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ABSTRACT

All  of  the  human  actions  on  earth  are  influenced  by  elements  such  as  energy, 
freshwater,  and  the  environment.  Currently,  because  of  the  water  crisis  and  the  effects 
of global warming, drinkable water,  and environmental impact are the most  significant 
and  well-liked  study  issues. The  use  of  adsorption  desalination  at  various  operating 
temperatures has been studied in the current work using a simulation model. This study 
also looked at the impact of varying the temperatures of the heat source, evaporator, and 
condenser.  In  the  current  study,  a  low-grade  heat  source  temperature  such  as solar 
energy  was  used  to  analyze  the  performance  of  a  silica  gel-water  adsorption 
desalination  system  using  a  lumped  parameter  model.  To  keep  the  operating 
temperature of about 85°C needed to operate the desalination system, the source of heat 
was  already  connected  to  a  storage  reservoir.  Additionally,  it  has  been  noted  that  the

adsorption  desalination  machine  produces  specific  daily  water  production  of  about  8
3

m /ton silica gel.
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Nomenclature: 

Symbols 

  Adsorption capacity [kg/kg] 

   Maximum adsorption capacity [kg/kg] 

   Specific heat [J/kgK] 

   Surface diffusion coefficient [m
2
/s] 

    Pre-exponential coefficient [m
2
/s] 

E Characteristic energy [J/kg] 

   Activation energy [J/mol] 

    Water latent heat [J/kg] 

    Isosteric heat of adsorption [J/kg] 

M Mass [kg] 

m· Mass flow rate [kg/s] 

P Pressure [kPa] 

   Universal gas constant [J/molK] 

   Average radius of the particle [m] 

T Temperature [°C] 
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t Time [s] 

  Salt concentration [ppm] 

Subscripts/superscript 

ads Adsorption 

al Aluminum 

bed Adsorption bed 

ch Chilled water 

cond Condenser 

cu Copper 

cw Cooling water 

d Desalinated water 

des Desorption 

eva Evaporator 

hex Heat exchanger 

hw Heating water 

i Inlet 

o Outlet 

s Salt 

sat Saturation 

SG Silica gel 

sw Seawater 

V Vapor 

w Water 

Abbreviation 

Adiso Adsorption isotherm 

Adkin Adsorption kinetics 

BET Brunauer-Emmett-Teller 

     Adsorption capacity [kg/kg] 

COP Coefficient of performance [-] 

GOR Gained output ratio [-] 

RT Room temperature [°C] 

SBET BET Surface Area [m
2
/g] 

SCP Specific cooling power [W/kg] 

SDWP Specific daily water production [m
3
/ton per day] 

SG Silica gel 

Tads Adsorption temperature [°C] 

tcycle Cycle time [s] 

Tdes Desorption temperature [°C] 

Vpor Pore volume [cm
3
/g] 

V0.99 Total pore volume [cm
3
/g] 

 

1. INTRODUCTION 
As a consequence of rising water needs, the issue of drinking water and the environment 

has emerged as one of the most significant and well-liked themes in the field of energy 

research today. 75% of the surface of the world is covered by water. Freshwater is in 
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low supply in many areas, particularly in Africa and the Middle East. On the other hand, 

these areas have a lot of saltwater due of their extensive coasts, which has a significant 

desalination potential [1, 2]. This apparent contradiction results from the fact that only 

around 2.5% of the water on earth is freshwater, which is found in rivers, lakes, ice, and 

groundwater [3]. 

 

The current desalination processes have drawbacks due of their very large energy 

consumption. These conventional techniques use between 3.5 and 12 kWh/m3 in total 

[4-6]. Today's academics face a critical and difficult task: optimizing the use of energy 

sources and utilizing renewable energy sources [7-10]. 

 

The adsorption desalination (AD) system, which is powered by a low-grade heat source, 

is one such option that can achieve the mentioned objectives. The AD method 

technology has been developed continuously over the past several decades and is 

viewed as a potential replacement for conventional desalination systems to address the 

issues previously highlighted [11-18]. It uses a silica gel and water adsorbent-adsorbate 

combination as an example. The AD system uses a low-grade heat source to simulate 

ambient evaporation while condensing water vapor at a high altitude to produce clean 

water without the need of fossil fuels. Saline water evaporates at low temperatures, 

usually between 5 and 20 degrees Celsius [3, 19-21]. These plants are thought to use 

1.38 kWh/m
3
 of specific energy [20, 22, 23]. 

 

Specific daily water production (SDWP), specific cooling power (SCP), and coefficient 

of performance (COP) are three factor that determine how well the AD system performs 

[24]. The system temperatures have an impact on the AD system's performance [12, 25-

27]. The impact of various operating temperatures on the AD system is demonstrated in 

this study. 

 

 
 

Fig. 1: Layout of the AD system. 
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2. MATHEMATICAL MODEL 
Figure 1 illustrates the three main parts of the AD system: the adsorption beds, the 

evaporator, and the condenser. Theoretical investigation on the AD cycle for the two-

bed mode. It is based on the energy balances between the sorption components, 

evaporator, and condenser as well as on adsorption isotherms and kinetics. Silica gel is 

the adsorbent that was employed in this investigation. 

 

The governing equations of the AD system are presented in this section. 

 

2.1. Equilibrium Water Uptake 

D-A model estimated for silica gel, adsorption isotherms, (Eq. 1). [12] 
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LDF equation estimated for silica gel, adsorption kinetics. [12, 27] 
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Where, 
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2.2. Mass Balance Equations 

Salt water and condensate water mass balance; 
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Evaporator and salt mass balance; 
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2.3. Energy Balance Equations 

Adsorption bed energy balance; 
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Heat of adsorption [24]; 
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Condenser energy balance; 
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Evaporator energy balance; 
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The outlet temperature for heat exchangers is expressed by; 
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The heat of evaporation, desorption, and condensation energy are given by; 
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Cycle performance parameters; 
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3. RESULTS AND DISCUSSION 
 

The impact of some parameter on SCP, COP and SDWP will be presented as following. 
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3.1. Effect of Hot Water Temperature 

The goal of this effort is to create an AD system that can be powered by a heat source 

with a low temperature. Figures 2-4 illustrate how hot water intake temperature affects 

performance in this manner. 

 

According to figure 2, SCP rises from 27 to 317 W/kg of silica gel when the hot water 

intake temperature rises. Lower than 70–80°C, temperature increase has a significant 

impact on coefficient of performance (COP). Above this temperature, COP begins to 

decline, as seen in figure 3. This implies that the majority of the adsorbate is desorbed 

up to 80°C, after which the amount of desorbed adsorbate rapidly declines. In other 

words, the larger sensible heat of the desorbed adsorbate vapor in the desorption bed 

results in increased heat loss. 

 

SDWP is shown in figure 4 at regeneration temperatures between 55 and 95°C. The 

findings demonstrate that when the hot water intake temperature rises, the AD cycle's 

water production rate also rises. This is because the regeneration mechanism has been 

improved to accommodate hotter water temperatures. 

 

 

 
 

 

Fig. 2: Variation of SCP at different hot water inlet temperatures. 
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Fig. 3: Variation of COP at different hot water inlet temperatures. 

 

 
 

Fig. 4: Variation of SDWP at different hot water inlet temperatures. 

 

3.2. Effect of Cooling Water Temperature 

The impact of cooling water intake temperature fluctuation on the adsorbed/condenser 

is depicted in figures 5-7. Figures 5 and 6 show that as cooling water temperature 

increases, SCP and COP steadily decline. These are due to an increase in the amount of 

adsorbate that is adsorbed at the cooler cooling water temperature. At a cooling water 
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temperature of 10°C, the highest values of SCP and COP are 459 W/kg of silica gel and 

0.664, respectively. 

 

At a hot water inlet temperature of 85°C, the impact of cooling water intake temperature 

on the SDWP is also examined. As seen in figure 7, the cycle performs more effectively 

at lower cooling water temperatures, which results in increased SDWP. 

 

 
 

Fig. 5: Variation of SCP at different cooling water inlet temperatures. 

 

 
 

Fig. 6: Variation of COP at different cooling water inlet temperatures. 
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Fig. 7: Variation of SDWP at different cooling water inlet temperatures. 

 

3.3. Effect of Chilled Water Temperature 

SCP, COP, and SDWP are used to illustrate how chilled water input temperature affects 

system performance. According to figures 8, 9, and 10, each SCP, COP, and SDWP 

decrease as chilled water temperature decreases. Increases in chilled water temperature 

are obviously associated with an increase in both SCP and COP. However, the 

researched adsorption desalination-cooling system's performance can be enhanced in 

relation to the user's desired temperature. 

 

 
 

Fig. 8: Variation of SCP at different chilled water inlet temperatures. 
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Fig. 9: Variation of COP at different chilled water inlet temperatures. 

 

 
 

Fig. 10: Variation of SDWP at different chilled water inlet temperatures. 

 

4. CONCLUSION 
The adsorption desalination-cooling system can be powered by a low-grade heat source 

as solar energy, which can be operated efficiently in the Middle East region and Africa 

weather. From these conclusions, it can be recommended that for future work it is better 

to increase the performance of the AD system, which can be achieved, by increasing the 

overall heat transfer coefficient. Future work should also investigate new adsorbent 

materials as a metal-organic framework (MOF) and composite materials. 
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