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ABSTRACT 

This paper deals with the problem of quantizatiug (A/Dconverting) binary sig-

nals contaminated by the background gaussian noise. it answers the question 

of determination of the uniform binary quantizer such that the statistics of 

the input signal are uniquely determined by those of its quantized version. 

Moreover, we study the properties of the quantization noise: mean, variance, 

autocorrelation function, power spectrum and its crosscorrelation with the 

input signal. Computer simulatioL results are given and analyzed. 
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INTRODUCTION 

The never-preceded advance in digital integrated circuits (VLSI and VHST.-:) 

has its impact on the digital signal processing technique and the 

increasing tendency towards digital implementation of systems. This is 

favoured especially in AVIONICS where high reliability and integra 

of systems is an ever-forcing requirement against the hard enviror'.. 

where, sometimes, no human correcting action against failure or dr 
	

is 

feasible. To be able to profit of advantages of digital processi 

abilities, the signals should be A/D converted and it is the obje 

of this paper to study this problem in binary regeneration system: 

earing in communication, radar, data links, electronic warfare ai, 

tion and/or even when a digital storage or replica of the signal 	req- 

uired (for instance for non-real time processing). 

Systems dealing with the regeneration of random binary signals bu, , ed 

in a background gaussian noise generally involve a statistical tre:: -

ment which induces the structure of the system functional blocks 

bit detectors, lock indicators, acquisition aids... etc) commonly 

on a matched filtering (or correlation) operation. In such syster 

informations to be reconstructed are some of the statistics of thE 	dl 

(generally up t.o the second order statistics as the input signal ar r .se 

are second order processes) rather than the signal wave-form itsert. 	is 

suggests that whenever the signal is to be transformed in the rege:, 

the statistical aspects of signal should remain recognizable. This.: 

especially difficult when nonlinear transformations are involved. 

Being a memoryless nonlinearity, the quantizer can be studied, at 

theory, using the characteristic function (or the transform) methoc 

the time domain generalized Fourier series expansion method[133 . 1-Ale 

the complity of these methods and the necessity of numerical dete—inat.-  

ion of the required statistical quantities, this approach is not rc. 

Instead, short-cut answers based of the statistical quantization t' 

will be offered. These answers, even they are not complete, are 	. 

ful. Whenever these answers are not sufficient, computer simulat, 

opted and briefly outlined. 

In section II, consideration of the problem in lights of the quantization 

theory for the infinite quantizer case is given. This is folowed, in sec-

Ltion III, by the determination of alimited-number of levels quant 
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derived under stated constraints. In section IV, computer simulation of the 

obtained quantizer is given and results are analyzed. This is followed by 

the main conclusions. 

II. CONSIDERATIONS IN LIGHTS OF THE QUANTIZATION THEORY 

(INFINITE QUANTIZER CASE). 

Let us consider Fig.l. showing schematically the situation in concern. A 

transmitted binary signal S(t) is received after being contaminated by 

the noise n(t) added by the transmission channel to form the signal Z(t) 

which is then transformed into the quantized version ZQ(t) by a symmetric 

uniform step size (Q) memoryless quantizer with a finite (2N+1) number of 

levels. Formally Z(t) = S(t) + n(t) 	 (1.a) 

The binary signal S(t) is a random binary stream of anticorrelated equip- 
1 

robable statistically independent symbols occuring at the rate F = 	(T 

is the symbol duration) and of amplitude A and symbol energy A
2
T. The 

noise n(t) is a zero mean stationary gaussian noise with constant spectral 
2 

density No inside a given band (0, EC), hence its variance G.  is N F . No c 

The signal S(t) and the noise n(t) are second order processes. As shown 

in Fig. 1, the quantized signal ZQ(t) is modelled as :ZQ(t) = Z(t) + n On 

ZQ(t) = Z(t) +nQ  (t) 
	 (1.b) 

Before analyzing the situation at hand, let us recall that the quantization 

theorem [1-4] may be stated as : 

"The moments (if exist) EEZI are completely determined by EEZIand the 

quantization noise is uniformly distributed over (-' 2 2.) if the chara- 

cteristic  function is horizon-limited. A similar statement is valid for 

the joint moments if the joint characteristic function is horizon-limited. 

In this latter case, the quantization noise samples are uniformly distrib-

uted and statistically independent". For other details see [141 

The noise-free case:n(t) = 0 

Z(t) = S(t) 4 p(S) = 	E(S-A) + ti(S+A] 	(2) 

where 5(.) is the delta-Dirac function 

Then 0 (A) = cos(AA) j 0(.) being the characteristic function 

This function is not horizon limited but really a wide-ranging one. 

L 
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Thus S(t) does not satisfy the quantization theorem. Neverthlcss, S(t) can 

be handled without distortion with the quantizer shown in Fig. 1 as far as 

its amplitude is larger than the value of the first two symmetrical transi

tions , i.e. 

A ? Q/2 

In such conditions, the quantizer functions as an amplifier with nsriabi es  

gain and the quantization noise is merely a replica of S(t) whose amplitude 

ranges from 0 to 2-4E, E7po, and thus is completely correlated with the 

signal. 

Hence, one can consider that nt2  is zero without loss of generality. Con-

cluding, the condition (3) must be imposed even in the presence of noise 

otherwise the quantizer suppresses the signal. Narrowband filtered signal 

will be discussed later on. 

The noisy signal case 

Z(t.) 	S(11) + n(t) 

12 
exp(- n

2
/2.Ci ) 

Hence 	(A). exp (- 	N2/2) 

 

a 
exp (- 	N/2) (4.a) 

Similarly: 
4r2 

.) *F: 1\  l' X2) exPt 	(It 2  3("lk A22111 

 

where y (,art is the correlation coefficient of the gaussian noise. 

It is thaE Lear that. Z(t) has a characteristic function that is always 

less thaf, -haL of the noise process n(t). 

Thus, inequalities (4) lead to an interesting result : one may consider 

only the gaussian noise component when one adresses the problem of satis-

faction of the conditions of the quantization theorem by noisy signals 

like 2(t). This facilitates the task as the gaussian noise is known to 
witA 

satisfy,vgood approximations, the conditions of the quantization theorem 

1 1-43 as far as Q.$ Gr . Consequently, the process Z(t) satisfies the 

quantization theorem with good approximations and the condition: 

L_ 
	.Q 	Cr 

with 
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will be retained for quantizing Z(t), Hence, the following results predict-

ed by the above-mentioned theorem are valid for Z(t) 

EEZ I = FEZ) 

E  [
2
) = E [Z

2
1 + Q

2
/12 ZQ  

= A
2 

+ Q
2
/12 4- 16.  

R (L) 	r # 0 z 
Rz (C) = 
Q 

 

El 2
2
3 + Q

2
/12 	r = 0 

DETERMINATION OF A LIMITED M-BIT QUANTIZER 

In practice, we dispose quantizers with finite, and generally small, number 

of output levels. With such quantizers, a clipping effect is observed for 

too large input signal amplitudes. The conditions will now be given under 

which this practical quantizer approximates conveniently the theoretical 

quantizer considered before. It will be verified by simulation that these 

conditions satisfy this approximation. 

3.1. Imposed constraints (criteria) 

Let A
m 
be the upper limit in the positive dynamic range of the quantizer. 

The relation of A
m 
to the signal and noise standard deviation is known as 

the loading rule. We search such a loading rule for an M-bit quantizer 

under the following constraints : 

1) The probability of clipping is less than 1%. This should reduce the 

contribution of the clipping noise to a level such that all happens 

as if a theoretical quantizer were used. 

2) The quantization step Q is related to the noise standard deviation 

by : 

Q 

as claimed for by the quantization theorem (condition (5)). 

3) No signal suppression : A ,?;, Q/2 	(condition,(3)). 

4) Conservation of the input signal-to-noise ratio with maximum loss of 

0.5 dB in the range of (E/N) from 0 dB up to 15 dB. 
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3.2. Parameters of the quantizer 

As the signal plus noise process is not gaussian but tends to be for low 

signal-to-noise ratio (SNR), we examine firstly the low SI,:G c) the ("jussian 

case and subsequently the signal plus noise case. 

The low SNR (Nea11 Gaussian) Case 

i- Constraint (1) implies that Am 	2.6 6` 	rt 

ii- Constraint (2) implies, with Am  - 2.6G, that: (Since Q = IA
t/(2 -1)) 

6.2 	2M 	or 	M ?? 2.63 	i.e. 	M 1.:?,,„ 	3 

since only integer values for M are considered 

The question is : what is the optimum (in the mean square error sense) 
At 

number of quantizing bits M of such a loading -- - 2,6?. Max 5j and Gray 

and ZeoliE63 have given answers to the inverse problem fixing the ndmber 

of levels what is the optimum loading factor corresponding to a minimum 

variance (mean square error) of the total noise contributed by the quantiza- 

tion noise and t-he clipping noise. 

From' 6, table I we reprod 	the following table to guide the choice of 

4 5 6 
M 3 
A
m 
f- 

1.9 + 0.19 2.5 + 0.25 2.9 + 0.29 3.26 
. 

+ 0.326 

This table indicates that with the clipping probability fixed above 
	e 

4 bit quantizer offers the optimum choice for low SNR conditions 

The signal plus noise case 

Passing now to the signal plus noise case, we propose to :amine the 

question : is the 4 bit quantizer still convenient?. The answer will be _ 

given throlm,n surveying the preceding constraints: 

i- Constraint (1) is respected if Am  is chosen such that : Am 
= A+2.6 

ii- With A = A + 	66-  , the 4- bit quantizer step size Q if:, given by : 
m 

 

_2(A+ 2.66) 	A 	+ 5.2 G. 	 (6) 
15 	7.5 	15 

L 



A
2 

Hence : (SNR)
out

- 
2 

G-2+ 12 

(SNR). 
in 

1+(Q
2
/4;

2
)/12 

1 
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A  

G.° 	
A --- 	4.9 	or 	

(C)dB 	
13.8 dB 

-% 
(7) 

iii- For no signal suppression and satisfaction of relation (6) one obtains: 

A 

	

0.186 	or (g
) iB 	-14.6dB 

Combining (7) and (8) one obtains : 

- 14.6 	(GA—.) dB 13.8 

iv- In the SNR range fixed by (9), one guarantes 

P 	ti 	1 % c 

Consequently, as shown by the simulation results presented later on: 

E j Z
2
1 = A

2 + G-2 
+ Q

2
/12 

(8)  

(9)  

i.e for the worst case Q = EF 

(SNR) out = (SNR)
in  

- 0.35 	dB 

Which satisfies the constraint (4) as shown in1:141for the noisy Manch-

ester coded data signal filtered by Butterworth filters with order Lir 
and cut-off frequency Fc F. (F,lOF). 

The question is now : Is it interesting to increase the number of bit, 

i.e. M = 5 or even higher? 

If the same procedure is repeated for M = 5 and P4k 1% one can show that c   
the 	) range is enlarged while the gain in (SNR) 	over the required 

out 
range o(0-15) dB is trivial (40.2 dB) relative to the case where M = 4 bit. 

This gain is evidently obtained by reducing the quantization step for M=5. 

This trivial gain does not justify the increased complexity of the circuits 

succeeding the quantizer when M is increased to 5 bit. Therefore the 4 bitj 
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quantizer will be adopted. 

IV. COMPUTER SIMULATION AND ANALYSIS OF RESULTS 

The proposed 4-bit uniform quantizer loaded according to the linear rule is 

simulated on the Desktop computer HP-9845. The simulation scheme is given 

in Fig. 2. The binary Manchester signal is generated from a NRZ-L signal 

by modulation while the white noise sequence is generated using the Box- 

Muller Algorithm [101 	Then the noisy signal is filtered by Butterworth 

filters of various orders L and the filtered signal is then sampled to 

generate Z(iT
s
) upon which the quantizer logic is applied to generate 

Z„,(iT
s
). The quantization noise is obtained as n„,(iTs

)= Z(iT ) 	Z (iT 
s 

sequences n„,
C-2(iTs

) and Z(iT
s
) were processed using a Fast Fourier Trans-

form Algorithm (FFT) to generate the quantization noise ACF: Rn
(iT

s
) 

(Hamming window is used) and the crosscorrelation function RZnQ 
(iT

s
). 

Two examples of results are given in Fig. 3 and 4 for (E/No) = 0 and for 

F= 32 F and F =fF and 	F respectively using a 4-pole LP Butterworth filt- 
s 	c 

er. The use ovf this high sampling rate was intended to examine the influence 

of high input correlation on the properties of quantizer output. 

From then figures it can be seen that the quantization noise is practically 

"white" and practically uncorrelated with the input signal as the value for 

the autocorrelation and crosscorrelation coefficients are less that 5% (for 

i 	0 in the figures concerning the autocorrelation coefficient). This con- 

firms that the chosen clipping probability is low enough to ensure that the 

practical quantizer behaves as the theoretical one. It is believed that a 

longer record length than the 1024 sample values would give better results 

in the sense of decreasing the correlation coefficient coefficient values. 

It must be underlined that an input samples autocorrelation coefficient 

(1:= T ) given by : 

2 
G-2 3 (r) =S (r). 	 +Tn (r) 	 

2 	2 	2 	2 
Gs +6 + G 

of 96 % was used (Fig. 3). Therefore we may give as a rule of thumb : 

The quantization noise is pseudowhite as far as the input samples are not 

almost completely correlated (values of correlation coefficient of about 

0,96 are tolerable). This value (0.96) is clearly compatible with the 0.9 

ifor gaussian input and Q = 4" given in Ell and 0.9999 for M = 7 given int84 

(10) 
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In conclusion, we can write 

RZQ (C)  = Rz(t) + Rv2(1c) + 2Rzn,2(1c) 

(r) + RnQ(1C) 

and 

R
nQ
(17) 	R

nQ
(0) 6-  (r) 

Thl,s is for nd joint moment relations of the quantization theorem__ As to 

the first moment relations, the density function of the quantization noise 

is verified by hestograms to be uniform. But for the total output noise in 

the considered model , it should be kept in mind that, even if the quantiza-

tion noise is practically dominated by the additive noise, one can infer no,_ 

thing concerning the probability density of the output additive noise of the 

quantizer. For sure, this noise is not gaussian as the quantizer performs a 

nonlinear operation on its input , Hence, the output densities should be cal-

culated, if necessary, using the standard method of random variable transfor-

mations (see for example [1-71 , or the same reasoning leading to the quant- 

ization theory (see Ell ). 

contrast to the famous "4 Gr- loading rule derived from voice 

studies. The proposed linear rule is thought to allow a good 

performance and good tolerance to noisy environment. 
Am 

by the fact that the "4 6 	Er
- loading" (—= 4) implies 

signal value cr the quantizer step size should be Q 
2
M-1 

that for a filtered noiseless signal (with Fc 
F) only a fraction of the 

quantizer range will be used as Er= A/ rig. 
A 

Then A
m 

= 4 — and consequently A = 0.43 A
m 
(for nonfiltered signal A = 

3 Pointing out that the amplitude distribution 

nearly uniform (}between 	1 -A 
is best adapted to this situation, one sees that the "46" loading utilizes 

only 43% of the quantizer range and therefore is not convenient. On the 

contrary , the proposed linear design rule leads, in this same situation, 

to a full utilization of the quantizer range, thus ensuring a good noise 

free performance as a lower quantization noise is produced. 

As a final point, it is interesting to put the used linear loading rule in 

quantization 

noise-free 

d f This is claime or 

that for a given RMS 
8CZ • This means 

0.5 A
m
). 

signal is 
) and that the uniform quantizer 

of this filtered 

L_ 
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V. CONCLUSIONS 

It has been shown that a 4 bit uniform step size quantizer loaded according 

to the proposed linear rule presents a good compromise between the implemen-

tation complexity (growing with the increase in the number of bits) and the 

accuracy with the increase in the number of bits) and the accuracy with which 

the statistics of the signal is recovered from the quantized version. This 

has been performed using the quantization theorem which does not apply to 

the noise free binary biphase-L signal whereas it has been shown that it 

applies, with good approximations, when a gaussian noise is added to the 

signal. 

A computer simulation for the specified quantizer shows that the quantiza-

tion noise is practically pseuiowhite and noncorrelated with the nonquant-

ized signal as far as the input samples autocorrelation coefficient is of 

he order of 96%. 
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In conclusion, we can write 

Rzc2(r) = Rz( t) + RnQ( t) + 2RznQ(Z) 

Rz  ( t,) + Rni2(C,) 

and 

R
nQ
(10 R

nQ
(0) zr (r) 

This is for 2114-joint moment relations of the quantization theorem._ As to 

the first moment relations, the density function of the quantization noise 

is verified by hestograms to be uniform. But for the total output noise in 

the considered model , it should be kept in mind that, even if the quantiza-

tion noise is practically dominated by the additive noise, one can infer no, 

thing concerning the probability density of the output additive noise of the 

quantizer. For sure, this noise is not gaussian as the quantizer performs a 

nonlinear operation on its input. Hence, the output densities should be cal-

culated, if necessary, using the standard method of random variable transfor-

mations (see for example [1_,] , or the same reasoning leading to the quant- 

ization theory (see Ell ). 

As a final point, it is interesting to put the used linear loading rule in 

contrast to the famous "4 Gr.. loading rule derived from voice quantization 

studies. The proposed linear rule is thought to allow a good noise-free 

performance and good tolerance to noisy environment. This is claimed for 
Am 

by the fact that the "4 G.- loading" (--= 4) implies that for a given RMS 
sqz 

signal value a the quantizer step size should be Q - 	This means 

2
M-1 

that for a filtered noiseless signal (with Fc  ~ F) only a fraction of the 

quantizer range will be used as c = A/ r . 
A 

Then A
m 
= 4 — and consequently A = 0.43 Am 

(for nonfiltered signal A = 

0.5 A). Pointing out that the amplitude distribution of this filtered 
m 

 

signal is nearly uniform Lbetween .j-A 	-A ) and that the uniform quantizer 

is best adapted to this situation, one sees that the -46- loading utilizes 

only 43% of the quantizer range and therefore is not convenient. On the 

contrary , the proposed linear design rule leads, in this same situation, 

to a full utilization of the quantizer range, thus ensuring a good noise 

free performance as a lower quantization noise is produced. 

L _J 
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V. CONCLUSIONS 

It has been shown that a 4 bit uniform step size quantizer loaded according 

to the proposed linear rule presents a good compromise between the implemen-

tation complexity (growing with the increase in the number of bits) and the 

accuracy with the increase in the number of bits) and the accuracy with which 

the statistics of the signal is recovered from the quantized version. This 

has been performed using the quantization theorem which does not apply to 

the noise free binary biphase-L signal whereas it has been shown that it 

applies, with good approximations, when a gaussian noise is added to the 

signal. 

A computer simulation for the specified quantizer shows that the quantiza-

tion noise is practically pseudowhite and noncorrelated with the nonquant-

ized signal as far as the input samples autocorrelation coefficient is of 

he order of 96%. 

REFERENCES 

1 KORN G.A. Random Process Simulation And Measurements" McGraw-Hill, 

1966, Chap. 6. 

2 WATTS, D.G. "A General Theory of Amplitude Quantization with application 

to Correlation Determination" Proc. IEEE, Vol. 109 C, pp. 209-218, 1962. 

3 ROSS_D.T."Sampling and Quantizing" in "Notes on Analog-Digital Conversion 

Techniques" M.I.T. Press 1957. Edited by A.K. Susskind. 

4 SPIRAD A.B. and DRYDER D.L. "A Necessary and Sufficient Condition for 

Quantization Noise to be Uniform and White " IEEE Trans. Acoust Speech, 

Signal Processing, Vol. ASSP-25 pp 442-448, Oct. 1977. 

5 Max. J. "Quantization for minimum Distortion" IEEE Trans. Inform Theory, 

Vol. IT-6, pp 7-12, March 1960. 

6 GRAY G.A. and ZEOLI G.W. "Quantization and Saturation noise due to Analog-

to-digital Conversion" IEEE Trans. Aerosp. Electron. Syst. Vol. AES-7, 

pp 222-223, January 1971. 

7 GALLAGHER N.C. and BUCKIEW J.A. "Some Recent Developments in Quantiza-

tion Theory" IEEE 12
th Annual Southeastern Symposium an System Theory, 

pp. 295-301, Virginia Beach 19-20 May 1980. 

8 BENNET, W.R. "Spectra of Quantized Signals" B.S.T.J, Vol. 27, No 3, pp. 

446-472, July 1948. 

9 CATERMOLE K.W. "Principles of Pulse Code Modulation", Iliffe Books, 1969 
L Chap. 3. 



-FIRST A.S.A.T. Conference 

-14-16 May 1985, CAIRO COM-3 1247 

10 TAKOWITZ S.J. "Computational Probability and Simulation, Alison-Wesley, 

pp. 53-59, 1977. 

11 PAPOULIS A. "Probability, Random Variables and RandomProcesses" 

McGraw-Hill, pp. 118-138, 1965. 

12 THOMAS, J.B. "Introduction to statistical Communication Theory" 1969 

(Chap. 6) 

13 BLACHMAN, N. 

IEEE Trans. 

14 MATAR, M.A. 

ENSAE, Toulouse, FRANCE, 1981. 

M "The uncorrelated output Components of a Nonlinearity" 

Information Theory, Vol. IT-14, pp. 250-255, March 1968. 

"Etude et Realisation d'un Synchronisateur Detecteur Num- 

erique pour Signaux Biphase - L" (App.3) These Docteur- Ingenieur, 

          

    

2 
+/Jai- 

a= 2 

    

        

        

          

          

-A, 

     

/I/  

	1/  
The quantizer 

Q 
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