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4 	ABSTRACT 

The estimation of the orbital states of a satellite is com-
plicated by the fact that a realistic model of satellite 
dynamics is nonlinear and so is the observation model. Among 
the various schemes for nonlinear state estimation, it was 
found in previous work that a combination of invariant imbedd-
ing with stochastic approximation provides accurate estimates. 
The method consists of starting estimation with invariant 
imbedding and switching over to stochastic approximation at a 
suitable linstant of time. 

A eritetion that governs the switching instant was devised. 
It was developed by using the statistical properties of the 
innovations sequence. The "degree of whiteness" of the in-
novations sequence was used as an indicator of the overall 
performance of the estimator. However, when the number of 
observations is small, this switching criterion fails to give 
acceptable results. 

In this paper, a new switching criterion for the dual - mode 
orbit predictor is presented. This criterion is based on a 
modification to the measure of whiteness of the innovations 
sequence. Results of simulation using data supplied by the 
Communications Research Centre of Canada are included and 
demonstrate the effectiveness of the proposed criterion when 
moderate sample sizes are available. 

* Lecturer, Dept. of Electrical Power Engrg., Faculty of 
Engineering, Cairo University, Guiza, Egypt. 
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INTRODUCTION 

In order that corrective action may be taken to maintain a 
satellite in the desired orbit, it is necessary to estimate 
accurately the orbital states of the satellite from ground-
based measurements. The problem is complicated by the fact that a 
realistic model for the orbital dynamics is nonlinear and so is 
the observation model[1,2,6]. 

Several different methods for the recursive estimation, of the 
states of nonlinear systems have been considered for this purpose 
[7,10,15]. Most of these algorithms employ a Taylor series ex-
pansion and use the linearized equations to compute the error 
covariance matrix and the filter gains. Detchmendy and Sridhar 
[9], and Kagiwada and others [11] have derived filtering algor-
ithms similar to the first-order filter for nonlinear estimation 
problems, using the least squares errors criterion and the in-
variant imbedding technique. These algorithms suffer from a 
number of major drawbacks, such as the need for prior knowledge 
of the noise covariance matrices, as well as the covariance 
matrix of the initial estimation error. Also, the major problem 
usually encountered in nonlinear state estimation is that of 
divergence. 

These problems were the primary motivation for the development 
of alternative orbit determination schemes. The use of second-
order filters was examined [3], but again, these second-order 
filters are not easily derived for highly nonlinear systems and 
most of them cannot be adapted for on-line estimation purposes. 

An examination of these methods led to the development of an 
algorithm combining invariant imbedding with stochastic approx-
imation[3] which does not require a priori knowledge of input 
and measurement noise statistics and gives convergence to the 
correct states with much less computation than required for the 
other methods. The invariant imbedding concept is utilized to 
obtain a recursive estimator which does not require the statis- 
tical information, but requires a considerable amount of com-
putation. The switching over to stochastic approximation at a 
suitable instant of time gives further estimates with very 
little computation. The overall algorithm is, therefore, very 
efficient. The only problem is the difficulty in determining 
the instant at which one should switch over to stochastic 
approximation. 

In this paper, a new switching criterion for the dual-mode 
orbit predictor is presented. This criterion is based on a 
modification to the measure of whiteness of the innovations 
sequence. 

ALGORITHM COMBINING INVARIANT IMBEDDING 
AND STOCHASTIC APPROXIMATION 

Consider a dynamic system described by the nonlinear vector 
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differential equation 

x = f(x,t) 
	

(1) 

where x and f are n-dimensional vectors. 

The measurement model is given by the m-dimensional nonlinear 
vector equation 

y(t) = h(x,t) + v(t) 	 (2) 

where y is the observed output vector and v is an m-dimensional 
random observation noise vector. 

The estimation problem is the determination of the optimal 
estimate, in the least square sense, of the state vector x(kT) 
from the observations y(rT) over the period r = 0,1,2,....,k, 
where T is the sampling interval. 

The approximate nonlinear filter, based on the invariant imbedd-
ing concept, is described by the following equations [3,9,11]. 

Filter Algorithm 

x(k+1) = x(k+11k) + K(k+1){y(k+1)-h[x(k+11k),k+1]} 
(3) 

One-Stage Prediction Algorithm 

x(k+11k) = x(kT+T) 
	

(4) 

which is the solution of 

x(t) = f[x(t),t], kT < t < (k+1)T 	(5) 

Filter Gain Algorithm 

K(k+1) = P(k+1) ahT[X(k+11k), k+1] R-1(k+1) 	(6) 
ax(k+11k) 

where K(k) = the invariant imbedding gain matrix at the k'th 
sampling instant. 

P(k) = the error covariance matrix at the k'th sampling 
instant. 

R(k) = the observation noise coveriance matrix at the 
k'th sampling instant. 

and the superscript T indicates transposition. 

Prior Error-Covariance Matrix 

P(k + ilk) = P(kT + T) 

where P(kT) is the solution at kT < t < (k+1) T of 

L 
	P(t) - 	P(t) + P(t) 

• 	af(x,t) 	afT(x,t)  
ax(t) 

x(t) 	ax(t) 

(7)  

(8)  
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a 	 -1 
P (k+1) = [P

-1(k+11k) 	
R-1  (k+1).C(k+1)] 

ax(k+11k) a;((k+11k) 	(9) 

where 

C(k) = y(k)-h[x(k1k-1),k] 	 (1u) 

is called the innovations sequence. 

The invariant imbedding algorithm described above has the 
following advantages: 

(a) No statistical assumptions are required concerning the na-
ture of the input disturbances or observation errors. In 
the absence of any prior information, we may start with 
R(0) = I. 

(b) A sequential estimation scheme is obtained, which makes it 
possible to implement in real time. 

(c) Convergence of the algorithm is theoretically guaranteed. 

The disadvantages of this algorithm are: 

(a) More computation is needed as compared to quasilinear or 
first-order filters. 

(b) When the dimension of the state vector is large, the com-
putation time may become larger than the interval between 
successive observations. 

(c) The initial values x(0) and P(0) affect the rate of con-
vergence. 

These disadvantages are partly overcome by using the stochastic 
approximation algorithm,where the filtering equation is the 
same as Eq. (3), but the gain matrix is given by (Scharf and 
Alspach, 1972), 

_J 

Error Covariance Algorithm 

K(k+1)=K(k)+ 
a 	x(k1k-1) T

T 
 (k) (11) 

b+k 1
I x(k\k-1)c(k) 11 

2 

where a and b are constants to be determined experimentally. 

The stochastic approximation algorithm has the following advant-
ages: 

(a) Only a small amount of data needs processing. 
(b) Only simple computations are required. These are the com-

putation of the innovations sequence and simple vector 
multiplications. 

(c) A priori knowledge of the process statistics is not necessary. 
The only requirements are that the regression function 
satisfies certain regularity conditions and that the regres-

sion problem has a unique solution. 

The disadvantages of the stochastic approximation algorithm are: 

(a) The rate of convergence is rather slow. 
(b) The convergence properties depend on the starting values. 

L 
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From the above, it would appear logical to combine the two 
algorithms in such a manner as to retain their relative advant-
ages, while disposing with their basic drawbacks. With this 
point in view, it was proposed [3] to use the invariant imbedd-
ing algorithm initially, until the value of the filter gain 
matrix has reasonably stabilized and then apply stochastic 
approximation to track any changes in the gain matrix which may 
bring further improvement. The results of simulation reported 
by Azim [3] demonstrate the convergence and the efficiency of 
this combined algorithm in comparison with other approaches in 
the use of satellite orbit determination. 

We shall, therefore, focus our attention to the development of 
a suitable criterion for determining when one should change 
over from invariant imbedding to stochastic approximation. 

THE INNOVATIONS SEQUENCE AND ITS USE AS A 
SWITCHING INDICATOR 

The idea of innovations was first introduced by Kailath (1968), 
and since then it has proved a very successful approach to the 
problem of filtering and estimation [5). 

The innovations process can be considered as the new informa-
tion in the observations, and is given by the sequence 

(k) = y(k) - h[;(klk-1),k] 	 (12) 

In the ideal case, this new information is independent of all 
the past information, i.e., 

E[C(k) T
(s)] = a2 I 6(k-s) 0 < s < k 	(13) 

Thus, the "degree of whiteness" of the innovations sequence can 
be used as an indicator of the overall performance of the 
estimator [17]. 

This idea was used earlier by Mehra [13]. Not only did Mehra 
use the whiteness of innovations to check the filter perform-
ance, but he also used the autocorrelation function.of the 
innovations process to adaptively improve the filter gain 
matrix. We shall now add another dimension to the usefulness 
of the innovations process by using it to determine the switch-
ing instant for the proposed dual-mode estimation algorithm. 

The whiteness of the innovations sequence can be tested stat-
istically by number of different methods [4]. Here we consider 
a particular method given by Box and Pierce [4]. In this method 
a quantitative measure of the degree of whiteness is obtained 
by evaluating a certain quantlty, Q', as follows, 

^2 = N E 
k=1 rCi

(k) 	 (14) QI 
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where 	A r(k) = estimated autocorrelation coefficient of the 
1 	A i'th innovations sequence at lag k. 
N = number of observations. 

and p is not larger than say N/4. 

If the i'th innovations sequence is white with a percent con-
fidence, then Q! is approximately distributed as the Chi-
square distribuLon Xo_co (p). This degree of whiteness may 
be used as the criterion for switching over from invariant 
imbedding to stochastic approximation. 

It has been shown by Davies, Triggs and Newbold [8] that, for 
moderate sample sizes, the actual significance level of Q' can 
be considerably lower than those predicted by asymptotic theory 
(so that the chance of rejecting the null hypothesis of whit-
eness is overestimated). However, a simple modification, studi- 
ed in detail by Ljung and Box [14], 

p ^2 
Q. . = N(N+2) 	E 	(N-k) -1 rCi (k) , 	 (15) 

k=1 
appears Zo have a distribution very much closer to the asym-
ptotic X . It would seem preferable, then, to base tests of 
whiteness in this paper on (15) rather than (14). 

RESULTS OF SIMULATION 

The algorithm combining invariant imbedding with stochastic 
approximation was simulated on a CDC 6400 computer for differ-
ent switching instants. The sampling interval was one second, 
and the total period of simulation was 300 seconds. 

Since we have three observable outputs (azimuth, elevation and 
range) the number of innovations sequences is three. Therefore, 
Q1,Q2 and Q3 have been calculated using Eq.(15). A plot of these 
is shown in Fig. 1 as functions of the switching instant. The 
acceptable level of whiteness is given by Qi = 43.8 with 95 per-
cent confidence, as given by tables of Chi-squared distribution. 

Also, as the switching instant occurs later, more iterations of 
invariant imbedding are carried out. This causes the total com-
putation time to increase, as shown in Fig. 2. 

Hence, we must choose the switching instant in such a manner 
that an acceptable level of whiteness of the three innovations 
sequences is obtained without increasing considerably the total 
computation time. 

A study of Figs. 1 and 2 indicates that switching at 70 second3 
is a quite reasonable choice. For this particular case, Fig. 3 
illustrates the estimation error for the position of the sat-
ellite. Figs. 4 to 8 show the mominal trajectories for five of 
the seven states of the unified state model, together with their 
estimated values using the algorithm which combines invariant 

L
imbedding with stochastic approximation. 
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CONCLUSIONS 

It may be pointed out that the switching criterion described 
above can be easily implemented on-line. This is achieved 
simply by selecting an acceptable level of whiteness, 	and 
then proceeding with the invariant imbedding scheme. The three 
Q-criteria are evaluated after each iteration, and as their 
values become lower than the selected level, switching over to 
stochastic approximation can be carried out. 

It is also to be noted that for higher confidence levels on the 
whiteness of the innovations sequence, the number of iterations 
carried out with invariant imbedding will be higher. Consequ-
ently, the total computation time, will also be increased. 

In practical application with synchronous-orbit satellites the 
proposed scheme can be used with great advantage. Although the 
invariant imbedding algorithm may not be usable on-line, after 
switching over to stochastic approximation, the tracking of the 
filter-gain matrix and the estimation of the orbital states can 
be carried-out on-line. Thus, the initial period when the in-
variant-imbedding algorithm is used off-line, may be regarded 
as the "learning" period, which is followed by on-line operation. 

REFERENCES 

1. Altman, S.P., "A unified state model of orbital trajectory 
and attitude dynamices", Celestial Mechanics, Vol. 6, 
425-446 (1972). 

2. Altman, S.P., "Velocity-space maps and transforms of track-
ing observations for orbital trajectory state analysis", 
Celestial Mechanics, Vol. 11, 405-428 (1975). 

3. Azim, S.A., "Nonlinear state estimation with applications 
to communications satellites", Ph.D Thesis, McMaster 
University, Hamilton, Canada (1979). 

4 	Box, G.E.P. and Pierce, D.A., "Distribution of residual 
autocorrelations", J. Amer. Stat. Assoc., Vol. 65, 1509-
1526 (1970). 

5. Carew, B. and Belanger, P.R., "Identification of optimum 
filter steady state gain for system with unknown noise 
covariane", IEEE Trans. Autom. Control, Vol. AC-18, 581-
587 (1973). 

6. Chodas, P. , M. Eng. Thesis; University of Toronto, Toronto, 
Canada (1979). 

7. Cox, H., "On the estimation of state variables and param-
eters for noisy dynamic systems", IEEE Trans. Autom. Con-
trol, Vol. AC-9, 5-12 (1964). 

8. Davies, N., Triggs, C.M. and Newbold, P., "Significance 
L 



1086• GC-17 

FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 r CAIRO 

-1 

levels of the Box-Pierce portmanteau Statistic in finite 
samples", Biometrika, Vol. 64, 517-522 (1977). 

9. Detchmendy, D.M. and Sridhar R., "Sequential estimation of 
states and parameters in noisy nonlinear dynamical systems", 
Trans. ASME, J. Basic Engineering, Vol. 88D, 362-366(1966). 

10. Ho, Y.C. and Lee R.C.K., "A Bayesian approach to problems 
in stochastic estimation and control", IEEE. Trans. Autom. 
Control, Vol. AC-9, 333-339 •(1964). 

11. Kagiwada, H.H., R.E. Kalaba, A. Schumitzky, and R. Sridhar 
"Invariant imbedding and sequential interpolating filters 
for nonlinear processes", Trans. ASME, J. Basic Engineer- 

ing, Vol. 91D, 195-200 (1969). 

12 Kailath, T., "An innovations approach to least squares 
estimation-Part I: Linear filtering in additive white 
noise", IEEE Trans. Autom. Control, Vol. AC-13, 646-655 
(1968). 

13. Mehra, R.K., "On the identification of variances and adap-
tive Kalman filtering", IEEE Trans. Aut. Control, Vol. 
AC-15, 175-184 (1970). 

14. Ljung, G.M. and Box, G.E.P., "On a measure of lack of fit 
in time series models", Biometrika, Vol. 65, 297-303 
(1978). 

15. Mowery, V.O., "Least squares recursive differential correc-
tion in nonlinear problems", IEEE Trans. Autom. Control, 
Vol. AC-9, 399-407 (1965). 

16. Scharf, L.L. and Alspach, D.L., "On stochastic approxima
-

tion and an adaptive Kalman filter", Proc. IEEE Decision 
and Control Conference, 253-257 (1972). 

17. Sinha, N.K. and Ibrahim O.A.H., "The invariant imbedding
-

stochastic approximation algorithm with application to 
communications satellites", 8th IFAC Triennial World 
Congress, Vol. 16, 95-99 (1981). 

L 



Q
  -C

ri
te

r
ia

  •
  70,  

60 

5 

40 

30 

Acceptable Level 

................... • 

20 
00 	50 100 150 200 250 300 

Nominal 
Estimate 

FIRST A.S.A.T. CONFERENCE 

14-16 May 1985 I CAIRO 
GC-17 1087 

  

1 

Switching Instants (in sec) 

Fig. 1 

100 

U 

80 

60 .- 

a 

40 „ 

20 

	

0 L 	 

	

0 	50 	100 150 200 250 300 

Switching Instants (in sec) 

Fig. 2 

1.2 

0.8 

0 
M 

0.4 

c 
0.0 tittt 

g, -0. 4 

-0.8 

-1.2 

Y. 

3.0666 

3.0667 

3.0668 

tj 	‘‘,„1 j.)Idh 

50 100 150 200 250 300 

Time (in sec) 

Fig. 3 

50 100 150 200 250 300 
Time (in sec) 

Fig. 4 

_J 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

