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ABSTRACT

This paper addresses the problem of Micro-Grid (MG) Energy Management Control (EMC)
including Electric Vehicle (EV) scheduling with considering a reduction in the overall
operating cost of MG in a residential grid. The main motivation for this study is the impact of
the daily load profile combined with electric vehicles (EVs) on the grid. Unless the EV
integration with load is monitored and controlled, the MG may experience an unexpectedly
high or low load. So, EMS is a trend in recent years for optimal planning of MG. On the other
hand, the available energy stored in the energy storage Battery can be utilized to free the
distribution system from some of the congested load at certain times or to allow the grid to
charge more EVs at any time of the day, including peak hours. This work was implemented by
using four metaheuristic algorithms (Particle Swarm Optimization (PSO), Gravitational Search
Algorithm (GSA), Hybrid population-based algorithm (PSOGSA), and Capuchin Search
Algorithm (CapSA) for optimal operation with minimum total daily cost without and with EVs
included in MG by two different daily profile of EV. The MG used in this paper consisted of a
diesel generator (DG), Battery storage device, photovoltaic (PV) system, and Wind turbine unit
(WT). For a more dispatchable practical MG, Emissions from DG and deterioration of storage
devices in addition to the cost of charging the EVs have been taken into account. The results
demonstrate that CapSA is a suitable method for generating robust models for EMS. This means
that the proposed CapSA approach can be applied in a wide range of complex nonlinear
systems.

KEYWORDS: Electric Vehicles, Renewable energy sources, Microgrid, Capuchin search
algorithm, Emission, Degradation.
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1. INTRODUCTION

Microgrid comprise low voltage distribution systems with energy storage devices (ESD),
flexible loads and accommodate considerable amounts of distributed generation, such as PV
and wind generation [1-3]. In recent years, there is a growing trend towards the use and adoption
of EVs due to depleting fossil fuels and rising environmental concerns. The adoption of EVs as
alternative means of transport requires development of charging infrastructure [4,5].

The development of MG’s may help in creating efficient EV charging infrastructure without

adversely affecting grid operation. An MG is an electricity distribution system comprising

controllable loads and diverse distributed energy resources (DERs) which can be operated in a

coordinated and controlled way [6]. An MG can either operate in parallel with a grid or work

autonomously.

It can offer several benefits such as increasing reliability, flexibility, sustainability, and

improvement of line losses [7]. However, electricity demand pattern will undergo significant

changes due to variability associated with EVs charging pattern.

Such systems can be operated in islanded mode or connected to the main grid [8]. system

performance, if managed and coordinated efficiently. The integration of many units of PV in

networks can cause situations in which, in same periods, the available generation is higher than
the demand. In such situations, the MG Operator (MGO) is able to manage the network [3] and

its resources and sell electricity as scheduled by the resources management algorithm [9,10].

EMC problem with different uncertainty explained by Optimization algorithms like Simulated

Annealing [11], Particle Swarm Optimization (PSO) [12], Crow Search Algorithm (CSA) [13],

and Genetic Algorithm (GA) [14]. Artificial Bee Colony suggested [15] to address the day-

ahead ERM in MG by taking into account uncertainties related to Renewable Generation (RG),

EVs trip, market price and load demand. The Firefly Algorithm (FA) proposed in [16], for the

Economical scheduling with optimized battery sizing. In [17] optimal scheduling is done by

Imperialist Competitive Algorithm (ICA) in MG environment with uncertainty related to RG

and load demand.

Finally, the main contribution of this paper can be summarized as follows:

e A new optimization algorithm called “Capuchin Search Algorithm (CapSA)” have been
presented for minimizing the electricity costs for a MG.

e The robustness of the proposed CapSA optimization algorithm has been confirmed by
comparing it with three other powerful algorithms “PSO, GSA, Hybrid PSOGSA”.

e The optimal charging schemes for EV have been selected in order to achieve the lowest
possible cost depending on the electricity price structure.

e Unlike other works, this paper presents a case study with the aim to minimize operating cost
by considering 3-scenarios without and with EVs included in MG by two different daily
profile of EV.

This paper is constructed as follows: Section 2 describes the problem formulation. In Section 3

the proposed algorithm is presented, and the simulation results are presented in Section 4.

Finally, Section 5 summarizes the concluding remarks.
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2. PROBLEM FORMULATION

The optimal resources management methodology proposed in this paper considers that it is
possible to buy and sell electricity to energy suppliers. The solution aims to minimize the
operation cost of the MG while satisfying various constraints [18].

The total cost of the MG contains the bids of EV charging, DG, PV, ESD, and WT. So, the
objective function could be formulated as[19]:

min {f; (xp). f(xp). ... fr (x)} (1)
gx) =0 & h(x)) <0 (2)
Where:f, (x;) is the vector of k optimized objectives, t is the different dispatch period, g(x;)

and h(x,) are the equality and the inequality constraints, respectively, and x, can be presented
as:

Xy = {th Putlst Putlmt PEVt Pbtt Pbls l)loadt} (3)
Where: P, = (Pwt,P vPmt) are the active power of WT, PV and DG output in the MG,
respectively, P atis,t 1S Cthe drawing active power Purchased from main grid, Putlm is the surplus
energy of the MG selling to the main grid, Pgy ¢ IS the charging power of EV, Pbtt and Pbttare
the charge and discharge power of ESD and Py .4 is the load demand.

2.1. Objective Function

The energy management system adjusts the output power setpoints of DGs to meet the load
demand; the operating cost, the emission cost of pollutants and the degradation cost of ESD are
minimized simultaneously while satisfying constraints [19]. The mathematical model of
objective functions can be formulated as follows:

A. Operation cost function
During the operation of the MG, the total energy and operating cost is equal to the sum of the
electricity bought from the grid and the generation cost of all units; the ESD cost subtracts the
profit of selling excess energy to the main grid. Therefore, the operation cost function can be
formulated by [19]:

f; (X)) = Xty [Cutlputlt + Fe + vaz 1PN + Coe ZNWt Pt t] (4)
Where: H, is total time taken, N,,, N, are the generator numbers of PV and WT
respectlvely Cpv, Cyeare the unit generatlon cost of PV and WT respectively ($/Wh), Cyy, is
the purchasmg electricity price of the main grid ($/Wh), and the F,,; is total operating cost of
the diesel generator microturbine (MT) ($) which can be expressed as:

Vit P = 20 l[Cmt ZNmt Phee + Koc ZNmt Phee + SCmt.t] (5)

Where:Cyy, is the fuel cost of the MT unit ($/Wh), K., is operations and maintenance cost,
Phce IS the output power of the MT(W), and SCp,.. representing startup cost of the MT unit
($), it can be calculated as:

Toff.mt

YL SCiee = Xy [(Gmt +8me(l—e ™t ), (1— U(e—1). mt)] (6)

Where:o, andd,,¢,are hot startup time and cold startup time of MT,To¢¢m: and Ty, are the
time that MT is turned off, and cooling time of MT, and u_1) mt, is MT status at step t — 1.

B. Emission cost function
The emission cost function includes the most pollutant gases: CO2, SO2 and NOx. The
objective function of emission cost can be as [20]:

fo(xe) = 2{11[213(:1 Cemis.kmk(Xt)] = Z?=1[213<=1 CemisUk Z§=1(P1%t.t + Puti.t)] (7)
Where:k = (1, 2, 3) represent three pollutant gases: CO2, SO2 and NOX, &my(x), is the mass
of the emission poIIutant gask&Cemis k., 1S the cost coefficient of the poIIutant gas k,&uy, is the
emission per unit wh in g/wh.
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C. Degradation cost function
The third objective function (the ESD degradation cost) can be formulated as a linear function
of the charged and discharged energy in addition to the bids of EV charging [21-22]:

f5(x0) = TtLa[Tp2, Cor(Bst + BskY) + Cov ZnZ{ Bl 0] (8)
Where: Ng represent the ESD numbers, Cy,; is the cost coefficient of the charging and
discharging. The solution of Equation 1 finds the best optimal dispatch plan for MG running.

2.2. Constraints

The objective function is subjected to following constraints [20]:

PIin < p . < Pmax (9)
0 < P, < PMax (10)
0 < Py < B0 (11)
0 < [RSP| < [Pghm™

{ 0 < RYS < pgismax } 12

SOCpmin < SOC; < SOCpnax (13)

Where: gth max POlls "MaXare the maximum power used to charge or offered to MG by the battery,
and SOCay = 100 %, SOCpin = 50 % are the maximum and minimum state of charge of the
battery.

Putit = Pload.t + Pevie — [Pmet + Pwee + va.t + Pl (14)

3. MATHEMATICLE MODEL OF OPTIMIZATION TECHNIQUES

Introduce for the first time in the energy management a devised approach called Capuchin
Search Algorithm to augment search quality and shun an early convergence to a local minimum.
CapSA is a recent meta-heuristic search algorithm inspired from the practices of capuchin
monkeys during foraging activity in real life. Essentially, the facts of capuchins during foraging,
was proposed by Braik [23], they use three ways in navigating around while searching for food
sources: jumping, swinging and climbing. These behaviors of movements underlie the core
assumptions of CapSA.

The population of capuchins in the CapSA, is divided into two main groups: (the leader)
“Alpha” and “followers”. The leader “Alpha” is responsible for finding food sources for
capuchins’ followers which update their positions by following the leaders in the group. While
searching for food sources as presented in [23], the leaders in CapSA use the subsequent
strategies: a. jumping on trees, b. jumping over riverbanks, c. swinging on trees, d. climbing on
trees, and e. moving naturally and randomly on the ground. These strategies of motion are
performed by the leaders continuously until they get a food source of (i.e., the desirable
solution). To summarize, Braik et al. has developed CapSA as shown below:

The velocity of the ith capuchin in the jth dimension in CapSA was defined as:

= pV]-i + Tal(X{)estj - X]-i)l‘l + Ta, (F]- - X]-i)rz (15)

Where vjrepresents the current velocity of the ith capuchin in the jthdimension, x; Irepresents
the current position of the ith alpha capuchin in the jthdimension, X}, identifies the position
with the best fitness found so far for the ithcapuchin in the ith dimension, Fjis the best position
of the food found so far in theithdimension,a; and a,are two acceleration constants that control
the effects of X},.;and Fion the velocity, r; and r, are uniformly distributed random numbers
independently created in ﬂhe range from 0 to 1 and p is the inertia weight that controls the effect
of the previous velocity on the current velocity and is defined as:

p= wy— (wy —wyp) * (k/K)Z (16)
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where w; and w,, are the min and max coefficient values of the inertia weight, respectively.
The optimization process is executed through an iterative loop practice, where the new positions
of capuchins are appraised and updated. These procedures are repeated at each iteration loop
until convergence, The search for the convergence is stopped when the criterion is satisfied.
The CapSA could be briefly described by the pseudo code given in Algorithm 1 [23]. As CapSA
has underlined its reliability and convergence behavior in adopting many tests benchmark
functions [23]. Therefore, we concluded that the CapSA is appropriate alternative method to
minimize the total cost of the MG.

Algorithm 1: A pseudo code describing the key steps of CapSA.

1. rl, 12, and ¢ are random numbers within [0, 1].

2. Randomly initialize the positions x of the n capuchins.

3. Evaluate the fitness of each capuchin’s position

4. Initialize the velocity of the capuchins

5. Initialize the parameters: number of iterations (K), number of capuchins (n), dimension of the
problem (m), elasticity probability (Pef), balance probability of capuchins’ tails (Pp), acceleration
due to gravity (g), upper bound dimension (u;), lower bound dimension (l;).

6. While (termination condition is not satisfied “k < K”) do

7. Update 7.

8. For k=1 to n (leaders and followers) do

©¢

if (k <n/2) (n/2= the leader and the accompanying capuchins) then
10. Update the velocity of the leaders.
11. if (6>0.1 AND £ <0.15) then
12, Update the position of the leaders that leap on the trees.
13. else if (¢>0.15 AND £ <0.2) then
14, Update the position of the leaders that over riverbanks.
15. else if (¢>0.2 AND £ <0.75) then
16. Update the position of the leaders that walk on the ground.
17. else if (¢ >0.75 AND £ <0.9) then
18. Update the position of the leaders that swing on tree.
19. else if (¢ >0.9 AND £ < 1.0) then
20. Update the position of the leaders that climb on trees.
21. else
22. Update the position of the leaders that relocate randomly.
23. end if
24. else if (k > n/2 and k <n) then
25. Update the position of the follower.
26. endif
27. end for

28. Evaluate the new fitness value of each capuchin
29. Evaluate and update the positions of the capuchins
30. Update the global best solutions of the capuchins
3l.k=k+1

32.end while

4. RESULTS and DISCUSSION

The MG structure as shown in Fig. 1 consisting of the PV unit, WT, MT, ESD, EV unit,
Residential loads, and conversion devices, which can operate in grid-connected or island
modes. The operators use smart grid which including PV, WT, ESD, MT, EV, and conventional
power sources to meet demand loads. The excess energy from the MG is stored in ESD system
for future use or sell it to the utility [19].
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AC Bus

inverter
AC

‘ AC

/

DC

Residential  plocric vehicles I Wind turbine
loads

. Micro-turbine unit
420 b &
Energy storage

system (ESS) PV panel

Fig. 1. Diagram of the microgrid system under study.

The load demand diagram is the same of that in [24], but its size is multiplied by 300 WH, as
shown in Fig. Y. Table 1. Shows the emission coefficients of different pollutants [25] and the
limitation boundaries of the system have been mentioned in Table 2. The negative sign in the
minimum power of the battery refers to the minimum discharge power.

LOAD PROFILE
300 . : : .
250
— 200
=
=
@
2 150
(a
o
©
o
— 100
50
0
0 5 10 15 20 25
Time(Hour of day)
Fig. 2: Microgrid load power profile.

Table 1: Emission coefficient for micro-turbine Table 2: Data of DG units in the microgrid system.
Type  Emission Factors for DEG (kg/kWh) Unit Max. Power (kW) Min. Power (kW)
NOx 0.00052 Wind turbine 100 0
S0O2 3.63*107-6 Photovoltaic cell 100 0
CO2 0.5025 Battery 60 -48

Diesel generator (MT) 60 12

The energy management process has been done by using PSO, GSA,PSOGSA and CapSA
optimization techniques that discussed in Section 3. Suitable parameters for CapSA

1320 JAUES, 17 65, 2022
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optimization algorithm are given in Table 3. All the simulations are implemented in
MatlabR2020a.

Figure. 3 presents the EVs trip demand in kWh. Maximum iteration number for any algorithm
is set to 400. The results are average over 30 runs and the best results are indicated. Figure. 4
shows the output power of the PV and Wind power as a percentage of its maximum output
power and it is exactly the same for all case studies.

Table 3: Parameter settings of the capuchin search algorithm

Parameter Value
Population size 50
Number of iterations 400 (max)
ay, a2 1.10,1.25
Wi ,Wy 0.1,0.9
pr 0.7
Pef 19
90 T T - - -
= Senario 1 147 i ‘
80 F s Senario 2 | |
12
<
% 0.8+
o
-
= 06
S
& 04t
02 [t
= = 0
0 '3} 10 15 20 0 5 10 15 20 25
Time(Hour of day) Time(Hour of day)
Fig. 3: The EVs trip demand (kWh) Fig. 4: The output power of the PV unit and Wind

turbine

Scope of work:
The aim of the case study is to minimize operating cost in three scenarios: Scenario A is
simulated without considering EVs, scenario B considers the random charging periods of the
EVs, scenario C considers that the EVs charging by the same KWH of scenario B but during
different periods.

i. Scenario A: Without EVs

Scenario A was simulated without considering EVs. The comparative convergence of the total
cost (best solutions) of four different algorithms is shown in Fig. 5. It is shown clearly that all
algorithms converged smoothly to the optimum value in the optimization process but the
proposed CapSA optimization outperforms the PSO, GSA and PSOGSA methods as a whole;
it has the advantage of reducing cost.

The hourly cost of all algorithms was mentioned in Table 4. And it can be seen that the best
total Cost of scenario A was 124.8 $. Figure. 6 presents the resource energy scheduling without
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EV’s (scenario A) for the 24 periods under study using CapSA. As shown in Fig. 6, Some
portion of the energy has been sold to the grid according to the resulting scheduling. The total
selling energy to the Grid scheduled by the algorithm was 539 kWh.

Table 4: The Best hourly cost of all algorithms in three scenarios

cost/ hour ($/h)
I
o
5 Scenario A Scenario B Scenario C
PSO GSA PSOGSA CapSA PSO GSA PSOGSA CapSA PSO GSA PSOGSA CapSA
1 4.77 3.09 2.58 1.39 3.22 2.03 0.55 1.49 3.94 0.10 0.17 -0.09
2 -0.06 -2.68 -3.67 2.34 1.42 4.61 0.24 -3.38 1.24 1.72 -1.37 -3.03
3 1.46 8.60 -0.55 -0.88 1.51 7.79 0.43 2.78 231 10.64  -2.71 -3.02
a4 1.56 2.25 0.67 0.36 1.17 -2.68 1.29 0.84 1.97 7.69 2.12 0.86
5 460  -0.47 0.66 -1.36 5.14 -2.73 -3.08 -2.39 1.72 -3.02 3.17 -2.18
6 2.88 4.17 -0.04 1.50 4.56 7.46 7.27 0.80 2.29 7.61 1.98 -1.58
7 1.62 -0.83 0.49 -2.33 1.67 536  -1.80 0.22 1.15 -2.86 -1.54 0.57
8 5.10 4.51 -0.08 7.05 5.07 8.14 1.72 1.01 6.41 1.26 -0.73 3.35
9 3.25 9.46 10.03 0.33 3.94 7.14 3.78 8.48 9.48 4.33 9.81 4.39
10 6.86 6.44 -1.61 4.89 8.14 9.21 4.75 1.53 6.39 2.09 1.64 6.72
11 -1.63  -3.92 0.01 -2.64 4135 -2.35 -0.44 -0.64 0.97 -1.82 -3.21 -4.40
12 -0.19 2.65 0.63 3.12 2.71 2.33 -0.83 -0.38 1.48 7.69 -1.44 3.75
13 20.95 1870  16.15 17.18 | 30.98 34.00 26.15 3048 | 2593 16.09 22.71 15.71
14 1249 2030  21.06 8.86 16.68  13.62  14.38 13.22 | 16.84 12.26  13.05 14.03
15 5.29 4.49 2.12 6.82 8.56 7.75 3.32 3.55 4.16 9.91 2.70 1.66
16 4.47 0.61 0.02 -0.23 1.16 -0.68  -1.51 0.89 9.54 9.54 8.16 11.55
17 4.54 3.28 7.17 2.22 5.47 -2.88 3.21 0.88 5.31 8.66 1.87 1.51
18 7.86 6.33 6.55 5.84 10.73  14.02  10.22 8.29 10.36  9.50 9.09 7.63
19 899  13.59 6.75 6.75 9.64  10.88 9.06 6.31 9.37 5.90 4,51 8.22
20 22.88 21.92  19.80 19.99 | 2451 2734  25.02 19.87 | 25.57 30.04 23.41 24.64
21 16.48 1195  12.20 13.09 | 23.64 1890  14.15 19.06 | 20.44 1552  16.43 16.25
22 21.92 2262 1433 1691 | 16.86 20.22  15.43 11.19 | 16.98 12.19  16.40 13.53
23 6.85 3.51 12.47 12.06 9.04 9.05 11.35 11.34 936  14.79 5.56 7.97
24 4.54 3.18 8.22 7.77 5.47 0.45 1.71 2.21 5.69 2.63 6.62 3.77
Total 167.49 163.77 13596 124.8 199.93 188.27 14637 137.67 | 19890 182.48 13839  131.82
Cost/Day
320 T T T T 250 T T T T
PSO PS0-GSA
300 GSA cap-SA |
200
280 A
150
260 q
240 < B 100
D 3
’g 220 1 5 50
@, =
200 | 18 4
180 i 167.4912
A -50
e 163.7679
140 | 135.9562 -100
124.804
150 : : ; ; : ; ; sl . . ‘ ‘ .
0 50 100 150 200 250 300 350 400 5 10 15 20 25
Iteration Time(Hour of day)
Fig. 5: Comparison between the convergence Fig. 6: Best solutions obtained EM problem using
characteristics of the algorithms in scenario A. CapSA in scenario A.
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il. Scenario B: With EVs

This scenario considers the random charging periods of the EVs. The power production
scheduling in this Scenario, is quite similar to scenario A with EV charging during any time of
the day [22] as shown in Fig. 3. and Fig. 7 show that the comparative convergence of the total
cost of different algorithms. The total cost of scenario B was 137.7 $ related to the CapSA
optimization as shown in Table 4. when compared with scenario A, the cost increased by 12.9
$. The increase seen in the cost was due to the presence of EVs, i.e the total load in the MG
herein is greater by the load of EV’s than the load of scenario A, which was inevitable.

In Fig. 8 the power production of the resulting scheduling is illustrated. The total energy
scheduled to charge the EVs was 272 kWh. The total selling energy to the Grid is 492 kWh
while the energy purchased from main grid is 1319 kWh.

400

T
PSO
GSA

cap-SA

\
PS0-GSA ‘

350

300

199.9327

200 \\ﬁT
150 [

188.2727
146.3704

L

100

137.6743

0 50 100 150 200 250
lteration

300 350

Fig.7: Comparison between the convergence
characteristics of the algorithms in scenario B.

ili. Scenario C: With EVs

400

Power (KW)

300

250 - BT | 4
[ uT

‘ T
[ VT

-150 *

0 5 10 15 20
Time(Hour of day)

Fig. 8: Best solutions obtained EM problem using
CapSA in scenario B.

This scenario considers that the EVs charging by the same KWH but during the time that have
maximum output power from PV and Wind units. i.e.: the MG operator can freely choose when
to charge the vehicles. The convergence of the total cost of different algorithms shown in Fig.
9. The best Cost of this scenario was 131.8 $ related to the CapSA optimization as shown in
Table 4., Fig. 10 depicts the power production for scenario C. In this case, the power
consumption was similar to scenario B with different EV’s charge schedules.

The total selling energy to the Grid is 397.5 kWh while the energy purchased from it is 1199
kWh. Although the energy sold to the network is less in this scenario than in scenario (B), the
energy purchased from the network is also less in this scenario than in the scenario (B).
Therefore, we can see that the total cost in this scenario is 5.9 less than in scenario (B). The
reason for this is that the charging of electric vehicles is managed at times when power
generation is greater than consumption.
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350

250

T T
PSO PS0-GSA

‘ T ‘ . .
cansh [ MT

GSA
200 -
300
150 -
250 =
Z S 100}
2 &
o 198.898 2 -
200 f; DO_
182.4761 0
1501 138.3904
h ) L
131.8181 =0
560 l ‘ j l , . ; 100 | | | | ,
0 50 100 150 200 250 300 350  40C 0 5 10 15 20 25
lteration Time(Hour of day)
Fig. 9: Comparison between the convergence Fig. 10: Best solutions obtained EM problem using
characteristics of the algorithms in scenario C. CapSA in scenario C.

5. CONCLUSIONS

This study proposes an optimal design methodology of an MG composed of PV arrays, WTSs,
EV, a battery, and a DGs, based on a novel computational intelligence algorithm called CapSA.
The optimization approach is performed to completely satisfy the load requirements of an MG.
The PSO, GSA, and PSOGSA algorithms were implemented to evaluate and compare the
performance and effectiveness of the CapSA algorithm for the optimization problem to
minimize the total cost with considering emission and degradation costs. Three scenarios were
considered for the optimization: Scenario A was simulated without EVs, scenario B assume
random charging periods of EVs, scenario C considers different periods of EVs charging with
the same KWH of scenario B. The results indicate that the proposed Cap-SA optimization-
based energy management for the under study Micro-grid, provided a better reduction in the
objective function which proves the suitability and superiority of Cap-SA over other
optimization algorithms in all scenarios. In addition, according to scenario C, the controlled
charging of EVs has proven to be extremely important to reduce costs. This indicates that
without any control, costs can be higher than those with more control.

Finally, in the future, CapSA optimization algorithm can be modified or mixed with other
metaheuristic algorithms to tackle an extremely dynamic MG network with large integration of
unpredictable energy sources and a broad range of scenarios.
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NOMENCLATURE
fr (x0) the vector of k optimized objectives Cemis.k cost coefficient of the pollutant gas k
t dispatch period Uy the emission per unit wh in g/wh
g(x¢).h(x) equality and the inequality constraints Ng numbers of ESD
Pyt active output power of WT, PV and MT Chpt the cost coefficient of the charging and
Putis.t active power Purchased from main grid discharging
Putim.t surplus energy of the MG selling to the Pbcth-max_ maximum power used to charge or offered
main grid pl;itiS-maX to MG by the battery
Pyt charging power of EV SOCpax- maximum and minimum battery state of
ph, pdis charge and discharge power of ESS SOCpin charge
Pload.t load demand v] current velocity of the ith capuchin in the
Wy, Wy generator numbers of PV and WT jth dimension
Npv, Nt unit generation cost of PV and WT in $/Wh x].i the current position of the ith alpha
Cpvs Cut fuel cost of the MT in $/Wh capuchin in the jth dimension
Cint total operating cost of the MT in $ Lestj position with the best fitness found
Fint operations and maintenance cost F; best position of the food found
Koc output power of the MT(W) a;,a two acceleration constants
Phct startup cost of the MT unit ry, Ty uniformly distributed random numbers
SCrt.t hot startup time and cold startup time of independently created in the range from 0
MT, to1l
Toffmt ,Tmt  time which MT is turned off, and cooling p the inertia weight
time of MT Wy, Wy minimum and maximum coefficient values
U(t-1).mt MT status at time step t — 1 of the inertia weight
my (X¢) mass of the emission pollutant gas k
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