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ABSTRACT  

This paper addresses the problem of Micro-Grid (MG) Energy Management Control (EMC) 

including Electric Vehicle (EV) scheduling with considering a reduction in the overall 

operating cost of MG in a residential grid. The main motivation for this study is the impact of 

the daily load profile combined with electric vehicles (EVs) on the grid. Unless the EV 

integration with load is monitored and controlled, the MG may experience an unexpectedly 

high or low load. So, EMS is a trend in recent years for optimal planning of MG. On the other 

hand, the available energy stored in the energy storage Battery can be utilized to free the 

distribution system from some of the congested load at certain times or to allow the grid to 

charge more EVs at any time of the day, including peak hours. This work was implemented by 

using four metaheuristic algorithms (Particle Swarm Optimization (PSO), Gravitational Search 

Algorithm (GSA), Hybrid population-based algorithm (PSOGSA), and Capuchin Search 

Algorithm (CapSA) for optimal operation with minimum total daily cost without and with EVs 

included in MG by two different daily profile of EV. The MG used in this paper consisted of a 

diesel generator (DG), Battery storage device, photovoltaic (PV) system, and Wind turbine unit 

(WT). For a more dispatchable practical MG, Emissions from DG and deterioration of storage 

devices in addition to the cost of charging the EVs have been taken into account. The results 

demonstrate that CapSA is a suitable method for generating robust models for EMS. This means 

that the proposed CapSA approach can be applied in a wide range of complex nonlinear 

systems.  

KEYWORDS: Electric Vehicles, Renewable energy sources, Microgrid, Capuchin search 

algorithm, Emission, Degradation. 

صغيرة تحتوي على أحمال مركبات كهربية في منطقة سكنية التحكم في إدارة الطاقة لشبكة    
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 ملخصال
وكمية شححححلم المرك ا   يعتمد تأثير المركبات الكهربائية على الشبببببكة على شببببكا الحما اليومي  ل ي ما لت يتت التحكت  ي تو يت

ا  ير معوقمن مم ياحية أ ر  ، نمكم اسحححعخداق اللاقة المعاحة المخ ية ف    الكهربائية ، فقد تواجه حملاً مرتفعًا أو منخفضحححً

ظاق العوزنم مم بعض الأحمال الم دحمة ف  أوقا  معينة أو للسححمال للكحح كة بكححلم الم ند بلارنة تخ نم اللاقة لعلرنر ي
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تعنحاول ه   الورقة مكححححكلحة العلكم ف   دارة  . مم المرك حا  الكهربائيحة ف  أو وقم مم اليوق ، بمحا ف   لا سححححارا  ال روة

اة  فض تكلفة العكحح يا امجمالية لكحح كة سححكنية اللاقة بالكحح كة الصحح يرة بما ف   لا جدولة المرك ا  الكهربائية مم مرار

صحح يرةن تم أ   الاي عاتا  مم مولدا  الدن ل وتدهور أجه ة العخ نم بامفححافة  لل تكلفة شححلم المرك ا  الكهربائية ف   

  الارع ارن تم تنفي  ه ا العما باسحححعخداق أربعة  وارزميا   ستلسحححيم سحححرت الخسحححيما ، و وارزمية ال لة رم الخا بية،

و وارزمية هخينة قائمة رلل الخوارزميعيم السحححابقعيم ، و وارزمية قرود الكابوشححح غ للعكححح يا الأمكا ب قا تكلفة نومية  

 جمالية بدون ومم تضحميم المرك ا  الكهربية ك حمال ف  الكح كة بواسحلة ملفيم مخعلفيم نوميًا لحححححح شحكا أحمال المرك ا   

 .الكهربية
 تكلفة تدهور اجهزة التخزين , تكلفة الانبعاثات, المركبات الكهربية, خوارزمية قرود الكابوشين,  ةشبكة سكنيالكلمات المفتاحية : 

1. INTRODUCTION 

Microgrid comprise low voltage distribution systems with energy storage devices (ESD), 
flexible loads and accommodate considerable amounts of distributed generation, such as PV 
and wind generation [1-3]. In recent years, there is a growing trend towards the use and adoption 
of EVs due to depleting fossil fuels and rising environmental concerns. The adoption of EVs as 
alternative means of transport requires development of charging infrastructure [4,5].  
The development of MG’s may help in creating efficient EV charging infrastructure without 
adversely affecting grid operation. An MG is an electricity distribution system comprising 
controllable loads and diverse distributed energy resources (DERs) which can be operated in a 
coordinated and controlled way [6]. An MG can either operate in parallel with a grid or work 
autonomouslyن 
It can offer several benefits such as increasing reliability, flexibility, sustainability, and 
improvement of line losses [7]. However, electricity demand pattern will undergo significant 
changes due to variability associated with EVs charging patternن 
Such systems can be operated in islanded mode or connected to the main grid [8]. system 
performance, if managed and coordinated efficiently. The integration of many units of PV in 
networks can cause situations in which, in same periods, the available generation is higher than 
the demand. In such situations, the MG Operator (MGO) is able to manage the network [3] and 
its resources and sell electricity as scheduled by the resources management algorithm [9,10]. 
EMC problem with different uncertainty explained by Optimization algorithms like Simulated 
Annealing [11], Particle Swarm Optimization (PSO) [12], Crow Search Algorithm (CSA) [13], 
and Genetic Algorithm (GA) [14]. Artificial Bee Colony suggested [15] to address the day-
ahead ERM in MG by taking into account uncertainties related to Renewable Generation (RG), 
EVs trip, market price and load demand. The Firefly Algorithm (FA) proposed in [16], for the 
Economical scheduling with optimized battery sizing. In [17] optimal scheduling is done by 
Imperialist Competitive Algorithm (ICA) in MG environment with uncertainty related to RG 
and load demandن 
Finally, the main contribution of this paper can be summarized as follows: 
• A new optimization algorithm called “Capuchin Search Algorithm (CapSA)” have been 

presented for minimizing the electricity costs for a MG. 
• The robustness of the proposed CapSA optimization algorithm has been confirmed by 

comparing it with three other powerful algorithms “PSO, GSA, Hybrid PSOGSA”.  
• The optimal charging schemes for EV have been selected in order to achieve the lowest 

possible cost depending on the electricity price structure. 
• Unlike other works, this paper presents a case study with the aim to minimize operating cost 

by considering 3-scenarios without and with EVs included in MG by two different daily 
profile of EV.  

This paper is constructed as follows: Section 2 describes the problem formulation. In Section 3 
the proposed algorithm is presented, and the simulation results are presented in Section 4. 
Finally, Section 5 summarizes the concluding remarks. 
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2. PROBLEM FORMULATION 

The optimal resources management methodology proposed in this paper considers that it is 
possible to buy and sell electricity to energy suppliers. The solution aims to minimize the 
operation cost of the MG while satisfying various constraints [18]. 
The total cost of the MG contains the bids of EV charging, DG, PV, ESD, and WT. So, the 
objective function could be formulated as[19]: 

min{f1(xt), f2(xt),… , fk(xt)}   (1) 

g(xt) = 0 & h(xt) ≤ 0   (2) 
Where:f𝑘(xt) is the vector of k optimized objectives, t is the different dispatch period, g(xt) 
and h(xt) are the equality and the inequality constraints, respectively, and xt can be presented 
as: 

xt = {Px,t, Putis,t, Putim,t, PE𝑉,t, Pbt,t
ch , Pbt,t

dis, Pload,t}   (3) 
Where:Px,t  = (Pwt, PpvPmt)  are the active power of WT, PV and DG output in the MG, 
respectively, Putis,t is the drawing active power Purchased from main grid, Putim,tis the surplus 
energy of the MG selling to the main grid, PE𝑉,t is the charging power of EV, Pbt,t

ch  and Pbt,t
disare 

the charge and discharge power of ESD and Pload,t is the load demand. 

2.1. Objective Function 

The energy management system adjusts the output power setpoints of DGs to meet the load 
demand; the operating cost, the emission cost of pollutants and the degradation cost of ESD are 
minimized simultaneously while satisfying constraints [19]. The mathematical model of 
objective functions can be formulated as follows: 

A. Operation cost function 
During the operation of the MG, the total energy and operating cost is equal to the sum of the 
electricity bought from the grid and the generation cost of all units; the ESD cost subtracts the 
profit of selling excess energy to the main grid. Therefore, the operation cost function can be 
formulated by [19]: 

f1(xt) = ∑ [CutiPuti,t + Fmt + Cpv∑ (Ppv,t
n )

Npv

n=1 + Cwt∑ Pwt,t
nNwt

n=1 ]H
t=1       (4) 

Where: H, is total time taken, Npv , Nwt , are the generator numbers of PV and WT 
respectively,Cpv, Cwtare the unit generation cost of PV and WT respectively ($/Wh), Cuti, is 
the purchasing electricity price of the main grid ($/Wh), and the Fmt is total operating cost of 
the diesel generator microturbine (MT) ($) which can be expressed as: 

∑ Fmt
H
t=1 = ∑ [Cmt∑ Pmt,t

nNmt
n=1 + Koc∑ Pmt,t

nNmt
n=1 + SCmt,t]

H
t=1     (5) 

Where:Cmt, is the fuel cost of the MT unit ($/Wh), Koc, is operations and maintenance cost, 
Pmt,t
n , is the output power of the MT(W), and  SCmt,t  representing startup cost of the MT unit 

($), it can be calculated as: 

∑ SCmt,t
H
t=1 = ∑ [(σmt + δmt(1 − e

−
τoff,mt
τmt )), (1 − u(t−1),mt)]

H
t=1     (6) 

Where:σmt andδmt,are hot startup time and cold startup time of MT,τoff,mt and τmt, are the 
time that MT is turned off, and cooling time of MT, and u(t−1),mt, is MT status at step t − 1. 

B. Emission cost function 
The emission cost function includes the most pollutant gases: CO2, SO2 and NOx. The 
objective function of emission cost can be as [20]: 

f2(xt) = ∑ [∑ Cemis,kmk(xt)
3
k=1 ]H

t=1 = ∑ [∑ Cemisuk∑ (Pmt,t
n + Puti,t)

N
n=1

3
k=1 ]H

t=1      (7) 
Where:k = (1, 2, 3) represent three pollutant gases: CO2, SO2 and NOx, &mk(xt), is the mass 
of the emission pollutant gask&Cemis,k, is the cost coefficient of the pollutant gas k,&uk, is the 
emission per unit wh in g/wh. 
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C. Degradation cost function 
The third objective function (the ESD degradation cost) can be formulated as a linear function 
of the charged and discharged energy in addition to the bids of EV charging [21-22]: 

f3(xt) = ∑ [∑ Cbt(Pbt,t
ch + Pbt,t

dis) + CEV∑ (PE𝑉,t
n )

NE𝑉
n=1

NB
B=1 ]H

t=1  (8) 
Where: NB  represent the ESD numbers, Cbt  is the cost coefficient of the charging and 
discharging. The solution of Equation 1 finds the best optimal dispatch plan for MG running. 

2.2. Constraints 

The objective function is subjected to following constraints [20]: 
Pmt
min ≤ Pmt,t ≤ Pmt

max     (9) 

0 ≤ Pwt,t ≤ Pwt
max      (10) 

0 ≤ Ppv,t ≤ Ppv
max      (11) 

{
0 ≤ |Pbt

ch| ≤ |Pbt
ch,max|

0 ≤ Pbt
dis ≤ Pbt

dis,max
}     (12) 

SOCmin ≤ SOCt ≤ SOCmax     (13) 

Where: Pbt
ch,max

,Pbt
dis,max

are the maximum power used to charge or offered to MG by the battery, 
and SOCma𝑥 = 100%, SOCmi𝑛 = 50%are the maximum and minimum state of charge of the 
battery. 

Puti,t =Pload,t + PE𝑉,t − [Pmt,t + Pwt,t + Ppv,t + Pbt,t]   (14) 

3. MATHEMATICLE MODEL OF OPTIMIZATION TECHNIQUES 

Introduce for the first time in the energy management a devised approach called Capuchin 
Search Algorithm to augment search quality and shun an early convergence to a local minimum. 
CapSA is a recent meta-heuristic search algorithm inspired from the practices of capuchin 
monkeys during foraging activity in real life. Essentially, the facts of capuchins during foraging, 
was proposed by Braik [23], they use three ways in navigating around while searching for food 
sources: jumping, swinging and climbing. These behaviors of movements underlie the core 
assumptions of CapSA. 
The population of capuchins in the CapSA, is divided into two main groups: (the leader) 
“Alpha” and “followers”. The leader “Alpha” is responsible for finding food sources for 
capuchins’ followers which update their positions by following the leaders in the group. While 
searching for food sources as presented in [23], the leaders in CapSA use the subsequent 
strategies: a. jumping on trees, b. jumping over riverbanks, c. swinging on trees, d. climbing on 
trees, and e. moving naturally and randomly on the ground. These strategies of motion are 
performed by the leaders continuously until they get a food source of (i.e., the desirable 
solution). To summarize, Braik et al. has developed CapSA as shown below:  
The velocity of the ith capuchin in the jth dimension in CapSA was defined as: 

vj
i =ρvj

i + τa1(Xbestj
i − xj

i)r1 + τa2(Fj − xj
i)r2   (15) 

Where vj
irepresents the current velocity of the ith capuchin in the jthdimension, xj

irepresents 
the current position of the ith alpha capuchin in the jthdimension,Xbestj

i  identifies the position 
with the best fitness found so far for the ithcapuchin in the ith dimension, Fjis the best position 
of the food found so far in theithdimension,a1 and a2are two acceleration constants that control 
the effects of Xbestj

i and Fjon the velocity, r1 and r2 are uniformly distributed random numbers 
independently created in the range from 0 to 1 and ρ is the inertia weight that controls the effect 
of the previous velocity on the current velocity and is defined as: 

ρ = wu − (wu −wl) ∗ (k/K)
2      (16) 
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where wl and wu are the min and max coefficient values of the inertia weight, respectively. 
The optimization process is executed through an iterative loop practice, where the new positions 
of capuchins are appraised and updated. These procedures are repeated at each iteration loop 
until convergence, The search for the convergence is stopped when the criterion is satisfied. 
The CapSA could be briefly described by the pseudo code given in Algorithm 1 [23]. As CapSA 
has underlined its reliability and convergence behavior in adopting many tests benchmark 
functions [23]. Therefore, we concluded that the CapSA is appropriate alternative method to 
minimize the total cost of the MG. 
 

Algorithm 1: A pseudo code describing the key steps of CapSA. 

1. r1, r2, and ε are random numbers within [0, 1]. 

2. Randomly initialize the positions x of the n capuchins. 

3. Evaluate the fitness of each capuchin’s position 

4. Initialize the velocity of the capuchins 

5. Initialize the parameters: number of iterations (K), number of capuchins (n), dimension of the 

problem (m), elasticity probability (Pef), balance probability of capuchins’ tails (Pbf), acceleration 

due to gravity (g), upper bound dimension (uj ), lower bound dimension (lj ). 

6. While (termination condition is not satisfied “k < K”) do 

7.    Update τ . 

8.   For k=1 to n (leaders and followers) do 

9.      if (k < n/2) (n/2= the leader and the accompanying capuchins) then 

10.           Update the velocity of the leaders. 

11.            if (ε ≥ 0.1 AND ε ≤ 0.15) then 

12.                 Update the position of the leaders that leap on the trees.   

13.            else if (ε > 0.15 AND ε ≤ 0.2) then 

14.              Update the position of the leaders that over riverbanks.   

15.            else if (ε > 0.2 AND ε ≤ 0.75) then 

16.                 Update the position of the leaders that walk on the ground. 

17.            else if (ε > 0.75 AND ε ≤ 0.9) then 

18.                 Update the position of the leaders that swing on tree. 

19.            else if (ε > 0.9 AND ε ≤ 1.0) then 

20.                 Update the position of the leaders that climb on trees. 

21.            else 

22.                 Update the position of the leaders that relocate randomly. 

23.            end if 

24.      else if (k > n/2 and k ≤ n) then 

25.            Update the position of the follower. 

26.      end if 

27.   end for 

28.  Evaluate the new fitness value of each capuchin 

29.  Evaluate and update the positions of the capuchins 

30.  Update the global best solutions of the capuchins 

31. k = k + 1 

32. end while 

 

4. RESULTS and DISCUSSION 

The MG structure as shown in Fig. 1 consisting of the PV unit, WT, MT, ESD, EV unit, 
Residential loads, and conversion devices, which can operate in grid-connected or island 
modes. The operators use smart grid which including PV, WT, ESD, MT, EV, and conventional 
power sources to meet demand loads. The excess energy from the MG is stored in ESD system 
for future use or sell it to the utility [19].  
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Fig. 1. Diagram of the microgrid system under study. 

The load demand diagram is the same of that in [24], but its size is multiplied by 300 WH, as 

shown in Fig. 2. Table 1. Shows the emission coefficients of different pollutants [25] and the 

limitation boundaries of the system have been mentioned in Table 2. The negative sign in the 

minimum power of the battery refers to the minimum discharge power. 

 

Fig. 2: Microgrid load power profile. 

Table 1: Emission coefficient for micro-turbine 

Type Emission Factors for DEG (kg/kWh) 

NOx 0.00052 
SO2 3.63*10^-6 
CO2 0.5025 

 

Table 2: Data of DG units in the microgrid system. 

Unit Max. Power (kW) Min. Power (kW) 

Wind turbine 100 0 
Photovoltaic cell 100 0 

Battery 60 -48 
Diesel generator (MT) 60 12 

 

 

The energy management process has been done by using PSO, GSA,PSOGSA and CapSA 

optimization techniques that discussed in Section 3. Suitable parameters for CapSA 
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optimization algorithm are given in Table 3. All the simulations are implemented in 

MatlabR2020a. 

Figure. 3 presents the EVs trip demand in kWh. Maximum iteration number for any algorithm 

is set to 400. The results are average over 30 runs and the best results are indicated. Figure. 4 

shows the output power of the PV and Wind power as a percentage of its maximum output 

power and it is exactly the same for all case studies. 

Table 3: Parameter settings of the capuchin search algorithm 

Parameter Value 

Population size 50 
Number of iterations 400 (max) 

a1, a2 1.10, 1.25 
wl ,wu 0.1, 0.9 

Ppf 0.7 
Pef 19 

 

 

Fig. 3: The EVs trip demand (kWh) Fig. 4: The output power of the PV unit and Wind 

turbine 

Scope of work: 

The aim of the case study is to minimize operating cost in three scenarios: Scenario A is 

simulated without considering EVs, scenario B considers the random charging periods of the 

EVs, scenario C considers that the EVs charging by the same KWH of scenario B but during 

different periods. 

i. Scenario A: Without EVs 

Scenario A was simulated without considering EVs. The comparative convergence of the total 

cost (best solutions) of four different algorithms is shown in Fig. 5. It is shown clearly that all 

algorithms converged smoothly to the optimum value in the optimization process but the 

proposed CapSA optimization outperforms the PSO, GSA and PSOGSA methods as a whole; 

it has the advantage of reducing cost. 

The hourly cost of all algorithms was mentioned in Table 4. And  it can be seen that the best 

total Cost of scenario A was 124.8 $. Figure. 6 presents the resource energy scheduling without 
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EV’s (scenario A) for the 24 periods under study using CapSA. As shown in Fig. 6, Some 

portion of the energy has been sold to the grid according to the resulting scheduling. The total 

selling energy to the Grid scheduled by the algorithm was 539 kWh.  

Table 4: The Best hourly cost of all algorithms in three scenarios 

 

   

Fig. 5: Comparison between the convergence 

characteristics of the algorithms in scenario A. 

Fig. 6: Best solutions obtained EM problem using 

CapSA in scenario A. 

H
o

u
rs 

cost/ hour ($/h) 

Scenario A Scenario B Scenario C 

PSO GSA PSOGSA CapSA PSO GSA PSOGSA CapSA PSO GSA PSOGSA CapSA 

1 4.77 3.09 2.58 1.39 3.22 2.03 0.55 1.49 3.94 0.10 0.17 -0.09 

2 -0.06 -2.68 -3.67 2.34 1.42 4.61 0.24 -3.38 1.24 1.72 -1.37 -3.03 

3 1.46 8.60 -0.55 -0.88 1.51 7.79 0.43 2.78 2.31 10.64 -2.71 -3.02 

4 1.56 2.25 0.67 0.36 1.17 -2.68 1.29 0.84 1.97 7.69 2.12 0.86 

5 4.60 -0.47 0.66 -1.36 5.14 -2.73 -3.08 -2.39 1.72 -3.02 3.17 -2.18 

6 2.88 4.17 -0.04 1.50 4.56 7.46 7.27 0.80 2.29 7.61 1.98 -1.58 

7 1.62 -0.83 0.49 -2.33 1.67 -5.36 -1.80 0.22 1.15 -2.86 -1.54 0.57 

8 5.10 4.51 -0.08 7.05 5.07 8.14 1.72 1.01 6.41 1.26 -0.73 3.35 

9 3.25 9.46 10.03 0.33 3.94 7.14 3.78 8.48 9.48 4.33 9.81 4.39 

10 6.86 6.44 -1.61 4.89 8.14 9.21 4.75 1.53 6.39 2.09 1.64 6.72 

11 -1.63 -3.92 0.01 -2.64 -1.35 -2.35 -0.44 -0.64 0.97 -1.82 -3.21 -4.40 

12 -0.19 2.65 0.63 -3.12 2.71 2.33 -0.83 -0.38 1.48 7.69 -1.44 3.75 

13 20.95 18.70 16.15 17.18 30.98 34.00 26.15 30.48 25.93 16.09 22.71 15.71 

14 12.49 20.30 21.06 8.86 16.68 13.62 14.38 13.22 16.84 12.26 13.05 14.03 

15 5.29 4.49 2.12 6.82 8.56 7.75 3.32 3.55 4.16 9.91 2.70 1.66 

16 4.47 0.61 0.02 -0.23 1.16 -0.68 -1.51 0.89 9.54 9.54 8.16 11.55 

17 4.54 3.28 7.17 2.22 5.47 -2.88 3.21 0.88 5.31 8.66 1.87 1.51 

18 7.86 6.33 6.55 5.84 10.73 14.02 10.22 8.29 10.36 9.50 9.09 7.63 

19 8.99 13.59 6.75 6.75 9.64 10.88 9.06 6.31 9.37 5.90 4.51 8.22 

20 22.88 21.92 19.80 19.99 24.51 27.34 25.02 19.87 25.57 30.04 23.41 24.64 

21 16.48 11.95 12.20 13.09 23.64 18.90 14.15 19.06 20.44 15.52 16.43 16.25 

22 21.92 22.62 14.33 16.91 16.86 20.22 15.43 11.19 16.98 12.19 16.40 13.53 

23 6.85 3.51 12.47 12.06 9.04 9.05 11.35 11.34 9.36 14.79 5.56 7.97 

24 4.54 3.18 8.22 7.77 5.47 0.45 1.71 2.21 5.69 2.63 6.62 3.77 

Total 
Cost/Day 

167.49 163.77 135.96 124.8 199.93 188.27 146.37 137.67 198.90 182.48 138.39 131.82 
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ii. Scenario B: With EVs 

This scenario considers the random charging periods of the EVs. The power production 

scheduling in this Scenario, is quite similar to scenario A with EV charging during any time of 

the day [22] as shown in Fig. 3. and Fig. 7 show that the comparative convergence of the total 

cost of different algorithms. The total cost of scenario B was 137.7 $ related to the CapSA 

optimization as shown in Table 4. when compared with scenario A, the cost increased by 12.9 

$. The increase seen in the cost was due to the presence of EVs, i.e the total load in the MG 

herein is greater by the load of EV’s than the load of scenario A, which was inevitable. 

In Fig. 8 the power production of the resulting scheduling is illustrated. The total energy 

scheduled to charge the EVs was 272 kWh. The total selling energy to the Grid is 492 kWh 

while the energy purchased from main grid is 1319 kWh.  

 

   

Fig.7: Comparison between the convergence 

characteristics of the algorithms in scenario B. 

Fig. 8: Best solutions obtained EM problem using 

CapSA in scenario B. 

 

iii. Scenario C: With EVs 

This scenario considers that the EVs charging by the same KWH but during the time that have 

maximum output power from PV and Wind units. i.e.: the MG operator can freely choose when 

to charge the vehicles. The convergence of the total cost of different algorithms shown in Fig. 

9. The best Cost of this scenario was 131.8 $ related to the CapSA optimization as shown in 

Table 4., Fig. 10 depicts the power production for scenario C. In this case, the power 

consumption was similar to scenario B with different EV’s charge schedules. 

The total selling energy to the Grid is 397.5 kWh while the energy purchased from it is 1199 

kWh. Although the energy sold to the network is less in this scenario than in scenario (B), the 

energy purchased from the network is also less in this scenario than in the scenario (B). 

Therefore, we can see that the total cost in this scenario is 5.9 less than in scenario (B). The 

reason for this is that the charging of electric vehicles is managed at times when power 

generation is greater than consumption. 
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Fig. 9: Comparison between the convergence 

characteristics of the algorithms in scenario C. 

Fig. 10: Best solutions obtained EM problem using 

CapSA in scenario C. 

5. CONCLUSIONS 

This study proposes an optimal design methodology of an MG composed of PV arrays, WTs, 

EV, a battery, and a DGs, based on a novel computational intelligence algorithm called CapSA. 

The optimization approach is performed to completely satisfy the load requirements of an MG. 

The PSO, GSA, and PSOGSA algorithms were implemented to evaluate and compare the 

performance and effectiveness of the CapSA algorithm for the optimization problem to 

minimize the total cost with considering emission and degradation costs. Three scenarios were 

considered for the optimization: Scenario A was simulated without EVs, scenario B assume 

random charging periods of EVs, scenario C considers different periods of EVs charging with 

the same KWH of scenario B. The results indicate that the proposed Cap-SA optimization-

based energy management for the under study Micro-grid, provided a better reduction in the 

objective function which proves the suitability and superiority of Cap-SA over other 

optimization algorithms in all scenarios. In addition, according to scenario C, the controlled 

charging of EVs has proven to be extremely important to reduce costs. This indicates that 

without any control, costs can be higher than those with more control. 

Finally, in the future, CapSA optimization algorithm can be modified or mixed with other 

metaheuristic algorithms to tackle an extremely dynamic MG network with large integration of 

unpredictable energy sources and a broad range of scenarios. 
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NOMENCLATURE 
f𝑘(xt) the vector of k optimized objectives 
t dispatch period 
g(xt), h(xt) equality and the inequality constraints 
Px,t active output power of WT, PV and MT  
Putis,t active power Purchased from main grid 
Putim,t surplus energy of the MG selling to the 

main grid 
PE𝑉,t charging power of EV 

Pbt,t
ch , Pbt,t

dis charge and discharge power of ESS 

Pload,t load demand 
wl , wu generator numbers of PV and WT 
Npv, Nwt unit generation cost of PV and WT in $/Wh 

Cpv, Cwt fuel cost of the MT in $/Wh 

Cmt total operating cost of the MT in $ 
Fmt operations and maintenance cost 
Koc output power of the MT(W)   
Pmt,t
n  startup cost of the MT unit 

SCmt,t hot startup time and cold startup time of 
MT, 

τoff,mt ,τmt time which MT is turned off, and cooling 
time of MT 

u(t−1),mt MT status at time step t − 1 

mk(xt) mass of the emission pollutant gas k 

Cemis,k cost coefficient of the pollutant gas k 
uk the emission per unit wh in g/wh 
NB numbers of ESD  
Cbt the cost coefficient of the charging and 

discharging 

Pbt
ch,max, 

Pbt
dis,max  

maximum power used to charge or offered 
to MG by the battery 

SOCma𝑥 , 
SOCmi𝑛 

maximum and minimum battery  state of 
charge 

vj
i current velocity of the ith capuchin in the 

jth dimension 

xj
i the current position of the ith alpha 

capuchin in the jth dimension 

Xbestj
i  position with the best fitness found 

Fj best position of the food found 

a1 , a2 two acceleration constants 
r1 , r2 uniformly distributed random numbers 

independently created in the range from 0 
to 1 

ρ the inertia weight 
wl , wu minimum and maximum coefficient values 

of the inertia weight 
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