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ABSTRACT 

Reduced order models of multivariable systems obtained by available model 
reduction techniques often fail to preserve the interaction properties of 
the original systems they represent, and therefore lead to unreliable con-
trol systems. A. method is presented which addresses the interaction as-
pects of multivariable system model reduction and provides insight into the 

reasons of failure of previous methods. 

1. INTRODUCTION 

Model reduction is often used to reduce the complexity of linear systems 
and to obtain lower order models which can be used more readily for control 
system analysis and design. The approach has been successfully employed in 
aircraft control, nuclear reactor control and process control application 
among others. However, most of the methods currently available for multi-
variable model reduction are extensions of methods originally developed for 

SISO systems [1,2] and thus do not address the problem of interaction be-
tween the multivariable system components. Some of these methods may even 
produce unstable models when the original system is stable, or visa versa 
[3]. The need therefore exists for an engineering approach to model reduc-
tion which takes into account the particular purpose for which the model is 

intended. 

In this paper we present a new methodology for model reduction which is 
applicable to diagonally dominant systems [4]. The method tries to pre-
serve in the reduced model the interaction properties of the original sys-
tem, as well as the transient and steady state behavior of the diagonal 
elements. The method depends on examination of the root locus plots of the 
multivariable system [5] and elimination of the branches which are insig-
nificant with respect to interaction and stability properties. The can-
celled branches must also be chosen such that their elimination does not 
alter the dominance properties of the closed loop as reflected in the Bode 
plots of the multivariable system. The method is developed for two-by-two 
systems but the insight gained can be extended to systems of larger dimen-
sions, particularly if coupled with the use of CAD package. The details of 

the method are illustrated by a numerical example. 
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2. PROb.EM FORMULATION 

Consider the two-by-two system given by: 

T(s) = [tu(s)]/A(s) 	 (11 

where tij(s) and A(s) are polynomials in s. Let the system be diagon-
ally dominant at least for the high frequency range. The general problem 
of model reductioi, is to find a reduced model Q(s), 

Q(s) = [qii(s)]/A(s) = Q(s)/A(s). 	 (2) 

where qij(s) and A(s) are polynomials in s of lower order than tij(s) 
and A(s), respectively such that the transient and steady state behavior 
of the reduced subsystems qij(s)/A(s) resemble those of their original 
counterparts tii(s)/A(s). To this we add the following important 
requirement. Let the original and reduced model be incorporated in the 
closed loop system depicted by Fig. 1, where F is a variable gain diagonal 
compensator. Then it is additionally required that the transient and 
steady state responses of the reduced closed loop model Qc(s) approximate 

those of the original closed loop system Tc(s) for all values of the gain 
F. 	This includes the requirement that if the original system becomes un- 
stable at some gain F*, then the reduced system becomes unstable at approx-
imately the same gain or another predetermined gain F*. This requirement, 
which appears to-have not received enough attention in the literature, 
seems to be the most important requirement if the reduced model is to be 

used in the analysis and design of control systems. 

T( s ) 

Fig. 1. Closed Loop System 

3. DOMINANCE CHARACTERISTICS AND MOVEMENT OF POLES 

The dominance characteristics of a closed loop system can be examined by 
considering the expression 

T
-1
(s) = F

-1 
T
-1
(s) + I 

where TE1 (s) and T-1 (s) are the inverted transfer functions o 
closed loop and the open loop systems respectively. Equation (3) y;,

.  
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-qc21(s) 	qc11(s) 
	do(s) 

(5)  

where do(s) = det [gii(s)] 

The basic idea of this paper centers on the observation [5] that the reduced 
and original systems will have similar behavior if the diagonal elements in 
Tc(s) and Qc(s) displayed similar characteristics for all values of F, 
and the diagonal dominance of the matrix Tc(s) was preserved. Therefore 
for model reduction we replace tii(s) and A(s) by qii(s) and A(s), 
such that tcii(s) and qcii(s) A have the same dominant roots and steady 
state values. Moreover, both Tc(s) and Qc(s) should be diagonally dom-
inant. The closed loop system is diagonally dominant if 

Itcji(jw)1 > Itcii(j()1 	for 0 < 	< m , i = 1, 2 and j = 1, 2, i#j 	(6) 

The dominance characteristics of the system can be displayed by plotting 
the Bode diagrams of the two equations (6). These diagrams can be easily 
plotted if the roots of the polynomials involved are known. Therefore the 
change in dominance characteristics due to the change in the gains of the 
closed loop can be examined by examining the root locus of the polynomials 

tcll and tc22(s) given in (4) for all the values of fl and f2. The 
root locus and the Bode plots as a means of examining diagonal dominance 
form the basis of the design method presented in [5]. Moreover, in that 
paper the following stability result was shown: 

Theorem: 

The closed loop system given by (4) is stable if Tc(s) is diagonally domi-
nant and its diagonal elements are Hurwitz. • 

These ideas will now be used for model reduction. 

L_ 
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4. APPLICATION TO MODEL REDUCTION 

For the reduced model, in addition to the usual transient and steady state 
requirements of the open loop system, in order to preserve dominance and 
the stability characteristics of the original system, we require the fol- 

lowing: 

1. The relative distance between the Bode plots of the diagonal and off-
diagonal elements must remain unchanged between the original and re- 

duced models. 

2. The root locus of the diagonal elements of the reduced closed loop 
model must retain all of the critical branches of the original closed 

loop system. 

By critical we mean the branches that give rise to unstable or oscillatory 
poles. The two requirements are sometimes difficult to satisfy simultan-
eously if the order of the reduced model is too low. In this case we re- 

quire the following: 

1. The reduced open loop model is high frequency dominant, while the 
closed loop reduced model is dominant over the entire frequency range. 

2. The diagonal elements retain the critical branches of the original sys-

tem. 

3. The steady state requirement is satisfied only for the diagonal ele-

ments. 

In such a case the reduced order closed loop system will maintain the 
critical pole locations of the original system and the diagonal elements 
will maintain the critical zeros and the correct steady state values. The 
off-diagonal elements will assume arbitrary transient and steady state 
behavior but the system will maintain its noninteracting character. The 
behavior of the off-diagonal elements is simply the price paid for order 
reduction and can be justified in light of a satisfactory behavior of the 

diagonal elements in all stages of the design. 

5. THE DESIGN PROCEDURE 

The key to the present method is the root locus behavior of equations 

(4) and (5). While maintaining dominance we would like to find qii(s) 

and A(s) such that 

q cii(s) = qii(s)i(s) + f. do(s) , 	1. 2, j=1, 2, Vj 	(7) 
 

retain the critical branches of tcii(s). The design procedure can thus 

be summarized as follows: 

1. Calculate the polynomial do(s) and plot the root loci of tcii(s). 

2. 
 

Choose the elements of do(s) to be retained in do(s). These 

elements represent the terminal locations (zeros) of the closed loop 
system root loci. Their location should reflect any oscillatory or 

unstable behavior of the closed loop system at high gain. 	_J 
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rill Choose the elements of 
(111(s),  (122(s),  and e(s). Thej 

represent the departing points (poles) of the root loci. They are 
chosen to reflect the open loop characteristics of the original system. 

4. From the equitioa 

g12(s) q21(s) 	 q22(s) - do(s) 
	

8 

find the polynomial 
(1 12(s) (121(s) . Note that this polynomial 

should retain the high frequency dominance characteristics of the 
original system. 

5. 
Distribute the elements of q12(s)q21(s) between q12(s) and 
q21(s) to reflect the off-diagonal subsystems open loop steady state 
and low frequency dominance characteristics. If possible the roots of 

q12(s) and q21(s) should be close to those of t12(s) and 
t21(s) respectively. 

6. Correct for the steady state values of the diagonal element. Multiply 

each column in Q(s) by the same factor to avoid altering the dominance 
properties and the location of the poles of qcii(s). 

7. Verify that the original system and the reduced model closed loop root 
loci match. Plot the Bode plots for the reduced model closed loop 
rows to verify dominance. If acceptable, the transient response and 
steady state behavior of the reduced model should match those of the 
original system for corresponding values of F and F. 

6. NUMERICAL EXAMPLE 

Consider the two-by-two system given by the transfer function 

T(s) = [ 5(s

3
+7.162 5

2
+101.517 s+41.592) 35(s3+10.6 s

2
+35 s+17.4) 

20(s
3
+8 s

2
+24 s+32) 	11.2(s

3
+17.838 s

2
+38.232 5+21.282) 

where e(s) = s4  + 20 s3  + 151 s2  + 500 s + 600 

The roots of the elements of T(s) are: 

t
11 (s): -4.0, -2.0±j2.0 	t

12(s): -15.4533, -0.9809, -1.4040 

t
21 (s): -0.4215, -3.3703±j9.3443 	t

22(s): -0.6, -5.0±j2.0 

and 	e(s): -3.0, -5.0, -6.0±j2.0 

The inverted transfer function of the system is given by 

T
-1

(s) = e(s) adj [tii(s)]/do(s) 

where tii(s) are obtained from (9) and do(s) is given by 
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/e(s) 	(9) 

(10) 

(12)  

(13)  
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E 	
d
o
(s) = det [tij  (s)] = 644 [s

6 
+18.0435 s

5 
+ 133.0435 s 

. 
+447..8261 s

3 
 + 1017.8261 s

2 
+ 1345.2174 s 	528.2609] 	(14) 

with roots: (-6.9079±j3.8932), (-0.7353±j2.4183), -2.1436, -0.6135 

The root locus of the diagonal elements tcli(s) and tc22(s) are given 

in Fig. 2. The diagonal dominance plots at f1 = f2 = 10 are given in 

Fig. 3. The systems is diagonally dominant for all frequencies. 
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E7 A Third Order Model:  

Choosing the model roots: Using equation (13) and the root locus diagram 

in Fig. 2. we find that in do(s) the following roots should be retained: 

-0.7353±j2.4183, -0.6135, -2.1436. In retaining these roots we notice 
that the first two complex roots are important to maintain the oscillatory 
behavior at high gain while the root at -0.6135 contributes to an almost 

fixed mode in tc22(s) and to a slowing mode as f2 increases in 
tcll (s). Discarding these could be detrimental to the reduced model 
behavior. The root at -2.1436 is rather arbitrary and is chosen to main-
tain the general shape of the root locus. The resulting do(s) is given 

by: 

do(s) = s4  + 4.2271 s3  + 11.7585 s2  + 19.5485 s + 8.4019 	(15) 

To obtain the reduced second order diagonal polynomials we notice that in 
c111(s) the roots at (-2±j2) are to be maintained and in q22(s) the 
root at approximately (-0.6) should be maintained. This presents a problem 
since the behavior of the second diagonal element depends critically on the 
roots at (-6±j2) as well as the one at (-0.6). The problem can be 
avoided by replacing the roots at (-6±j2) by roots of i(s) since both 
play the role of poles in the root locus plot. This freedom in choosing 
the roots is a key feature of this approach. The other root of 
chosen at s = -6.0. This yields: 

q
11
(s) = s

2 
+ 4 s + 8 	q

22
(s) = s

2 
+ 6.6 s + 3.6 
	

(16) 

and, 	q
11
(s) q

22
(s) = s

4 
+ 10.6 s

3 
+ 38 s

2 
+ 67.2 s + 28.8 
	

(17) 

The denominator polynomial E(s) is obtained from similar considerations 

as: 

i(s) = (s + 2)(s2  + 10 s + 29) = s3  + 12 s2  + 49 s + 58 	(18) 

Note that the reduced model root loci retain the essential features of the 
original system in both open loop and closed loop configurations. There-
fore, it is expected that if a sufficient degree of dominance is maintained 
in the reduced model the resulting transient response will be similar to 
that of the original system for all gains. The root loci for both a third 
order and a second order models are shown in Figure 4 below. 

From (15) and (17), maintaining high frequency dominance level we get 

(1 12(s) c121(s)  = q11(s) c122(s)  
0.92 x do(s) = 0.08(s4  + 83.8815 s3  

+ 339.7774 s
2 
+ 615.1917 s 263.3781) 
	

(19) 

which has the roots: -1.7854±,j1.5371, -0.5953, -79.7154. Comparing 
these roots with those in (11) we can select the two complex roots for 

(112(s) and the two real for q21(s). This gives 

q
12
(s) = (s

2 
+ 3.5708 s + 5.5503), q

21
(s) = (s

2 
+ 80.3107 s + 47.4546) (20) 

q22(s) is 
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1 

Fig. 4.a Root Locus of Diagonal 	Fig. 4.b Root Locus of Diagonal 

Elements - Third Order System 	Elements - Second Order System 

The reduced model is, therefore 

[s
2 

+ 4 s + 8 	0.5333(s
2 
+ 3.57 s + 5.55) _ 

Q(s) = 	
/e(s) 	(21) 

0.15(s
2 

+ 80.31 s + 41.45) 	s
2 

+ 6.6 s + 3.6 

where i(s) is given by (18). 

The leading coefficients of 
dominance at high frequency. 

Steady State Correction: The next step is to correct for the steady state 
values of the diagonal elements. This is achieved by multiplying the 
first column by 7.7333 and the second column by 16.3446. This does not 

change dominance levels or the location of the roots of do(s). The final 

reduced model is: 

 

7.7333(s
2 

+ 4S + 8) 	8.7166(s
2 + 3.57 s + 5.55) 

1.1(s
2 

+ 80 31 s + 47.45) 16.3446(s
2 
+ 6.6 s + 3.6) 

 

Q(s) 
/e(s) 	(22) 

  

where i(s) = s
3 

+ 12 s
2 

+ 49 s + 58 

Scaling the Gain F: It is important to obtain the same steady state values 
at equivalent gains for the diagonal elements of both the original system 
and reduced model. To examine gain equivalence between the original and 
reduced order models we consider equations (4) and (5) at s = O. The 
steady state values of the diagonal elements of the two models at high gain 

CL.e., neglecting the off-diagonal elements) are: 	
J 

g12(s) and q21(s) are chosen to maintain 
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6 

E 
-1 	

1 A(o) t..(o) 

tcii(o) = f 	 
d
o
(o) 	

+ 1 , i = 1, 2 

-1 	1 E(°)  

T
o
(0) 

where f and f are the diagonal gains for the original and reduced model 
respectively, assuming equal diagonal gains for simplicity. For equal 
steady state values 

(23)  

(24)  

applying (25) to the present system we get f = 2.85 f. Using these values 
in simulating the system response we get almost perfect similarity between 
the original system and reduced model responses for the diagonal elements 
at fl = f2 = 28.5. This is shown in Figure 5. Note that the off-
diagonal responses are slightly different which is considered acceptable as 
long as the system is highly decoupled. 

Fig. 5 Unit Step Responses of Original System and Reduced Models 

b. A Second Order Model:  

In this section we try to find a second order reduced model. Two 
oscillatory roots at -0.8±0.28 are retained in do(s). Using similar 
procedure to that used above we obtain the following second order system 

[ 17.34 s + 10.404 
Q(s) = 

4.7 s + 1.7545 

0.732 s + 7.3666] 
/(s

2 
+ 5 s + 10.25) 

3.66 s + 10.25 
(26) 
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I- 	 :1 The root locus for the reduced model is shown in Fig. 4. Note that In 
selecting the poles for  qc11(s) and qc22(s) the roots of A(s) were 
selected at s = -2.5±j2 to compensate for the absence of the numerator 
roots at -2±j2. These can no longer be used since (111(s)  and  q22(s) 
are now first order. This unique design feature allows us to get satis-
factory response with orders as low as two. The response of the reduced 
model shown in Figure 5 shows satisfactory agreement with the original 
system. 

Conclusion:  

The method presented here for reduction of linear multivariable 
diagonally dominant systems provides a predictably satisfactory response 
for a specified range of design conditions. 	For diagonally dominant sys- 
tems the response of the off diagonal elements can be sacrificed in order 
to obtain accurate response for the diagonal elements for the specified 
closed loop configuration. This is usually acceptable as long as the sys-
tem is reasonably noninteracting. Only constant gain feedback was con-
sidered and it was shown that for all gains the reduced model and the 
original system diagonal elements responses agree to a considerable de-
gree. The method depends on the use of the diagonal elements root loci for 
choosing the appropriate roots to be retained. The design is aided by the 
use of the Bode plots to display and examine dominance. With dominance and 
root loci conditions satisfied, the reduced model response resulting from 
this method is guaranteed to be satisfactory for the full range of constant 
gains including open loop and unstable conditions. 
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