2. 	= r. 2 	= 	0 - 	j 

0 
n(m-1)xm 

n(m-1) elements 	(38) 
j - 1, . . . m 

There exists a set of vectors 
above equation if and only if 

2j , j 1, 	m which satisfies the 

Rank rj < m 	 (39) 

The columns gj of the matrix G are obtained such that they satisfy 
(38), i.e., they lie in the Kernel space 

gj c Ker Ei 	 (40) 

K is computed as before. ■ 

6. EXAMPLES 

The following examples illustrate the results of this paper. 

Example 1. Falb 

0 

0 

3 

1.5 

4.5 

, 	B 

A= 

and Wolovich 

1 	1 

-1 	1 

0 	0 

[0 	1 

0 	2 

0 	1 

[1] 	and 

C 

6 

3_ 

	

Sinha 	[4]. 

= 
{ 	0 	0 

0 	0 

2 = 

A = 

1 	1 

0 	2 

0 	1 

[-0.5 

-0.5 

	

-5 	1 

a
2 

= - tr A = -5 	B1 	-5 I 
n

+ A = 	0 	-3 

0 	1 

, AR., = 0 

L 
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where [.]j indicates the j-th row and xj is an arbit.r. 	scaler. 
Xj  can be used to alter the response characteristics of the 	sub- 
system in much the sam wad.' as is done in single-input sin?le-output 
system design. 

5. DECOUFLING PC`d0TTIORS IN STATE SPACE 

Consider +b  system give h‘.! (1). yhere A is nonsingular. 	In state spac 

the closet loop transfer runction of the system given by (3) is 

/ 
IT(S) = C[SI - (A + B K C)]

- 
 'E G 	 (21)  _ _  

It is required to find conditions Ender which Ic(s) is decouplable. 
The following theorem gives necessary and sufficient conditions fc::$ 
decoupling system (1) by constant r-ecompensation any constant oir:pui 
feedback and characterizes these comper::atars. First, let Rn_i, 

. . 	^ a be the coefficier,ts of 	i5 the Souriau- 
Frame Fadcieev expansion of 	- A-1 ], [13], i•e., 

a 
R 	I = -n-1 in 

R 	= a ,I + A P -n-2 	n-l-n 	- -n-i 

' 2r-1 = 	 41 R;/-1 )  

 

 

  

(22) 

f2n = alin 4- 6 gl a0  = 2 	P  tr(A 	) 
- 

 

Then we have the following theorem: 

Theorem (3): The syste give: by  

= Ax + E 

is decouplable by constant precompensation S and constant output feedback 

K if and only if there exists a constant matrix G such that 

lC 	gl g = AL, 	 S. = r-I, . 	1 (23) 

where An_i. . . 	A are constant matrices, 	. 	Ri are 
defined by (22) and where 

A = A - B[C A-1 B]-1 C 	 (24) 

If these conditions are satisfied then the decoupling compensators are 
given by G and 

K = -[C A-18]-1  - G A 	 (25) 

where A is an arbitrary diagonal matrix. 

L 
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Proof: 
Necessity: The closed loop transfer function of system (3) is 

;5) 

It(s) = C[sI - (A + B K C)] 
1 8 G 	

(  

(27) 

Let 	A =A+BKC  

Then Ic(s) is given by: 

I (s) = 
A(s)

[CBs
n-1 

+CR -2 Bs
n-2 + . . . +CRifis+Cgog]a 	

(28) 

- -n 

where A(s) = s
n 

+ a
n-1

s
n-1 

+ . . . + a1 s + ao 

and a0_1, . . 	a0  and 10_2, . . . go 
 are given by (22). The 

problem in obtaining decoupling conditions from equation (28) is that the 

expressions for 10-2, . . 10 
 contain the unknown compensator K. 

Recalling from theorem (1) that the decoupling output feedback compe(15) 

n- 

sator K is given by equation (15), one particularly useful f 
	of  

is that which does not include G, i.e., A = 0 and 

K = P /A 	
, t = d, 	0 	(29) 

-t t 

Moreover, if t = 0, K can be obtained explicitly in terms of the open 

loop parametei-s of the system. Thus, if A
-I exists 

K = P
0 
 /A

0 	 s = T
-1 (o) = [C(sI - A)

-1
B]

-1
0 
 = -[C A

-1
8]

-1 

This compensator will be called ICI, i.e., 

	

IC/ = -[C A-18]-1 	
(30) 

Substituting (30) in (27) yields the form of A given by (24). The neces-
sary conditions for decoupling the system [A, B, C] by means of a con-
stant precompensator G are those of (23). This completes the necessary 

part of the proof. 

Sufficiency: G is obtained by inverting any nonsingular matrix of the 

matrices appearing in (23), i.e., 

G = [C RIB] -1A 	
, t = n-1, . . 	1 	(31) 

where A is an arbitrary diagonal matrix. 	
If none of these matrices is 

nonsingular, G can still be obtained as shown by theorem 4 below. The 
general form of K is given by (25) which is directly obtained from (19). 

• 



E2 
-6 

0 { 1  1  

-4 

0 

. 	rank E2  = 2 = m 

0 

-1 

0 

0 

1 

0 

, 	rank r 
-1 = 1 . 

1 	-1 

-2 	2 

-(i 
-1 	2 
4) 

3 	5.1111 J 

3.1111 1 

0 -1 	0 	0 

0 -2 0 	0 
A = 

0 	0 	-1.7778 	-1.1111 

0 0 -4.444 -2.7778. 

C a . [-
I 	1] 

	

- 	
. C R 	= 

8 4 	

-6.5556 6.5556 

2 	52 	-26 

K = 

0 -2 
A= 

Example 2  

-1 	0 4 

0 

-4 

0 

-2 

0 

0 

-5- 

1 

0 

2 

4 

-1' 

0 

-1 

2 

-  [ 1  
0 

1 

0 

0 

2 

0 

-1 
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r- 

a1 	2 
= -1  tr A R

1  =0 	k 1)= 0 - 	- 

C t = 

[00 	0 J . c 
R B = 
1-  

L-1 	
1 j  C R B = 	

i 2- E 0 0 

0 0 

1 1 	1-6 	-4 1 

1 

i.e., the system cannot be decoupled by constant K and g, which is the 
same conclusion reached in the above references. 

9.1111 	9.1111] 
C R a 

72 	-36 
C F08 = 0 

	

8 	-4 

	

E
1 = 52 	-26 	

1 

rank 
El'1 
. 

	

72 	-36 	 2 

L. _J 
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-1 	1 	 1 

-6.5556 	6.5556 , rank E2  = 1, a2 4 

-9.1111 	9.1111 	 +I 

i.e., the system is decouplable by G 
2 	1 

7. CONCLUSION 

In this paper new necessary and sufficient conditions for decoupling by 
means of constant precompensation and constant output feedback in both 
the frequency domain and state space are presented. In both cases the 
conditions are in terms of the open loop parameters of the system and do 
not require any knowledge of the state feedback compensator. Moreover, 
explicit computation of the decoupling matrix B* is not required and its 
meaning is made clear by relating it to the decoupling precompensator 

derived here. 

Theorem 3, the main result of this paper, has the advantage of being easy 
to check because of the particularly simple form of Ki. In addition, 
complete characterization of all possible feedback compensators is given. 
The problem of stability of the decoupled system is also addressed. The 
results of this paper can be extended to the important problem of 
approximate decoupling by output feedback which is the subject of current 

work. 
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6 	where [.]j indicates the j-th row and xj is an arbitr,-!,  scaler. 
-- Xj  - can be used to alter the response characteristics of the ,-2h sub-

system in much the same way as is done in single-input sin9ie-output 
system design. 

5. DECOUPLING CONDITIONS IN STATE SPACE 

Consider the system given by (1) where A is nonsingular. In state space 
the closed loop transfer function of the system given by (3) is 

Tr(s) = C[sI - (A + B K C)] 1 8 G 	 (21) 

It is required to find conditions under which It(s) is decouplable. 
The following theorem gives necessary and sufficient conditions for 
decoupling system (1) by constant precompensation and constant output 
feedback and characterizes these compensators. First, let gn_i, 
gn-2. 	o R be the coefficients of powers of s in the Souriau-
Frame Faddeev expansion of [sI - A-1 ], [10], i.e., 

R 	I 
n-1 	n 

= 	 , an 
 _
l  = -tr(A Rn_i) 

1 
Fin-2 = an-lin 	A  Fin-1 	, an-2 = 

	gn_2) 

(22) 

ro
= a1 6_ B1 	 , a o 

	n 
= =1  tr(A R 

0
) 

- - 

Then we have the following theorem: 

Theorem (3): The system given by 

A = Ax + B u 	,y-Cx 

is decouplable by constant precompensation G and constant output feedback 
K if and only if there exists a constant matrix G such that 

[C Et  B] G = At, 	 4 = n-1, . . 	1 (23) 

	

where An_i, . . ., A are constant diagonal matrices, gn_l, . . 	R1 are 
defined by (22) and where 

A = A - B[C A
-1
B]

-1
C 	 (24) 

If these conditions are satisfied then the decoupling compensators are 
given by G and 

K = -(C A
-1
8]

-1 
- G A 
	

(25) 
where A is an arbitrary diagonal matrix. 
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Proof: 
Necessity: The closed loop transfer function of system (3) is 

(25) 

(27) 

It
(s)  = TlY

[C B s111 
+C Rs

n-2 + 
-n-2-

B 	+ C R1 B s + 	
(28) 

where A(s) 	s
n + a

m-1
sn-1 + . . . + a1 s + ao 

?did an_l, 	. 	. 	. , ao  and Rn_2, 	. . . R
o  are given by (22). 

	The 

problem in obtaining decoupling conditions from equation (28ompensator K
) is that the 

expressions for 1241_2, . • 	
Ro  contain the unknown c

. 

Recalling from 'theorem (1) that the decoupling output feedback compen-
sator K is given by equation (15), one particularly useful form of (15) 

is that which does not include G, i.e., A = 0 and 

K = P /A 	
, 	= d, 	. 	0 	(29) 

-1 I 

Moreover, if It - 0, K can be obtained explicitly in terms of the open 

loop parameters of the system. Thus, if A-
I exists 

K = 12.0/A0  = T-1 (0) = [C(s1 - A)
-1 8]-s

1 0 
 = -[C A-1 8]-1  

This compensator will be called ICI, i.e., 
(30) 

KJ = -[C A-1 8]-1   

Subst4
tuOng (30) in (27) yields the form of A given by (24). The neces

-

sary conditions for decoupling the system 
[A, B, C] by means of a con-

stant precompensator G are those of (23). This completes the necessary 

part of the proof. 

Sufficiency: G is obtained by inverting any nonsingular matrix of the 

matrices appearing in (23), i.e., 

G = [C 	 B]-1
AY = n-1, . . 	1 	(31) 

where A is an arbitrary diagonal matrix. If none of these matrices is 
nonsinglar, G a sill be obtained as shown by theorem 4 below. The 

general

u 
 form ofc Kn is

t 
 given by (25) which is directly obtained from (19). 

■ 

T 
t
(s) = C[sI - (A + B K C)] 

1
8G 

Let 	A =A+BKC 

Then T
t 
 (s) is given by: 

- 
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