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Abstract: The X-Gamma Lomax (XGLo) distribution, a new three-parameter modification of the 

Lomax distribution, was introduced and examined in this study. This distribution's features for 

reliability and hazard rate are addressed. The methods for estimating the XGLo distribution parameters 

using maximum likelihood estimation (MLE) and maximum product spacing (MPS) are explained. To 

compare the MLE and MPS estimate approaches, a numerical investigation is conducted Monte-Carlo 

simulation. Three real data sets as the cancer data includes failure rates in weeks, 109 days of 

continuous coal mining occurrences in Great Britain, and remission periods (in months) of a random 

sample of 128 bladder cancer patients. are used to examine the adaptability and potential of the XGLo 

distribution. The likelihood ratio test and Kolmogorov- Smirnov test have been used to check the 

XGLo model is better fits than Lomax model.  
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1. Introduction 

The statistical literature has long discussed the idea of creating new statistical distributions. Pearson's 

1895 groundbreaking work, which employed the system of differential equations approach, established 
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the standard for creating statistical distributions. After that, many writers used a variety of techniques 

to create a family of distributions. Lomax in 1954 has researched the Lomax model. It is referred to as 

the Lomax or Pareto type II distribution and is a crucial distribution for lifetime analysis and business 

failure data. In addition, it has been widely used in a number of scenarios. In business, economics, and 

actuarial modelling, the Lomax distribution's probability distribution function (PDF), which has a 

heavy-tail, is frequently utilized. In order to provide the new distribution more flexibility and 

possession and to enable it to describe a vast variety of phenomenal data, authors recently produced a 

number of generalizations for the Lomax distribution.  

See Tahir et al. (2015) introduction of the Weibull-Lomax distribution for examples. Rayleigh Lomax 

distribution was first introduced by Fatima et al. (2018). The chances exponential-Pareto IV 

distribution was first presented by Baharith et al. (2020), power Lomax distribution with applications 

has been discussed by Ahmad et al. (2022), Maxwell–Lomax distribution has been introduced by 

Abiodun and Ishaq (2022), and extended odd Weibull Lomax has been obtained by Alsuhabi et al. 

(2022. 

The Lomax (Lo) distribution has received some attention in more literature it can be used in the 

reliability engineering discipline and to model a variety of failure characteristics. The cumulative 

distribution function (CDF) and the probability density function (PDF) of the Lo distribution are 

respectively as follows 

𝐹(𝑥; 𝛾, 𝜏) = 1 − (1 +
𝑥

𝜏
)

−𝛾

;  𝑥 > 0;  𝜏, 𝛾 > 0, (1.1) 

𝑓(𝑥; 𝛾, 𝜏) =
𝛾

𝜏
(1 +

𝑥

𝜏
)

−𝛾−1

; 𝑥 > 0;  𝜏, 𝛾 > 0. (1.2) 

Researchers have recently shown a significant deal of interest in the X-Gamma (XG) distribution, 

which was first described by Sen et al. (2016). By Sen and Chandra, the quasi-XG distribution has 

been introduced (2017). In contrast to the beta distribution based on the XG distribution, Altun and 

Hamedani (2018) propose a new bounded distribution using the transformation 𝑌 = 𝑒−𝑋. Sen et al. 

(2018a) generalization of the XG distribution is based on a unique combination of the exponential and 

gamma distributions. Sen et al. (2018b) investigated parameter estimation of the XG distribution under 

the gradually type-II censored sample using various techniques. 

Researchers have recently shown a significant deal of interest in the X-Gamma (XG) distribution, 

which was first described by Sen et al. (2016). By Sen and Chandra (2017), the quasi-XG distribution 

has been introduced. A new bounded distribution has been introduced by Altun and Hamedani (2018) 

using the transformation 𝑌 = 𝑒−𝑋  as an alternative to the beta distribution based on the XG 
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distribution. Another generalization of XG distribution has been provided by Sen et al. (2018a) on the 

basis of a special mixture of exponential and gamma distributions. Parameter estimation of XG 

distribution under the progressively type-II censored sample has been studied by Sen et al. (2018b) by 

using different methods. Biçer (2019) has investigated the dispersion of the transmuted-XG. Using the 

transformation 𝑌 =
1

𝑋
, Yadav et al. (2019) introduced the inverse X-Gamma distribution. The half-

logistic XG distribution was first presented by Bantan et al. (2020) using the half-logistic family. The 

discrimination study between the Lindley and XG distributions was researched by Sen et al. in 2020. 

On the other hand, Cordeiro et al. (2019) have proposed the XG-Generator (XG-G) family to 

include any distribution into a bigger family. Flexible forms of the XG-G family can be used to model 

different lifetime data sets. The XG-G family added a parameter with an additional shape parameter 

of  𝛼 > 0, and its CDF is provided by 

𝐹(𝑥; 𝛼, 𝜓) = 1 −
[1 − 𝐺(𝑥; Φ)]𝛼

𝛼 + 1
{1 + 𝛼 − 𝛼 ln(1 − 𝐺(𝑥; Φ)) + 0.5𝛼2[ln(1 − 𝐺(𝑥; Φ))]

2
}, (1.3) 

Where 𝛼 > 0, 𝐺(𝑥; Φ) is a baseline CDF with a parameter vector𝜓. The PDF of XG-G family can be 

expressed as 

𝑓(𝑥; 𝛼, Φ) =  
𝛼

𝛼 + 1
𝑔(𝑥; Φ)[1 − 𝐺(𝑥; Φ)]𝛼−1 {𝛼 + 0.5𝛼2[ln(1 − 𝐺(𝑥; Φ))]

2
} (1.4) 

where 𝑔(𝑥; Φ) = 𝑑𝐺(𝑥; Φ) 𝑑𝑥⁄ . 

This essay seeks to make two points clear. First, suggest and research the X-Gamma Lomax (XGLo) 

distribution, a new lifetime distribution based on the XG-G family. The XGLo distribution's reliability 

and hazard rate features are given. Second, the MLE and MPS methods for estimating the XGLo 

distribution's parameters are discussed. The performance of the estimators is evaluated through a 

thorough simulation exercise. Two genuine data sets are used as examples to demonstrate our XGLo 

model as well as a few other well-known distributions. Compared to certain popular distributions, the 

XGLo distribution can result in better fits. 

The work is structured as follows: Section 2 introduces the description and notation of the XGLo 

distribution, and Section 3 discusses the distribution's reliability and hazard rate characteristics. We go 

into XGLo distribution parameter estimate in section 4. Section 5 presents a Monte-Carlo simulation 

study to contrast the effectiveness of the parameter estimation for various approaches. Three actual 

data sets' applications are examined in section 6. Finally, we address the findings and conclusions of 

the present study in section 7. 

2. Model Description and Notation 
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The XGLo distribution has been introduced. The XGLo distribution was created using the XG-G 

family and Lo distribution. It is represented by the random variable 𝑋 ∼ 𝑋𝐺𝐿𝑜 (𝛼, 𝛾, 𝜏). By using 

Equations (1.3, 1.4, 1.1 and 1.2), the CDF of XGLo distribution takes this form 

𝐹(𝑥; 𝛼, 𝛾, 𝜏) = 1 −
(1 +

𝑥

𝜏
)

−𝛾𝛼

𝛼 + 1
{1 + 𝛼 + 𝛾𝛼 ln (1 +

𝑥

𝜏
) + 0.5𝛼2𝛾2 [ln (1 +

𝑥

𝜏
)]

2

}, (2.1) 

Where 𝛼, 𝛾, 𝜏 > 0 and 𝑥 > 0. The PDF of XGLo distribution is given as: 

𝑓(𝑥, 𝛼, 𝛾, 𝜏) =
𝛼

𝛼 + 1

𝛾

𝜏
(1 +

𝑥

𝜏
)

−𝛾𝛼−1

{𝛼 + 0.5𝛼2𝛾2 [ln (1 +
𝑥

𝜏
)]

2

} (2.2) 

Figure 1 display plots of the PDF of the XGLo distribution for some parameters values as follows: 

 
Figure 1. Plots of the PDF of the XGLo distribution for Some Values of Parameters. 

   

3. Reliability Analysis of XGLo Distribution  

The XGLo distribution's survival function is provided by 

𝑆(𝑥; 𝛼, 𝛾, 𝜏) =
(1 +

𝑥

𝜏
)

−𝛾𝛼

𝛼 + 1
{1 + 𝛼 + 𝛾𝛼 ln (1 +

𝑥

𝜏
) + 0.5𝛼2𝛾2 [ln (1 +

𝑥

𝜏
)]

2

} 
(3.1) 

The following formula represents the hazard rate function of a lifespan random variable 𝑋 with an 

XGLo distribution: 

ℎ(𝑥; 𝛼, 𝛾, 𝜏) =
𝛼

𝛾

𝜏
(1 +

𝑥

𝜏
)

−1

{𝛼 + 0.5𝛼2𝛾2 [ln (1 +
𝑥

𝜏
)]

2

}

{1 + 𝛼 + 𝛾𝛼 ln (1 +
𝑥

𝜏
) + 0.5𝛼2𝛾2 [ln (1 +

𝑥

𝜏
)]

2

}
 (3.2) 

The hazard function of the XGLo distribution is plotted in Figure 2 for the following parameter values. 
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Figure 2. Plots of the hazard of the XGLo with Some Values of the Parameters. 

  

4. Parameter Estimation 

This section will go into detail on the parameter estimate of the XGLo distribution utilising the 

MLE and MPS estimation methods in the presence of the entire sample. 

4.1.MLE method 

The XGLo distribution's log-likelihood function is given by: 

𝑙(𝛼, 𝛾, 𝜏) = 𝑛 𝑙𝑛 (
𝛼

𝛼 + 1
) + 𝑛[ln(𝛾) − ln(𝜏)] − (𝛾𝛼 + 1) ∑ ln (1 +

𝑥𝑖

𝜏
)

𝑛

𝑖=1

+ ∑ 𝑙𝑛 {𝛼 + 0.5𝛼2𝛾2 [ln (1 +
𝑥𝑖

𝜏
)]

2

}

𝑛

𝑖=1

. 

     

(4.1) 

Equation (4.1) can be directly maximised by solving the non-linear likelihood equations produced 

by differentiating Equation (4.1) with respect to 𝜗, 𝛼, 𝜆, and equating to zero using the R package's 

optim function. The following are the non-linear likelihood equations: 

𝜕𝑙(𝛼, 𝛾, 𝜏)

𝜕𝛼
=

𝑛

𝛼(𝛼 + 1)
− 𝛾 ∑ ln (1 +

𝑥𝑖

𝜏
)

𝑛

𝑖=1

+ ∑
1 + 𝛼𝛾2 [ln (1 + 𝑥𝑖

𝜏
)]

2

𝛼 + 0.5𝛼2𝛾2 [ln (1 + 𝑥𝑖

𝜏
)]

2

𝑛

𝑖=1

 , 

𝜕𝑙(𝛼, 𝛾, 𝜏)

𝜕𝛾
=

𝑛

𝛾
− 𝛼 ∑ ln (1 +

𝑥𝑖

𝜏
)

𝑛

𝑖=1

+ ∑
𝛼2𝛾 [ln (1 +

𝑥𝑖

𝜏
)]

2

𝛼 + 0.5𝛼2𝛾2 [ln (1 +
𝑥𝑖

𝜏
)]

2

𝑛

𝑖=1

, 

and 
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𝜕𝑙(𝛼, 𝛾, 𝜏)

𝜕𝜏
=

−𝑛

𝜏
− (𝛾𝛼 + 1) ∑

−𝑥𝑖𝜏2

(𝑥𝑖 + 𝜏)2

𝑛

𝑖=1

+ ∑
𝛼2𝛾2 ln (1 +

𝑥𝑖

𝜏
)

−𝑥𝑖𝜏2

(𝑥𝑖+𝜏)2

𝛼 + 0.5𝛼2𝛾2 [ln (1 +
𝑥𝑖

𝜏
)]

2

𝑛

𝑖=1

. 

4.2.MPS Method 

As an alternative to the MLE approach, the MPS method is used to estimate the parameters of 

continuous univariate models. According to the XGLo distribution, a random sample 𝑥1 < ⋯ < 𝑥𝑛 of 

size n with uniform spacings is given by the expression 

𝐷𝑖(𝛼, 𝛾, 𝜏) = 𝐹(𝑥𝑖, 𝛼, 𝛾, 𝜏) − 𝐹(𝑥𝑖−1, 𝛼, 𝛾, 𝜏); 𝑖 = 1,2, … , 𝑛 + 1 

where 𝐷𝑖 refers to the uniform spacings and ∑ 𝐷𝑖
𝑛+1
𝑖=1 = 1. The MPS estimators can be obtained by 

maximizing 

𝐺(𝛼, 𝛾, 𝜏) =
1

𝑛 + 1
∑ ln(𝐷𝑖(𝛼, 𝛾, 𝜏))

𝑛+1

𝑖=1

 

For more information of MPS method, see Cheng and Amin (1983), Almetwally and Almongy 

(2019b, a), Almetwally et al. (2019, 2020), El-Sherpieny et al. (2020) and Ahmad and Almetwally (2020). 

The MPS of the XGLo distribution's natural logarithm of the product spacing function is given by 

ln 𝐺(𝛼, 𝛾, 𝜏) =
1

𝑛 + 1
(∑ ln (

(1 + 𝑥𝑖−1
𝜏

)
−𝛾𝛼

𝛼 + 1
{1 + 𝛼 + 𝛾𝛼 ln (1 +

𝑥𝑖−1

𝜏 ) + 0.5𝛼2𝛾2 [ln (1 +
𝑥𝑖−1

𝜏 )]
2

}

𝑛+1

𝑖=1

−
(1 + 𝑥𝑖

𝜏
)

−𝛾𝛼

𝛼 + 1
{1 + 𝛼 + 𝛾𝛼 ln (1 +

𝑥𝑖

𝜏 ) + 0.5𝛼2𝛾2 [ln (1 +
𝑥𝑖

𝜏 )]
2

})). 

(4.2) 

Since the partial derivatives of the MPS with respect to the unknown parameters cannot be solved 

explicitly, the MPS of 𝛼, 𝛾, and 𝜏 and can be calculated using numerical techniques such the conjugate-

gradients algorithms. 

5. Simulation Study 

In this section; a Monte Carlo simulation is done to estimate the parameters based on complete 

sample by using MLE and MPS methods. Using R packages and using the following: 

Simulation algorithm: Monte Carlo experiments were carried out based on 5000 random sample for 

following data generated form XGLo distribution by using numerical analysis, where 𝑥𝑖 is distributed 

as XGLo distribution for different parameters (𝛼, 𝛾, 𝜏) with different actual values of parameter and 

for different samples sizes 𝑛 = 30, 70, 100, 150, and 200. Equations (4.1 and 4.2) and the R package 

can be used to determine the parameter estimation. The optimum strategy is one that minimises the 

estimator's bias and mean squared error (MSE). 

The following conclusions can be drawn from Table (1): 

1. All of the estimates show the consistency property, which states that the Bias and MSE get smaller 

as n increases. 
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2. For the majority of XGLo distribution parameters, the MPS estimates are more efficient relative to 

MLE. 

 

Table 1: MLE and MPS estimation methods with different values of parameters 

𝛾 = 0.5 
𝜏  0.5 1.5 

  MLE MPS  MLE MPS  

𝛼  n   Bias MSE Bias MSE Bias MSE Bias MSE 

0.4 

30 

𝛼 0.0683 0.4648 0.1531 0.5315 -0.3091 0.3208 -0.2691 0.0797 

𝛾 0.4104 0.6662 0.2816 0.3273 0.9014 0.9663 0.6600 0.5437 

𝜏    1.9918 3.2463 1.5877 3.2328 0.4799 0.5092 0.2870 0.1104 

70 

𝛼 0.0396 0.2803 0.0665 0.0880 -0.3012 0.3167 -0.2626 0.0610 

𝛾 0.3026 0.5430 0.2288 0.2314 0.7612 0.9017 0.5221 0.3678 

𝜏    1.8065 2.7848 1.4788 2.9588 0.4084 0.5037 0.2548 0.1031 

100 

𝛼 0.0135 0.2378 0.0330 0.0574 -0.3023 0.3039 -0.2531 0.0611 

𝛾 0.3094 0.5304 0.2413 0.2194 0.7081 0.7559 0.4692 0.3561 

𝜏    1.9203 2.4203 1.3761 2.1804 0.3696 0.4699 0.2462 0.0942 

150 

𝛼 0.0014 0.2105 0.0014 0.0429 -0.2933 0.3031 -0.2531 0.0598 

𝛾 0.3060 0.5160 0.2815 0.2134 0.6123 0.6190 0.4563 0.3352 

𝜏    1.8616 2.3405 1.2670 1.6698 0.3175 0.3638 0.2375 0.0818 

200 

𝛼 -0.0224 0.1933 -0.0192 0.0364 -0.2916 0.2956 -0.2438 0.0419 

𝛾 0.3362 0.5026 0.3062 0.2039 0.5828 0.4828 0.2010 0.3019 

𝜏    1.7783 2.2340 0.9639 1.4583 0.3065 0.3655 0.2274 0.0755 

1.6 

30 

𝛼 0.2036 0.5838 0.1197 0.2254 -0.3826 0.5246 -0.3262 0.1796 

𝛾 0.3002 0.4671 0.1968 0.1154 0.6581 0.7946 0.4290 0.3001 

𝜏    0.7841 1.0229 0.4494 0.3796 1.5375 1.7263 0.8888 1.2831 

70 

𝛼 0.2026 0.4587 0.1012 0.0893 -0.3815 0.4167 -0.3275 0.1603 

𝛾 0.2175 0.3028 0.1891 0.0638 0.5627 0.6224 0.4163 0.2591 

𝜏    0.6743 0.7758 0.5061 0.3412 1.4907 1.5574 0.8046 1.2614 

100 

𝛼 0.1326 0.3381 0.1007 0.0651 -0.1878 0.3343 -0.2860 0.1388 

𝛾 0.2158 0.2703 0.1826 0.0500 0.3781 0.4625 0.3864 0.2147 

𝜏    0.5412 0.6068 0.4433 0.2456 1.4500 1.4674 0.7032 0.9229 

150 

𝛼 0.1291 0.2990 0.0873 0.0446 -0.1782 0.3165 -0.2792 0.1346 

𝛾 0.2031 0.2379 0.1878 0.0448 0.3409 0.4605 0.3710 0.1712 

𝜏    0.5236 0.5617 0.4572 0.2452 1.2958 1.3396 0.7001 0.9044 

200 

𝛼 0.1320 0.2309 0.0788 0.0403 -0.1028 0.3069 -0.2594 0.1189 

𝛾 0.1993 0.2364 0.1890 0.0435 0.3247 0.3789 0.3727 0.1612 

𝜏    0.5166 0.5574 0.4516 0.2412 1.0506 1.2570 0.6396 0.8301 

 

6. Application of Real Data Analysis 

This section uses three real data sets to examine the adaptability and potential of the XGLo distribution. 

We offer the Lomax distribution as an application of the XGLo distribution and it sub-model.  
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Data set I: The cancer data set  are given by Lee and Wang (2003) which represent remission times (in 

months) of a random sample of 128 bladder cancer patients. The data is as follows: “0.08, 2.09, 3.48, 

4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 

9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 

14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 

1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 

5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 

1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 

21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69”.    

Data set II: The data set, which was used by Nassar et al. (2016), corresponds to the days between 109 

consecutive coal-mining incidents in Great Britain. “1, 4, 4, 7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 

22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54, 55, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 

96, 99, 108, 113, 114, 120, 120, 120, 123, 124, 129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 

195, 203, 208, 215, 217, 217, 217, 224, 228, 233, 255, 271,    275, 275, 275, 286, 291, 312, 312, 312, 

315, 326, 326, 329, 330, 336, 338, 345, 348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 

644, 745, 871, 1312, 1357, 1613, 1630”. 

Data set III: All 50 Items Put into Use at t = 0 and Failure Times in Weeks. This data has been 

introduced by Murthy et al. (2004). The data are “1.578, 1.582, 1.858, 2.595, 2.710, 2.899, 2.940, 

3.087, 3.669, 3.848, 4.740, 4.848, 5.170, 5.783, 5.866, 5.872, 6.152, 6.406, 6.839, 7.042, 7.187, 7.262, 

7.466, 7.479, 7.481, 8.292, 8.443, 8.475, 8.587, 9.053, 9.172, 9.229, 9.352, 10.046, 11.182, 11.270, 

11.490, 11.623, 11.848, 12.695, 14.369, 14.812, 15.662, 16.296, 16.410, 17.181, 17.675, 19.742, 

29.022, 29.047”. 

Table 2 discussed MLE with stander error (SE), and different measures (AIC, CAIC, BIC, and 

HQIC) as “Akaike information criterion (AIC), correct Akaike information criterion (CAIC), Bayesian 

information criterion (BIC) and Hannan–Quinn information criterion (HQIC)”. The Kolmogorov - 

Smirnov goodness of fit test is employed for real data where we obtained the Kolmogorov- Smirnov 

distance (KSD) and its Kolmogorov- Smirnov p value (PVKS) indicates that the XGLo and Lomax 

distribution fits for each data sets in Table 3. 
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Table 2. MLE, AIC, CAIC, BIC and HQIC for Lomax and XGLo models with different data sets 

data   estimates SE AIC CAIC BIC HQIC 

I 

Lo 
𝛾 8.3509 4.7050 

831.9923 832.0883 837.6964 834.3099 
𝜏 69.5592 43.2859 

XGLo 

𝛼 0.2403 0.0129 

827.4956 827.6891 836.0516 830.9719 𝛾 13.5172 0.0027 

𝜏 5.7705 0.0027 

II 

Lo 
𝛾 1.7588 0.3779 

1412.4198 1412.5330 1417.8025 1414.6027 
𝜏 237.0444 68.0941 

XGLo 

𝛼 0.7958 0.4972 

1406.7917 1407.0203 1414.8658 1410.0660 𝛾 5.7299 2.7543 

𝜏 314.9754 212.2633 

III 

Lo 
𝛾 11.3191 7.0156 

329.2707 329.5261 333.0948 330.7270 
𝜏 97.9268 62.3684 

XGLo 

𝛼 0.2009 0.0171 

313.7988 314.3206 319.5349 315.9831 𝛾 64.0230 0.0026 

𝜏 37.9966 0.0026 

Table 2 shows that the XGLo fits the data better than the Lomax model based on different criteria 

as the AIC, CAIC, BIC and HQIC values. In order to see how well the XGLo distribution fts this data, 

the hypotheses are H0: 𝐹 = 𝐹𝑋𝐺𝐿𝑜  versus H1: 𝐹 ≠ 𝐹𝑋𝐺𝐿𝑜.  In table 3, the XGLo model has the highest 

p-value and the lowest distance of KSD value when it compares with Lomax models for different data 

sets. Furthermore, likelihood ratio test (LRT) has been used to determine the appropriateness of the 

model. The hypotheses are as follows: 

H0: 𝛼 = 0  (Lomax) versus H1: 𝛼 ≠ 0 (XGLo) 

The LRT and the corresponding p-value are denoted in Table 3. In this case, the calculated LRT 

statistic is greater than the critical point for this test, which is very small. According to the LRT, we 

conclude that this data fts the XGLo much better than the Lomax distribution. 

Table 3: KS test, LRT for Lomax and XGLo models with different data sets 

data   XGLo Lo LRT P-Value 

I 

LogL 410.7478 413.8988 6.3021 

0.0121 
df 3 2 1 

KSD 0.0724 0.1033   

PVKS 0.5139 0.1305   

II 

LogL 700.3959 703.7217 6.6517 

0.0099 
df 3 2 1 

KSD 0.0626 0.0925   

PVKS 0.7870 0.3081   

III 

LogL 153.8994 161.9805 16.1622 

0.0001 
df 3 2 1 

KSD 0.1095 0.2177   

PVKS 0.5503 0.0147   

Figure 3, 4 and 5 shows the fit of the empirical CDF, histogram and PP-plot as follows 
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Figure 3. Cumulative function with empirical CDF, histogram with the Fitted pdf of XGLo distribution, and P-P plot 

for the XGLo distribution for data set I 

 

Figure 4. Cumulative function with empirical CDF, histogram with the Fitted pdf of XGLo distribution, and P-P plot 

for the XGLo distribution for data set II 

 

Figure 5. Cumulative function with empirical CDF, histogram with the Fitted pdf of XGLo distribution, and P-P plot 

for the XGLo distribution for data set III 
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7. Conclusion 

The X-Gamma Lomax (XGLo) distribution, a new extension of the Lomax distribution, is a new 

three-parameter model that we propose in this study. The widespread application of the Lomax model 

in life testing serves as the driving force behind the XGLo distribution, which offers greater flexibility 

when analysing lifetime data. MLE and MPS are used to derive the XGLo distribution parameter 

estimation. The model parameters are estimated using estimation techniques, and the model 

performance is evaluated using simulation results. The proposed model, which is based on three real-

world data, regularly offers a better fit than the Lomax distributions. 
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