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ABSTRACT

In order to improve performance of reluctance motors, careful design of
the magnetic circuit is necessary. The machine reluctance is a deter-
mining. parameter in the design process.

In this paper several techniques for designing the magnetic circuit are
proposed. A fields approach is applied and computer programs are used for
numarical solutions. The proposed techniques lead to optimised values of
the ratio between (K _) and(X ) e.g. the anistropy coefficient. Thecri-
tical prediction foraghe perfggmance of a designed model is performed and
computed results are reported.
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I. INTRODUCTION

'he reluctance motor is a robust machine but not 0 complex, that resembles

the squirrel cage induction motor. Due to its nice properties such as
synchronous operation, absence of sparks, low noise, etc., it has been
used in some applications. Namely, the driving of inertia generators for
computer power supplies, fans and it can be used also in systems of
explosive media.

The above mentioned advantages make this reluctance motor competative,
fvom the technical and economic points of view, with the ordinary
synchronous motor.

In the reluctance motor, the higher the magnetic isot;opy'of the magnetic
rotor circuit, the higher the pullout torque, the efficiency and the
power factor.

In this paper, the isotropy coefficient of the machine defined by the |
ratio between (K ) andik_) (K =K /K ) is calculated. where K_ and
ad Yaq ad’ aq a

K ., are the form factors of magnetic field in the air-gap.

aq

The magnetic field of the reluctance motor will be calculated as a
function of rotor geometries and air-gap parameters[l].

The highest values of the magnetic anisotropy [K] will occur at the
flux barrier of the reluctance rotor; & detailed study of such a problem
4i1l be included in this paper later.

2. MATHEMATICAL MODEL

The equation of magnetic field can be deduced by integrating the Lapléce
equation for the scalar magnetic potential under the following conditions:
4] Unsaturated magnetic circuit, which allow separate computations along

direct and quadrature axes.
b] The distribution of the scalar magnetic potential produced by the
stator winding, at the margin of the stator, is assumed to be

sinusoidal; «
c¢] The machine is also assumed to be of infinite length. according to the

rotor symmetry, computations were carried out only for a sector
corresponding to a pole pitch.

2.1. Flux Distribution Computation for Quadrature Axis

Fig. 1 shows the flux distribution for g-axis. Using the notation of

Fig. 1, the magnetizing force distribution for the non-magnetic region

is |
for sector I

[UO/( Bon -R5) ]
[Uo/(Rz—Rl)]

H
cnl
for sector II H

(1)

cn?2

The magnetizing force distribution for area ABCDEFGHIJXLA , is found ?y
integrating the Laplace equation of the scaler magnetic potential U, 1n
polar coordinates. '

L
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Fig.(1) Flux distribution for gquadrature axis

9%u 1 3 u 1 9%u (2)
S —— —_— b= r
3rr 'r ar | o a6 )

with the following boundary conditions:

U|AB=U(R_,8)=U sin®; 0s0sT ;
5 sq
U|CD=U(KL)=U(R4.-9)=O ; 0£6=6_ and (7r—8a‘;§.0§ﬂ‘ ;
U|EF= U|1J=U(R,,8)=U ; (6_+6_ )<0<0p/2 and (n-0p/2)s®sa-6_-0_ i (3)
4 o a cn , a cn
U|GH=U(R3,9)=UO ; 6p/256s (1-8p/2)
U|FG=U(r,n,Bp/2)=U0; R3§r§R4
Due to the continuity of U(r,g), along BC and AL, then
U|BC=U(r,m)=0; R,Sr=R_ ;
4 5 (4)
U|LA=U(r,0)=0 R, STSR,

Taking the linear variation of U into consideration, the magnetic potent-
ials along DE and JK are :

u|ED=U(R,,0)=U - 9—9'[9—(ﬂ—ﬁ =8 )1 .
4 o cn a cn

for (-8 - 8 )= @ Sir - 0_) (5)
a cn U a
= ——— _
u|kg U(R,,8)= 5— [6-0_]
cn

Because RS is part of a flux line I'g, then

F =F +F
sq q o
F = Fsin 6§ (6)
q o &
F = —32.9
po
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ore B is the maximum air-gap flux density, & is the motor load angle,

g
RS = R4 is the minimum machine air-gap. and Fq is the air-gap magnetiz-

force on g-axis.

srder to determine FO for a machine whose length is £, the magnetic flux
is applied for the surface supported by the curve EFGHIGNME, for which
flux value is

F F

(@]
= = " . + .

by ¢]JNME (2.0N. ===+ MN- £

cn 5 2 1

) Ho.% (7)

ich has to be equal to the flux

Wy = ¢l gty = i, g | = +1(He|f@|' FG+ | (H |gy) -CH -

l(HB‘HI)LHI + (|Hr|IJ). 1J] po. & , (8)
o —F(r,8) _ 1 _3F(x,0)
Bg = dr P Hg T T 30 (9)

‘he radial and tangential components of the magnetizing force. By
ing into account the fact that ¢ and ¢. are a linear functions of
it is sufficient to take two arbitrari%y chosen values of FO (e.qg.

02

by = bylP = Fyy 7 9y = by, = By -
) = o = 0 . = = F

P22 ¢2|lo 102 ! 512 ei\Fo o2

the value of F , for g-axis is found at the intersection of
o = F,(F nd = p_(F H
j1 1( o) 5 ¢2 FE o)

(¢ - ¢, ) (F - F )
- _ 21 11 o2 ol + F . ) (11)

oq B _ _ ol
(¢12 ¢11) (¢22 ¢21)

ing this value, the air-gap magnetizing force distribution can be calcu-
ted as follows

gq% r=R5 gqﬁ 5 5
te air-gap flux densities are
B = K H ;: B = H H (13)
gqr gqr gqe gqe

integrating the Laplace equation, the magnetic flux density is determi-
-d. Fig. 2 illustrates the air-gap flux density in g-axis.

is noticed that the first significant decrease of the flux density

occurs for an angle from the pole axis. A reversal of the flux density

a , ; . ;
pole can be even take place if the scalar magnetic potential Uo is larger
‘han the value corresponding to the sinusoidal of the scalar magnetic
potential at that particular point

U >U sin (8 + 68 )
o sq a nc
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ig.(2) Air-gap magnetic field flux distribution for g-ax

A second decrease of the flux density occurs due to the
between the poles.

The amplitude of the flux density fundamental is found o

fourier series;
1 '1T/2

B = /' b (8) sinb 4 6
g g
ql o qr

ERES

For an isotropic equivalent cylindrical rotor, the maxiii
on g-axis is found by

B sin &

gqc g

B

dl

The form factor K is defined as the ratio of the fundamant

amplitude of the ggr—gap flux density of the real macn:
fundamental hormonic amplitude for an ideal cylindrical

Other coefficients necessary for the motor design are

i ] The pole pitch covering coefficient a 1is the pole |
coefficient of an ideal machine whichqhas the same

real machine, whose flux distribution is constant and
maximum flux distribution on g-axis, B

¢ qm
aq = ;TETEQ__—_ , Where T = ﬂ.RS
m qrm
¢ = [ Db (8) R_.2.d6
9 o gqr 3

ii] The form coefficient of the flux for g-axis (K¢}

|
¢q

¢q1
m

¢ y P J ng1 sin® R5 2.40

is air-gap fuSdamerital flux distribution on g-axis.

Ko
q

where

Ea
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(17)
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2.2. Calculation of the Flux Distribution on d-axis

The following modifications occur

] - = <o
¢ Flyg = F(R.,0) Fsgc?sRe o<esm (18)
4
= F <r<R ,
¢ F[BC F(x,m) =5 . R, STER_
5 = Ry
Fl._ = - F|
LA BC

the remaining boundary conditions are the same as for the computation for
q-axis. As in g-axis, the scalar magnetic potential along AB is cosinuso-
idal, the flux coming out of EFGS is equal to the one entering SHIJ and
hence, the overall flux for EFGHIJ is zero; ¢, = 0. In keeping with the
magnetic flux law, ¢, must also be equal to zéro for the surface supported
by EFGHIJNME. From rélation (7) it results that F mist also be equal to O.
For the determination of the remaining parameters? the calculations necess-
ary are similar to those performed for g-axis.

4 /2
B = /' b (6) cosB d 6 (19)
gdl o gdr
b oo, EES
Jar ' 5
B =B .cos §
gdc B.g
datl
= . 20
Kad B (20)
gdc
+n/2
$ = S b () .R_ 2.4 6,
@ -n/2 Jar 3
+m/2
o = I B cos 6. R_.2£ 4 6,
&k =xf3 a1 3
%a bq
¢ 7 T
T:L: B dl

The integration of the Laplace equation in a polar coordinate system, over
an area like the one in the previous case, is a difficult problem if done
analytically. It requires the breaking down of the area into smaller ones
and the subsequent summation of the solutions.

The digital approach is less laborious making possible the integration of
the Laplace equation over the whole area at the same time.

3. COMPUTATION PROGRAM
For symmetry reasons, the digital integration is done only over half polar

pitch. The integration domain, nodes and domain breakdown are presented
in Fig.(3). ‘
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Fig. (3) Area used for the numerical integration
Finite differences were used for the integration techniques. The Laplace
equation was modelled by a system of n equations with n unknown elements,
which once it is solved, yield the scale magnetic potential for any node.
The magnetizing force (the radial and tangential component) is obtained
by derivation. In order to write the equations, F(r,0) is expanded into
Taylor power serigs around i(ri. 6,)
oF | 2, 9'F,
F =F, +«r = 4+ il =
il i il 9r, 2 5 '
i ar’,
a0
oF 612 ' F,
F =F, + 8 F i
2 i i2 36, 2 202 4
i 3 (21)
oF r? ’F
F = F -1 ..._—i +_i3.8.__i_
i3 i i3 @x, 2 3 !
i xS
oF, 0%, a*vil
E =F, — 0, +
id i i4 96, 2 902
i i
(for notations see Fig. (4))
The elimination of (BzFi/Brz) and (B’Fi/ae;) from the first and third
equation, from the second and fourth, respectively, yields
F r*, F,, —x: F r,, -
TS EYF VU VU € R ¥ G &
or, i1i%,, ¥ !
e . .
i rilriB(riI ri3) i1 ~i3
oF . 9> F, - 03 F, o
i - 14 12 i2 " i4 812 ei4
?0, +F. % 8 (22)
: . A0
i 912614(Bi2 8i4) i27i4

by using (21) and considering that for any i p
L‘is valid :

oint the relation below
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A’F,
1
ox?
Al
Nne finds
= Dy #
i 1 1 1 Fi1 i3 ti t4g
£23 y | r Y Ye. 0 ) - Y. r 3 1-F, = rr. (x,, +r,.) Fll -
11413 i i2 i4 i 44 i3 - $ifY 41 743
2r +r
5 4T, 9
T Fia T T aE ) Tis T E, e fia T 0
i 12" 42 14 iT7i3 7i4 i3 i i4 i2 i4

which is equation i1 in the n system of equation, if i is an internal node
for a boundary node

Fi - Fi boundary (24)

4 . RESULTS OBTAINED
By using a digital computer, the variation of coefficients K__, K__, &

K6 _, KO is determined as a function of the rotor geometry an ai%ggapq
length,q where the following used.

5]
ap = —;E - pole pitch covering coefficient;
g = R5 = R4 - air-gap length;
= R, - - ight ;
hp R, R3 pole heig
= - — k 1 H
hfe R3 R2 yoke width
h =R, - R - non-magnetic channel width;
cn 2 1
o = 208 /7
1 a
Fig.(6) shows that curves K = F(a,) have a minimum, the value o, reaches
for this minimum varies wi a . This is so because o, increases for a

kept constant; and thus a decrBase in the domain in wéich the air-gap
field is reversed and as a result, K rises. If a,, decreases, MN increa-
ses and ¢, = ¢, ¥ ¢ remain constant?qF becomes smaller as shown by (7)
also, the domain ovdr which the air—qapofield reverses decreases and con-
sequently, K will increase. The increase of K with the pole height
Fig.(7) seems surprising but it can be explainegqon the bases of relation
| (7). By varying hp, ¢1 = ¢2 is kept increasing if the stator leakage flux]
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Fig.(5) variation curves of
coefficients K and K as
ad aq

a function of ap, for different
air-gap values.

For

hp/T = 0.2, al = 0.214 ,
hfe/T = 0.066, hcn/T= 0.714,

g/t = 0.0053
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is neglected. By increasing h_up to h = const., JN rises and according
to (7), F decreases and hence, Ka incfeases. A maximum of the anisotropy
coefficiegt, based on the results gound so far, can be obtained for
= 0. = 0.1 K = 0.9 K = 0.0785
OLp ¥ § Oy ' Tad " Tag

K = (kK /K ) = (0.9/0.075) = 12.
max ad aqg

For design purposes, the magnetic circuit must b taken into account, which
is done by means of the saturation coefficient. Since for g-axis, the
magnetic flux is rather low, the saturation coefficient (K ) is close

to 1, while for d-axis, K_g is 1.4 - 1.6. .

The machine anisotropy real coefficient is lower, namely

K K 4
g =38 _sa . X
b K : K K 4
aq sd sd
which for this case can reach a maximum of
K 1
Kx-:;(_ = ‘1——5 =7.5
sd ’

It follows that a non saturated machine will have a higher efficiency and
power factors.

5. CONCLUSIONS |
|
The determination of coeftients Ka and Ka is the most important part of
the design of reluctance motors, as their %atio greatly influences the
machine performénces. The curves obtained allow the designers to make

choice of the optimum rotor geometries.
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