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ABSTRACT 

In order to improve performance of reluctance motors, careful design of 
the magnetic circuit is necessary. The machine reluctance is a deter--
mining. parameter in the design process. 

In this paper several techniques' for designing the magnetic circuit are 
proposed. A fields approach is applied and computer programs are used for 
numarical solutions. The proposed techniques lead to optimised values of 
the ratio between (Kand(K

act,
) e.g. the anistropy coefficient. Theori-

tical prediction foraThe performance of a designed model is performed and 
computed results are reported. 
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I. INTRODUCTION 

The reluctance motor is a robust machine but not So complex, that resembles 
the squirrel cage induction motor. Due to its nice properties such as 
synchronous operation, absence of sparks, low noise, etc., it has been 
used in some applications. Namely, the driving of inertia generators for 
computer power supplies, fans and it can be used also in systems of 

explosive media. 

The above mentioned advantages make this reluctance motor competative, 
from the technical and economic points of view, with the ordinary 

synchronous motor. 

In the reluctance motor, the higher the magnetic isotropy of the magnetic 
rotor circuit, the higher the pullout torque, the efficiency and the 

power factor. 

In this paper, the isotropy coefficient of the machine defined by the 

ratio between (Kad ) and'(Kaq
) (K = Kad /K aq ) is calculated. where Kad and 

K 	are the form factors of magnetic field in the air-gap. 
aq 

 

The magnetic field of the reluctance motor will be calculated as a 
function of rotor geometries and air-gap parameters[

1]. 

The highest values of the magnetic anisotropy [K] will occur at the 
flux barrier of the reluctance rotor; a detailed study of such a problem 

will be included in this paper later. 

2. MATHEMATICAL MODEL 

The equation of magnetic field can be deduced by integrating the Laplace 
equation for the scalar magnetic potential under the following conditions: 
a] Unsaturated magnetic circuit, which allow separate computations along 

direct and quadrature axes. 
ID] The distribution of the scalar magnetic potential produced by the 

stator winding, at the margin of the stator, is assumed to be 

sinusoidal; 
c] The machine is also assumed to be of infinite length. according to the 

rotor symmetry, computations were carried out only for a sector 

corresponding to a pole pitch. 

2.1. Flux Distribution Computation for Quadrature Axis  

Fig. 1 shows the flux distribution for q-axis. Using the notation of 
Fig. 1, the magnetizing force distribution for the non-magnetic region 

is 
(1) 

The magnetizing force distribution for area ABCDEFGHIJKLA , is found by 
integrating the Laplace equation of the scaler magnetic potential U, in 

polar coordinates. 

for sector I cnl 
= [U

o
/(0

cn
.R
5
)1 

for sector II 	H
cn2 

= [Do/(R2
-R1

)] 
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Fig.(1) Flux distribution for quadrature axis 
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UIGH=U(R
3
,0)=U

o 	
; 	0p/205_(Tr-Op/2) 

UlFG=U(r,Tr,0p/2)=U0; 	R
3

r-.R
4 

Due to the continuity of U(r,o), along BC and AL, then : 

CJIBC=U(r,7)=0; 	R
45 ; 

UILA=U(r,0)=0 	R
4

rll.12
5 

Taking the linear variation of U into consideration, the magnetic potent-

ials along  DE and JK are : 

UIED-U(R,0)=1.1 - 
ucn 

 [01-(ir-13
a
-0cn)] I 

for (Tr-0
a 

- 0
cn 	

0 	- 0a) 	
(5) 

UlKJ=U(R 	
e 
--2  [0-0

a 
cn 

Because RS is part of a flux line fq, then : 

F
sq 

= F + F
o 

F 	= Fsin 6 
q 

B, 
F = 	g 

L 	 .1c) 

(2)  

(3)  

(6) 

_J 
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ere B is the maximum air-gap flux density, (5 is the motor load angle, 

- R
5 
- R

4 
is the minimum machine air-gap, and Fq  is the air-gap magnetiz-

11.; force on q-axis. 

order to determine F for a machine whose length is 9, the magnetic flux 

w 	

o 
is applied for the surface supported by the curve EFGHIGNME, for which 

e flux value is : 

-R=  (2.JN. 	+ 
11
N- 
R21 

) 
F
o

JNME 	0
cn

.R
5 

	

which has to be equal to the flux 	
FF 

(Ih 2 = (1)1 4GiiIJ = El(HrIEF)I .EF +I(1
04,6  I. FG+ l(HrGH

).GH - 

1(1101HI
)1.1-II + (IHrlij-)• IJI uo. 12, 	

(8) 

-  DF(r,O)H 	
1 	9F ( r , 0)  

	

Hr 	Dr 	
,  

0 	r 	30 
(9) 

._ the 
radial and tangential components of the magnetizing force. By 

;k ing into account the fact that (i)1 
 and 4)0  are a linear functions of 

it is sufficient to take two arbitrarily chosen values of Fo 
(e.g. 

F ) 
o2 

 

	

(1) 11 = (1)1 IFo = Fo1 	' 4?21 - 4)2IFo = Fol 

	

(t,
22 

= (1)
2
IF
o 

	
1 02 	

' 0
12 

= 0
1 
 IF o = F_ o2 

the value of Fo
, for q-a:(is is found at the intersection of 

(P1 
= F

1
(F
o
) and (1)2 = f2(F0) ; 

421 -  4)11)(Fo2 -  Fo1)  + F 	• (11) 

	

F
oq 

= 	 of 
 

412 - 1)11)-422 - (P 21)  

_lig 
this value, the air-gap magnetizing force distribution can be calcu-

. -:_Led as follows : 

3F(r,O)1 	
R 	ae 	I  

-1 3F(r,0)  1  
r= 

	

g 	ar 	i r=R5 
	

, H '9 
	

- 
q0 	5 	

R
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qr 	

(12) 
H 

the air-gai2 flux densities are : 

	

B 	= u H ; 8 	= u
o 
H
g 	

(13, 

	

gqr 	
o 

gqr 	gq0 	q0  

3y 
integrating the Laplace equation, the magnetic flux density is determi-

nod. Fig. 2 illustrates the air-gap flux density in q-axis. 

It. 
is noticed that the first significant decrease of the flux density 

occurs for an angle a  from the pole axis. A reversal of the flux density 

pole can be even take place if the scalar magnetic potential Uo 
is larger 

than the value corresponding to the sinusoidal of the scalar magnetic 

potential at that particular point 

U
o 
> U

sq 
sin (0

a 
+ 0

nc
) 

(7) 

( 10) 
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ig.(2) Air-gap magnetic field flux distribution for 

A second decrease of the flux density occurs due to one 	
Jlr-gap 

between the poles. 

The amplitude of the flux density fundamental is fou 	
into  

fourier series; 	Tr/2 

B 	=i f b 	(0) sin0 d 0 

ql o 
g
qr 

For an isotropic equivalent cylindrical rotor, the mai 	
tlsity 

on q-axis is found by 

5 B sin 6 
Bgqc 

The form factor K 	is defined as the ratio of the 	rfmonic 
a  

amplitude of the air-gap flux density of the real machLn,  

fundamental hotmonic amplitude for an ideal cylindrical 
Bggl 

 
B 

 

Other coefficients necessary for the motor design are 

i ] The pole pitch covering coefficient a is the pole 	
ring 

coefficient of an ideal machine whichclhas the same fiJA as he 

real machine, whose flux distribution is constant and equal to the 

maximum flux distribution on q-axis,B 
gqm 

a =  	, where T = 7.R5 T.Z.B 
7 TM 

= f b 	(0) R
5
.2—de 

q oqr 

ii] The form coefficient of the flux for q-axis (KA,  ) 

IC(1; = 
(1)ql 

Tr 

(13 ql = f Ba 
,(41 sine R

5 
Z.d0 

is air-gap fuRdamental flux distribution on q-ax 

(14) 

K
aq 

where 
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2.2. Calculation of the Flux Distribution on d-axis 

Thefollowing modifications occur 

FI
AB 

= F(R
5
,0) = F

sd 
 cos 0 

FI
BC 

= F(r,7)   F 
r - R4 

 

 015:87 	, 

- R4 	sd 	4 -  s 
R 	, 

= - F I FI 
LA 	BC 

the remaining boundary conditions are the same as for the computation for 
q-axis. As in q-axis, the scalar magnetic potential along AB is cosinuso-
idal, the flux coming out of EFGS is equal to the one entering SHIJ and 
hence, the overall flux for EFGHIJ is zero; qb2  = O. In keeping with the 

magnetic flux law, 11)
1 
must also be equal to zero for the surface supported 

by EFGHIJNME. From .relation (7) it results that Fod 
must also be equal to 0. 

For the determination of the remaining parameters, the calculations necess-
ary are similar to those performed for q-axis. 

7/2 
B 	= 1 .1- b 	(6) cos° d 8 

9dl 	
Tr 	gdr 

DF(r,O) 
= 

 

bgdr 	
4 	.at 	I r=12

5 

= B 	. cos (5 B
gdc 	g

gal 
K 

+N/2 

= 	I b 	(0).R
5 

Z.d 0, 

-7/2 gar 
+7/2 

= 	I 	B 	cos O. R
5 	

d 6, 
-7/2 9d1 

d 
a
d 

	Ki
d 

= 
(I) 

T.k. B 

	

	d1  
dm 

The integration of the Laplace equation in a polar coordinate system, over 
an area like the one in the previous case, is a difficult problem if done 
analytically. It requires the breaking down of the area into smaller ones 
and the subsequent summation of the solutions. 

The digital approach is less laborious making possible the integration of 
the Laplace equation over the whole area at the same time. 

3. COMPUTATION PROGRAM 

For symmetry reasons, the digital integration is done only over half polar 
pitch. The integration domain, nodes and domain breakdown are presented 

in Fig.(3). 

1 

(18) 

ad 
gdc 

(19)  

(20)  

4,d 
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Fig.(3) Area used for the numerical integration 

Finite differences were used for the integration techniques. The Laplace 
equation was modelled by a system of n equations with n unknown elements, 
which once it is solved, yield the scale magnetic potential for any node. 
The magnetizing force (the radial and tangential component) is obtained 
by derivation. In order to write the equations, F(r,0) is expanded into 

Taylor power series around i(ri, 8i), 

	

3F
i 	

r2 	r 
32,, 

il 	i 
F
. 

= F
i 
+ r

il ari 
+ 

2 
are

. 
DF
i 
 01

2 
 32Fi  

F. 
	
= F

. + 0i2 38 	2 	D02 	I + 

	

 i 	
(21) 

F
i 	

r2  
i3 a i 

2 F  

+ Fi3 = F
i  - ri3 3ri 	

2 3r2, 

	

3F
i 
	02. 	-1-  

i4 	i  
F
i4 

= F
i 
- e --- + 

	

i4 38i 	
2 	302

1
. 

(for notations see Fig. (4)) 

The elimination of (32F.1/3r2.1 	1 ) and (32 F./302.) from the first and third 1  
equation, from the second and fourth, respectively, yields : 

F. _ r13 	Fn.  - rli  Fi3 	r 	- r 
i3 

	 + F 	il 
 

	

3r. 	 1 r, 	r. 
 

	

1 
	r.  r.

r 	(r. +r.13 ) 	11 	13 
3 11  

	

F. 	62 F  . 
 - 

 02 F 	 e
i2 

- 8 

	

1 	i4 12 	i2 
F. 
	 i4  

	

(3' 	

+ F
i 0i20i4 

= 

	

1 	0. 0 (0 	+ 0i4
) 

12 i4 i2 

by using (21) and considering that for any i point the relation below 

Lis valid : 
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O2F. 	1 	1 F. 	O'F, 
1 	1 	1  = 0, 

Or' 	+ r, Or. + Or2. 	B02. 
i 	1 	1 	1 	1 

.(4) Elementry integration area 

nn e 

[ 2 

finds : 
r -r 

1 	1 	1 IA i3 

r r 	+ r10i20i4 ) 
	r.1 r.1,1 r, 

il. 13 	13 
F 

2r+r
i 	 i  3 

r r. (r 	i3) ) 
F 	- il 

2 
r2 t,  0 +0 ) i2 
1 12 i2 i4 

2ri+ril 
	2  

) 7 r 
1 
.r

i3
(r

i4
+r

i3
) 	i3 	r2 0 (0 +0 ) i i4 i2 i4 

F. 
	
= 0 	(23) 

is equation i in the n system of equation, if i is an internal node 

for a boundary node 

F1  F, 
1 	boundary 
	 ( 24) 

4. RESULTS OBTAINED 

KO
d
, Ka is determined as a function of the rotor geometry ana air-gap 

By using a digital computer, the variation of coefficients K , K , a , 

length,
q  where the following used. 

	
ad .aq q 

Op 	
pitch covering coefficient; a - 	 - pole 

air-gap length; g 	R
5 
- R

4 
 - 

pole height ; h
p 
= R

4 
- R

3 
- yoke width ; h

fe 	
R
3 
- R

2 
- non-magnetic channel width; h

cn 
= R

2 
- R

1 

a
1 

= 26
a  

L (7). By varying h 	$
1 
= $2 

is kept incr 

Fig.(6) shows that curves K 	= F(a
1 
 ) ha 

kept constant; and thus a decrEase in th 
for this minimum varies wierla . This is 

also, the domain ovgr which the air-gap 
 

field is reversed and as a result, Kaq 
r 

ses and $i  = $
2 
-'=" $ remain constant. F 

Fig.(7) seems
aq  surprising but it can be e 

sequently, K 	

will increase. The increa ve a minimum, the value a

t  reaches 

e domain in WEich the air-gap P  

xplaineuqg  on the bases of relation 

ises. If a
1
, decreases, MN increa-

field reverses decreases and con- 
se of K with the pole height 

easing if the stator leakage flux] 

becomes smaller as shown by (7) 

so because al  increases for a 
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Fig.(5) Variation curves of 
coefficients K

ad and K as aq 
a function of a , for different 

p 
air-gap values. 
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1 = 0.214 , 

h
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Fig.(7) Variation curves of 
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Fig.(6) Variation curves of coeffic- 
ients K

aq 
as a function of a
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is neglected. By increasing h up to hfe  = const., JN rises and according 

to (7), F decreases and hencR, K 	increases. A maximum of the anisotropy 

coefficien
o 
 t, based on the results

a 
 ilound so far, can be obtained for 

a = 0.5 , a = 0.1 , K 	= 0.9 , K 	= 0.075 

	

P 	1 	ad 	aq 

= 

	

 K
max 	(Kad 

/K 
 a 
 ) = (0.9/0.075) = 12. 
q 

For design purposes, the magnetic circuit must b taken into account, which 
is done by means of the saturation coefficient. Since for q-axis, the 
magnetic flux is rather low, the saturation coefficient (Ksq

) is close 

to 1, while for d-axis, Ksd 
is 1.4 - 1.6. 

The machine anisotropy real coefficient is lower, namely 
K
ad 	

K
sq 	K  

K 
r K

aq 
K
sd 

K
sd 

which for this case can reach a maximum of 

K 	12 
K = — - — - 7.5 
r Ksd 

1.6 

It follows that a non saturated machine will have a higher efficiency and 

power factors. 

5. CONCLUSIONS 
1 

The determination of coeftients Kad 
and Ka d is the most important part of 

the design of reluctance motors, as their ratio greatly influences the 
machine performinces. The curves obtained allow the designers to make 
choice of the optimum rotor geometries. 
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