PREVALENCE OF NEONATAL SKIN AND MUCOUS MEMBRANE FINDINGS AND ITS ASSOCIATION WITH MATERNAL-NEONATAL FACTORS

By

Mohamed S. EL-Shimi*, Ola G. Badr El-Deen*, Nehal M. Badr**, Yasmin A. Farid*

*Pediatric Department, Faculty of Medicine, Ain Shams University

**Ministry of Health and Population, Egypt

*Corresponding author: Yasmin Aly Farid

Lecturer of pediatrics and neonatology, Faculty of Medicine,

Ain Shams University

Mobile: 01001449558, E-mail address: yasmin aly farid@hotmail.com

ABSTRACT

Background & Objectives: Neonatal skin findings are frequently seen ranging from physiological to pathological and they can be influenced by certain conditions. The purpose of this study was twofold: our first aim was to detect the prevalence of different neonatal skin findings in the neonatal period. The second aim was to record the effect of different maternal-neonatal factors on their prevalence.

Patients and Methods: A cross section study conducted from June 2016 to February 2017 in Ain Shams University Hospitals, Cairo, Egypt, on 380 hemodynamically stable preterm and full term and post term neonates, examined by one neonatologist and dermatologist from birth till 28 days of life with recording their maternal and neonatal clinical data as gestational age, birth weight, maternal diseases during pregnancy and mode of delivery.

Results: Prevalence of Neonatal Skin Findings was (85.8%). Physiological findings were the most common category (52.4%). The most common skin finding was milia (16.6%). Oral moniliasis were more prevalent in preterms. Erythema toxicum neonatorum and neonatal acne were more prevalent in full terms. Salmon patches were more frequent in females. Mongolian spots were more frequent in black race. There was significant association between maternal age and diseases and certain skin findings as diabetes mellitus, hypertension and cardiac diseases.

Conclusion: Neonatal Skin Findings are frequent & commonly physiological. They are influenced by different maternal-neonatal factors. Their Precise identification is crucial to avoid unneeded interventions & therapy e.g NICU admission, systemic and local antibiotics or other medications.

Keywords: Skin findings, neonates, physiological, milia, Erythema toxicum neonatorum, neonatal acne, Mongolian spot.

INTRODUCTION

During the neonatal period, various cutaneous findings are commonly seen. In most instances, the commonly observed findings during the neonatal period are regarded as physiologic, benign and transient (Khoshnevisasl et al., 2015). Some of them may have prognostic implications like congenital melanocytic nevi and some as epidermolysis bullosa needs a family planning and genetic consultation to have more healthcare measures for the child (Moosavi and Hosseni, 2006). There are wide geographic and ethnic variations in the neonatal skin. Some skin lesions are common in darker skin races and vice versa (Haveri and Inamadar, 2014).

dermatologists rarely The examine these skin conditions. However, it is very important to identify discover and correctly to avoid worrying of parents, pediatricians and gynecologists well as as unnecessary incorrect or diagnostic therapeutic or procedures (Solak et al., 2014).

Although many studies have recorded the incidence of the neonatal cutaneous lesions, the knowledge concerning their influencing factors are still quite little (Abraham et al., 2017).

Nevertheless, many factors as fetal, maternal and environmental can have an influence on the onset, type and development of the neonatal cutaneous conditions (Firouzi et al., 2020).

To our knowledge, no earlier studies among Egyptian neonates have gone precisely through the variant maternal-neonatal factors affecting the prevalence of neonatal skin findings.

AIM OF THE STUDY

The purpose of the study was twofold: our first aim was to detect the prevalence of different neonatal skin findings in the neonatal period. The second aim was to record the effect of different maternal-neonatal factors on their prevalence.

Ethical consideration:

- 1. Written consent was obtained from the parents/care-givers before enrollment in the study.
- 2. This study was approved by the ethics committee of Faculty of Medicine of Ain Shams University (FWA000017585).
- 3. The patient caregiver has the right to quit the study.
- 4. Study results were confidential.
- 5. Authors declared no conflict of interest nor fund was granted for this study.

6. No financial support regarding the study or publications.

Sample size calculation:

A prevalence rate of cutaneous manifestations of 45% need a maximum sample size of 380 reaching up to 400 at 5% margin of error and 95% confidence interval.

PATIENTS AND METHODS

This study was cross sectional randomized study conducted on a total of 380 neonates from June 2016 to February 2017 in Ain Shams University Hospitals, Cairo, Egypt.

Inclusion Criteria:

- 1. Full term, post term and preterm neonates.
- 2. Examined from birth till 28 days of life.
- 3. Hemodynamically stable to withstand thorough examination.

Exclusion Criteria:

- 1. Neonates with birth injuries
- 2. Neonatal jaundice and central cyanosis.

All included neonates were subjected to detailed perinatal and family history. The baby was fully undressed and examined in good white light – or day light if

possible – to observe the entire skin surface, including palms, soles, nails, genitalia, scalp and oral cavity. Then accurate description of any skin finding morphology, site, size, color, or any other characteristic was recorded together with diagnosis of the finding based on the clinical impression; no skin biopsy was done.

Skin findings were examined neonatologist diagnosis was confirmed by one dermatologist avoid to interpersonal variation diagnosis. The diagnosis of skin findings was assigned to six categories: physiological, transient non-infective. infections. marks, developmental defects and other findings.

Statistical Analysis:

Data were analyzed using Statistical Program for Social Science (SPSS) version 20.0. Quantitative data were expressed as mean± standard deviation (SD). Qualitative data were expressed as frequency and percentage. The following tests were done:

Chi-square $(\chi 2)$ test of significance was used in order to compare proportions between two qualitative parameters and Probability (P-value).

RESULTS

Vol. 25

In our study we included 380 neonates from birth till age of 28 days with the neonatal &

maternal socio-demographic data (Table 1).

Table (1): Neonatal and maternal socio-demographic characteristics (n= 380)

(II— 38U)	T	1	
Neonatal Data	n	(%)	
Gestational age (weeks)			
Preterm	133	(35.0%)	
Full term	242	(63.7%)	
Post term	5	(1.3%)	
Sex			
Female	168	(44.2%)	
Male	212	(55.8%)	
Weight (kg)			
ELBW	5	(1.3%)	
VLBW	21	(5.5%)	
LBW	55	(14.5%)	
Normal birth weight	285	(75.0%)	
LGA	14	(3.7%)	
Mode of delivery	•		
NVD	104	(27.4%)	
LSCS	276	(72.6%)	
Race			
Black	9	(2.4%)	
White	371	(97.6%)	
General condition			
Good	313	(82.4%)	
I11	67	(17.6%)	
Maternal age (years)	•		
<20 years	8	(2.1%)	
20-24 years	198	(52.1 %)	
25-29 years	93	(24.9%)	
≥30 years	۸۱	(21.3%)	
Maternal diseases during p	regnancy		
Negative	288	(75.8%)	
Positive	92	(24.2%)	
Maternal medications duri	ng pregnancy		
Negative	306	(80.5%)	
Positive	74	(19.5%)	
. 1 1 1 1 1 TTT			

ELBW: extreme low birth weight, VLBW: very low birth weight; LBW: low birth weight, NVD: normal vaginal delivery, LSCS: lower segment caesarean section, LGA: large for gestation age..

Table (2): Prevalence of different skin and mucous membrane findings in the studied neonates (n= 380)

Skin Findings	N	0/0
Positive	326	85.8 %
Negative	54	14.2 %
Physiological Skin Findings	199	52.4 %
Milia	63	16.6%
Desquamation	39	10.0%
1	21	5.5 %
Hypertrichosis	21	5.5 %
Sebaceous gland hyperplasia	21	5.5 %
Pigmentary Changes Due To Melanin	1	1.6.00/
Mongolian spot	45	16.8%
Hyperpigmentation	10	2.6 %
Transient Non-infective Findings	64	16.8 %
Neonatal acne	28	7.4%
Erythema toxicum neonatorum	20	5.3 %
Miliaria	9	2.4 %
Transient neonatal pustular melanosis	7	1.8 %
Infections	11	2.9 %
Fungal napkin dermatitis	7	1.8 %
Oral moniliasis	4	1.1 %
Birth Marks	61	16.1 %
Vascular birth marks		
Salmon patch	50	13.2%
Haemangioma	7	1.8 %
Port wine stain	1	0.3 %
Pigmentary birth marks	L	
Congenital melanocytic nevus	3	0.8 %
Developmental Defects	115	30.3%
Meningeomyelocele (Arnold Chiari malformation)	24	6.3 %
Omphalocele	15	3.9%
Cutis aplesia congenital	6	1.6%
Gastroschisis	4	1.1 %
Other developmental defects	4	1.1%
Cleft lip and palate	3	0.8%
	3	0.670
Skin Dimple	£0	15.2.0/
Sacral dimple Cheek dimple	58	15.3 %
*	1	0.3 %
Others	47	12.4 %
Amniotic fluid band	6	1.6 %
Collodion ichthyosis	3	0.8 %
Harlequin ichthyosis	6	1.6 %
Ichthyosis vulgaris	3	0.8 %
Epidermolysis bullosa	3	0.8 %
Extravasation	3	0.8 %
Medical adhesive related skin injury (MARSI)	3	0.8 %
Petechiae	6	1.6 %
Purpura fulminans	3	0.8 %
Suckling blister	4	1.1 %
Rare conditions	7	1.8%

Table (2) revealed that physiological skin findings were

the most prevalent skin findings followed by developmental

defects and transient non-patches were the most frequent infective findings, also salmon birth marks.

Table (3): Association between neonate's gestational age and skin and mucous membrane findings

	Preterm) (n=133)	Term (n= 242)	Post term (n=5)	Chi- square test				
	N(%)	N(%)	N(%)	χ^2	p-value			
Negative	28 (21.1%)	25 (10.3%)	(20.0%)	8.233	0.016			
Physiological Skin	Physiological Skin Findings							
Hypertrichosis	14 (10.5%)	6 (2.5%)	1 (20.0%)	12.678	0.002			
Pigmentary Chang	ges Due To Mo	elanin						
Hyperpigmentatio n	0(0.0%)	8(3.3%)	2(40.0%	31.273	< 0.001			
Transient Non-inf	ective Finding	S						
Erythema toxicum neonatorum	2(1.5%)	18(7.4%)	0(0.0%)	6.343	0.042			
Neonatal acne	0(0.0%)	28(11.6%)	0(0.0%)	17.237	< 0.001			
Infections								
Oral moniliasis	4(3.0%)	0(0.0%)	0(0.0%)	7.508	0.023			
Birth Marks								
Vascular birth ma			T	Γ	Γ			
Salmon patch	13(9.8%)	37(15.3%)	0(0.0%)	3.052	0.217			
Developmental De			T	T	T			
Gastroschisis	1(0.8%)	3(1.2%)	0(0.0%)	0.250	0.883			
Omphalocele	5(3.8%)	10(4.1%)	0(0.0%)	0.240	0.887			
Skin Dimple			1	T	T			
Cheek dimple	0(0.0%)	0(0.0%)	1(20.0%	75.198	< 0.001			
Others	Others							
Harlequin ichthyosis	5(3.8%)	4(1.7%)	0(0.0%)	6.265	0.044			

(Table 3) recorded statistically significant correlation between gestational age and negative skin findings, oral moniliasis and harlequin icthyosis, erythema toxicum neonatorum, neonatal acne , hypertrichosis, hyperpigmentation and cheek dimple.

Table (4): Association between neonate's birth weight and skin and mucous membrane Findings

	ELBW	VLBW	LBW	Normal birth weight	LGA	Chi- squar e test	
	N=5	N=21	N =55	N=285	N = 14	e test	
	N(%)	N(%)	N(%)	N(%)	N(%)	χ^2	p- value
Negative	1 (20.0%)	7 (33.3%)	10 (18.2%)	32 (11.2%)	4 (28.6%)	11.596	0.021
Physiological S	kin Findir		•			•	
Desquamatio n	3 (60.0%)	2 (9.5%)	6 (10.9%)	24 (8.4%)	4 (28.6%)	19.613	< 0.001
Hypertrichosi s	1 (20.0%)	9 (42.9%)	6 (10.9%)	5 (1.8%)	0 (0.0%)	69.698	<0.001
Pigmentary Cl	hanges Du	e To Mela	nin			•	
Hyperpigmen tation	0 (0.0%)	0(0.0%	0(0.0%)	10(3.5%	0(0.0%)	3.423	0.490
Mongolian spot	0 (0.0%)	3 (14.3%)	10 (18.2%)	31 (10.9%)	1 (7.1%)	3.460	0.484
Transient Non	Transient Non-infective Findings						
Neonatal acne	0 (0.0%)	0 (0.0%)	0 (0.0%)	28 (9.8%)	0 (0.0%)	10.076	0.039
Pigmentary bi	rth mark						
Congenital melanocytic nevus	0 (0.0%)	0 (0.0%)	0 (0.0%)	3 (1.1%)	0 (0.0%)	1.008	0.909
Developmental Defects							
Skin Dimple	,		T			1	
Cheek dimple	(0.0%)	0 (0.0%)	0 (0.0%)	190.4%0	0 (0.0%)	0.334	0.987
Other							
Congenital vitiligo	1 (20.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	75.198	< 0.001

ELBW: extremely low birth weight, LGA: Large for gestation, VLBW: very low birth weight.

Table (4) revealed statistically significant associations between birth weight and negative skin

findings, desquamation, congenital vitiligo, hypertrichosis and neonatal acne.

July 2022

Table (5): Association between maternal diseases and different skin findings in the studied neonates

	Negative maternal diseases (n= 288)	Positive maternal diseases e.g DM, HTN, cardiac (n= 92)	Chi- square test			
	N (%)	N (%)	χ^2	p-value		
Negative	30 (10.4%)	24 (26.1%)	14.045	0.070		
Physiological Skin Fi	indings					
Desquamation	29 (10.1%)	10 (10.9%)	0.048	0.826		
Hypertrichosis	15 (5.2%)	٦ (6.5%)	0.230	0.631		
Milia	44 (15.3%)	19 (20.7%)	1.456	0.228		
Sebaceous gland hyperplasia	11 (3.8%)	10 (10.9%)	6.638	0.010		
Pigmentary Changes	Due To Melanin					
Hyperpigmentation	10 (3.5%)	0 (0.0%)	3.281	0.070		
Mongolian spot	24 (8.3%)	21 (22.8%)	14.028	< 0.001		
Transient Non-infect	ive Conditions					
Erythema toxicum neonatorum	17 (5.9%)	3 (3.3%)	0.976	0.323		
Miliaria	3 (1.0%)	6 (6.5%)	9.056	0.003		
Neonatal acne	24 (8.3%)	4 (4.3%)	1.623	0.203		
Transient neonatal pustular melanosis	7 (2.4%)	0 (0.0%)	2.278	0.131		
Developmental Defects						
Gastroschisis	4 (1.4%)	0 (0.0%)	1.291	0.256		
Omphalocele	15 (5.2%)	0 (0.0%)	4.989	0.026		
Others						
Harlequin ichthyosis	6 (2.1%)	0 (0.0%)	1.947	0.163		
Suckling blister	1 (0.3%)	3 (3.3%)	5.683	0.017		

DM: diabetes mellitus, HTN :hypertension

Table
statistically
associations(5)
significant
betweenrevealed
significant
thepresence of maternal diseases

and sebaceous gland hyperplasia Mongolian spot, miliaria and sucking blister.

DISCUSSION

Skin findings are commonly seen during the neonatal period transient ranging from physiological grossly to pathological findings (Reginatto etal., 2016). Several studies have been carried out to estimate the frequency of skin findings in newborns in several countries all over the world (Abraham et al., 2017. Firouzi et al.. Reginatto et al., 2016, Haveri and Inamadar, 2014. Budair et al., 2017). On the other hand, there limited reports were prevalence of skin findings among neonates Egyptian including studies performed in Sohag & El-Sharkia Governorates Moneim and El Dawela, 2012, Shehab et al., 2015).

The results of our study revealed that the prevalence of neonatal skin findings was 85.8% while earlier studies from other regions in Egypt showed lower prevalence of (74.6% & 40%) respectively (El Moneim and El Dawela, 2012, Shehab et al., 2015). However, other studies from all over the world had conflicting results; where skin findings reported in German, Jordanian, Hungarian & Iranian neonates had lower prevalence than us (59.7%, 78%, 74.35% & respectively, while 79.8) prevalence and in Indian

Australian neonates was higher (94.8% & 99.3%) respectively (Lorenz et al., 2000, Al-Dahiyat, 2006, Abraham et al., 2017, Firouzi et al., 2020). This high variability prevalence among different regions in the world might be attributed to inherent individual differences or factors related to neonatal health. maternal health during pregnancy or seasonality (Shehab et al., 2015).

In the current study. physiological skin findings were the most common category of neonatal skin findings. Milia were the most common among all skin findings. It was seen in 16.6% of all cases followed by mongolian spot (11.8%). Our results agreed with Budair et al. and Firouzi et al. where milia was the most common neonatal skin finding (45.2%) (Budair et al., 2017, Firouzi et al., 2020), yet differing from Shehab et al. who reported that milia was observed only in (5.3%) of the studied neonates (Shehab et al., 2015). On the other hand, mongolian spots were the most frequent skin findings in Iranian and Taiwanese neonates with a frequency of (71.3% & respectively (Moosavi 61.6%) and Hosseini 2006, Shih 2007), and commonly present in Chinese frequency neonates with (86.3%) (Solak et al., 2015).

The second frequent category study was in our developmental defects. The most detected developmental defects sacral dimple. were meningeomyelocele and omphalocele with prevalence of (15.3%, 6.3% & 3.9%) respectively, which were considered relatively high percentages in comparison to the majority of literatures, where in Turkey. Ferahbas et al. reported only case of one myelomeningocele (0.12%) in 816 newborns (Ferahbas et al., 2009). In addition, we attributed this to maternal noncompliance for folic fortification acid and supplementation.

Moreover, the transient noninfective findings were the third frequent category of recorded skin findings. Neonatal acne was the most common finding in this category and was seen in (7.4%) of all cases followed by erythema toxicum neonatorum (5.3%) and transient pustular melanosis was the least common. On contrary, Shehab et al. reported transient non-infective findings were the most common category and were seen in 41% of papulopustular cases, all dermatoses was the most common findings transient and detected in 30.3% of cases, with following the dermatoses

mentioned in descending manner; miliaria and neonatal acne (Al-Dahiyat 2006). However, Firouzi et al. recorded erythema toxicum as the second most common neonatal skin condition (37.3%) in Iranian neonates (Firouzi et al., 2020). We attributed this difference to be related to different environmental, racial, neonatal or maternal factors.

Issue 3

The birth marks were the fourth frequent category in our research and salmon patches were the most frequent birth marks (13.2%)followed by haemangiomas and port wine stains. Agreeing with our study, in China, salmon patches were the most common birth marks, while port wine stains were the least (Solak etal., 2015). Nonetheless many studies were conflicting across this issue, where Firouzi et al. recorded salmon patches as the third frequent neonatal finding cutaneous (37.3%) (Firouzi et al., 2020). Others recorded higher incidence hirth marks in neonates (Moosavi and Hosseini, 2006, Gokdemir et al., 2009, Sachdeva et al., 2002). On the other hand, vascular birth marks such as haemangiomas and port wine stains were the most common birth marks in German neonates with prevalence (37.2%)of (Lorenz et al., 2000).

In the current study, infections were infrequent and were limited to oral moniliasis (1.1%) and fungal napkin dermatitis (1.8%). Comparably, **Ferahbas et al.**, reported incidence close to ours (2%) (**Ferahbas et al.**, 2009).

However. Sachdeva et al... O'Connor et al. and Shehab et al., reported higher cases of oral (3%,7% candidiasis & respectively) (Sachdeva et al., 2006. O Connor et al., 2008, Shehab et al.. 2015). Additionally. Shehab et considered napkin dermatitis and its related disorders as the third common category of Egyptian neonatal skin diseases (15.2%) 2015). Thev (Shehab et al., attributed their results to financial because mothers reasons studied newborns did not change nappies as frequently as required leading to prolong stool contact resulting in napkin rash. They also recorded that napkin dermatitis gave a significant relation with prematurity and seasons (more in summer and spring) (Shehab et al., 2015).

Furthermore, in our neonates ichthyosis was presented in 3 forms collodion ichthyosis, harlequin ichthyosis and ichthyosis vulgaris and we e had higher prevalence of ichthyosis than other Egyptian reports (El

Moneim and El Dawela, 2012). Our higher percentage may be allocated to being tertiary hospital with multidisciplinary teams accepting complex cases referred from all over Egypt.

As regard racial relation with neonatal skin findings, there was significant association between the black race and desquamation, hypertrichosis, hyperpigmentation, mongolian spot, congenital melanocytic nevus, and cheek dimple with p= (<0.001, 0.027, <0.001, 0.002, <0.001, <0.001) respectively.

These results were coinciding with Brazilian study done by Reginatto et al. in which black newborns showed higher prevalence of mongolian desquamation skin in the extremities, genital hyperpigmentation xerosis and (Reginatto al.. 2016). et Additionally, earlier studies found that salmon patches mongolian spots were the most common in non-white Asian and Arab neonates while congenital melanocytic nevus was common in white and European neonates (Sachdeva et al., 2006, Moosavi and Hosseini, 2006).

Regarding the neonatal factors influencing skin findings, the majority of our skin findings were found in full term neonates and this went hand in hand with Asha et al. (Asha el., 2016). Negative skin findings, oral moniliasis and harlequin ichthyosis were more frequent in preterm neonates. while ervthema toxicum neonatorum and neonatal acne were more frequent in full term hypertrichosis, neonates. and hyperpigmentation and cheek dimple were more frequent in post Similarly, in terms neonates. earlier studies erythema toxicum neonatorum were more prevalent in term gestation (Firouzi et al., 2020).

Different theories explained the relation between gestational age and skin findings, one of them reported that the physical maturity of the skin was associated with appearance of certain skin findings which was partially agreeing with our results (Cutrone and Perzutto, 2006).

the Concerning relation between baby gender and skin findings, salmon patch was more prevalent in female sex (16.7%) while with 0.042), gastroschisis (1.9%)and omphalocele (5.7%) were more prevalent in male sex (p= 0.046 and respectively. 0.034) Nevertheless, Firouzi et recorded significant association of Mongolian spots with the male sex (Firouzi etal.. 2020). yet **Ferahbas** et al. and

Khoshnevisasl et al. both found no association between Mongolian spots and baby gender, but they were linked to gestational age and hair color (Ferahbas et al., 2009, Khoshnevisasl, et al., 2015). Moreover Zagne and Fernandes and Behera et al., had significant association between male sex and milia (Zagne and Fernandes, 2011, Behera et al., 2018). On the other hand, both Gokdemir et al. Jain al. recorded and et significant association between female sex with milia (Gokdemir et al., 2009, Jain et al., 2013). Additionally Firouzi et al., and Behera et al., found that erythema toxicum was more frequent in males (Firouzi et al., Behera et al., 2018). On the contrary, Budair et al. didn't detect any association between skin findings and the baby gender (Budair et al., 2017).

Furthermore, the present study revealed that desquamation and congenital vitiligo were more prevalent in extremely low birth weight, while hypertrichosis was more prevalent in very low birth weight. Additionally, neonatal acne was more prevalent normal birth weight negative skin findings was more common in macrosomia. However, Migoto et al. reported that one of the risk factors associated with the incidence of skin findings was

birth weight ≤ 1500 gm (Migoto et al., 2013).

Regarding Maternal factors: Negative skin findings, neonatal transient and neonatal acne pustular melanosis were more common in maternal age (<20 years) with p = (0.002, 0.039,0.05) consequently. Interestingly. Firouzi et al. revealed significant association between skin findings and maternal age, yet in another Iranian study maternal age seemed to be the only element significantly associated salmon patch (Firouzi et al., 2020).

Besides this Abraham et al. significant association found between the six neonatal maternal factors they examined: baby gender, gestational age and neonatal birth weight; maternal the maternal previous age, pregnancies number, and mode of the delivery and neonatal skin findings (Abraham et al., 2017).

results Moreover. our significant emphasized associations between sebaceous gland hyperplasia and maternal Diabetes mellitus (28.6%),hypertension (28.6%)and oligohydraminos with p = (0.002,< 0.001) consequently. Mongolian spot was significantly associated with maternal hypothyroidism (2.2%)

thalassemia (2.2%),maior polvhydraminos (4.4%),hypotension (2.2%),cardiac diseases (6.7%) and rheumatoid arthritis (2.2%) with p = (0.006,0.018, 0.006, 0.006) consequently. Miliaria was significantly associated with maternal diabetes mellitus (66.7%) p = (<0.001). Sucking blister was significantly associated maternal diabetes mellitus and cardiac diseases (75%)(<0.001).

According to Boccardi et al. might be attributed medication use during pregnancy (Boccardi al.. 2007). et Additionally, suckling blister was prevalent diabetes more in mellitus and cardiac diseases. In agreement with our study, Al-Hakeem reported that neonates of poorly controlled diabetic mothers or having cardiac disease seemed to have multiple complications diseases including skin suckling blisters and other serious complications (AL-Hakeem, 2006).

Regarding mode of delivery, two hundred and seventy six neonates (72.63%) were delivered by lower segment cesarean section (LSCS) and 104 neonates (27.36%) were delivered by normal vaginal delivery (NVD). Negative Skin findings were

reported in 12.5% in NVD group and 14.9% in LSCS group (p = 0.558). We detected significant associations between NVD and hyperpigmentation (7.7%), neonatal acne (13.5%) & sacral dimple (21.2%) with p = (<0.001, 0.005 &0.050) consequently. Also significant associations between LSCS and hypertrichosis (7.2%) and sebaceous gland hyperplasia (7.2%) with p = (0.017 & 0.017).

Since majority of our neonates were delivered by LSCS, therefore this could be the reason behind reporting less frequent skin findings in NVD group.

Conversely, Fairouzi et al. had 80 % of their neonates delivered by NVD and 20% by LSCS and they reported higher frequency of cutaneous lesions among neonates delivered by NVD than those by LSCS. They assumed this could be due to higher gestational age and mechanical trauma during delivery (Firouzi etal., 2020). On the contrary, Budair et al. and Gokdemir et al., showed no association between skin findings and the mode of delivery (Budair et al., 2017, Gokdemir et al., 2009).

CONCLUSION

In conclusion, we emphasized that neonatal skin findings were frequent and variant with Prevalence of 85.8%. The most

frequent skin findings categories recorded in descending manner were; physiological (52.3%), developmental defects, transient non-infective and birth marks. The most common skin findings among all neonates were milia, sacral dimple and salmon patches. Maternal-neonatal factors seemed to influence the different neonatal skin conditions.

Issue 3

With this study we intended to increase the awareness of the various neonatal skin findings among the pediatricians to enable them to treat or reassure the parents and avoid any unneeded interventions and therapy. However, further studies were required to study larger sample size in different regions in Egypt with recording more influencing factors.

LIMITATION OF THE STUDY

No investigative parameters were applied whether dermatological investigations as skin scraping and microscopic examination of the findings or other blood laboratory tests as immunological and genetic studies.

Acknowledgement:

*Authors expressed deep gratitude to Dr. Ghada El-Shimi assistant lecturer of Dermatology for her valuable advices and guidance throughout this work.

Authors Contributions:

All authors contributed equally in this article.

REFERENCES

- 1. Ábrahám R, Meszes **Gvurkovits** Z. Bakki J. & Orvos H Csoma **ZR** (2017): Cutaneous lesions and disorders in healthy neonates and their relationships with maternal-neonatal factors: cross-sectional study World J Pediatr; 13(6):571-576.
- 2. Al-Dahiyat KA (2006):

 Neonatal skin lesions in

 Jordan, study of consecutive
 500 neonates at King Hussein

 medical center. Calicut Med; 4
 (4)e1.
- 3. Al-Hakeem MM (2006):

 Pregnancy outcome of gestational diabetic mothers: experience in a tertiary center.

 J Family Community Med; 13(2): 55–59.
- 4. Asha GS. Shilpa VK, Ramesh M. Revathi TN (2016): Clinical Study on Prevalence ofCutaneous Lesions in New Born Babies in India .J Clin Exp Dermatol Res ; 7(5):370.
- 5. Behera B, Kavadya Y, Mohanty P, Routray,D Ghosh S, and Das L (2018): "Study of physiological and

- pathological skin changes in neonates: an east Indian perspective,"Ind Paediatr Dermatol; 9 (1): 40–47.
- 6. Boccardi D. Menni S. Ferraroni M. Stival G. Bernardo L, La Vecchia C Birthmarks (2007): transient skin lesions in newborns and their relationship to maternal factors: a preliminary report from northern Italy. Dermatol; 215(1):53-58.
- 7. Budair F, Aljabre S, Alquorain N. Alnafea N. Aliabre A, **Alburaev** (2017): Survey of cutaneous findings in newborns in Saudi Arabia. J Dermatol Dermatol Surgery; 21(2): 53-57.
- 8. Cutrone M and Peruzzetto C (2006): Lesiones iatrogénicas en la piel del reciénnacido. Dermatol Pediatr Lat ;4(1):9-18.
- 9. El-Moneim AA and E. El-Dawela R (2012): Survey of skin disorders in newborns: clinical observation in an Egyptian medical centre nursery. Eastern Mediter H J; 18 (1):49-55.
- 10. Ferahbas A, Utas S, Akcakus M, Gunes T, Mistik S (2009):
 Prevalence of Cutaneous

Findings in Hospitalized Neonates: A prospective Observational Study Pediatr Dermatol;26(2):139-142.

- 11. Firouzi H, Jalalimehr I, Ostadi Z and Rahimi S (2020): Cutaneous Lesions in Iranian Neonates and Their Relationships with Maternal-Neonatal Factors: A prospective Cross-Sectional Study. Dermatol Res Pract 5(2020):8410165.https://doi.org/10.1155/2020/8410165.
- 12. Gokdemir G, ErdoganHK, Koslu ABaksu B (2009): Cutaneous Lesions in Turkish neonates born in a teaching hospital Indian J Dermatol Venereol Leprol; 75(6); 375:638.
- **13. Haveri FTTS and Inamadar AC (2014):** A Cross-Sectional Prospective Study of Cutaneous Lesions in Newborn. ISRN Dermatol; http://dx.doi.org/10.1155/2014/360590.
- 14. Jain, N Rathore B, Agarwal, A and Bhardwaj A (2013): "Cutaneous lesions in neonates admitted in a tertiary setup neonatal intensive careunit. India J Paediatr Dermatol; 14 (3): 62–66.
- 15. Khoshnevisasl P, Sadeglzadeh M,

Mazloomzadeh S, Zanjani AA (2015): The incidence of birthmarks in neonates born in Zanjan, Iran. J Clin Neonatol; 4(1): 8-12.

Issue 3

- 16. Lorenz S, Maier C, Segerer H, Landthaler M, Hohenleutner U (2000): Skin changes in newborn infants in the first 5 days of life. Hautarzt; 51:396-400.
- 17. Migoto MT, SouzaSNDH, Rossetto EG (2013): Skin lesions of newborns in a neonatal unit: descriptive study. Brazilian J Nurs; 12,(2):377-392.
- **18. Moosavi Z and Hosseini T** (2006): One-year survey of cutaneous lesions in 1000 consecutive Iranian newborns. Pediatr Dermatol; 23(1):61-63.
- **19. O'Connor NR, McLaughlin MR, Ham P (2008):** Newborn skin: Part I. Common rashes. Americ Famil Physis; 77: 47-52.
- 20. Reginatto FP, De Villa DM, Cestari TF (2016): Benign skin disease with pustules in the newborn.An. Bras. Dermatol; 91 (2) https://doi.org/10.1590/abd180 6-4841.20164285.
- 21. Sachdeva M, Kaur S, Nagpal M, Dewan SP (2002): Cutaneous lesions in new born.

- Indian J Dermatol Venereol Leprol; 68(6):334-337.
- 22. Scadeva M, Kaur S, Nagpal M, DewanSP (2006):
 Cutaneous lesions in newborn. Pediatr Dermato; 1 23:61-63.
- 23. Shehab MM, Youssef DM, Khalil MM. (2015): Prevalence of cutaneous skin lesions in neonatal intensive care unit: A single center study .J Clin Neonatol; 4 (3):169-172.
- 24. Shih IH: A birthmark survey in 500 newborns (2007): clinical observation in two northern Taiwan medical

- center nurseries .Chang Gung Med J; 30(3):220-225.
- 25. Solak SS, Altunay IK, Demirci GK, Can B (2015): Prevalence of Congenital Cutaneous Anomalies in 1000 Newborns and a Review of the Literature. Am J Perinatol; 33(1):75-83. http://dx.doi.org/10.1055/s-0035-1556884.
- 26. ZagneV and Fernandes N (2011): "Dermatoses in the first 72 h life: a clinical and statistical survey," Indian Journal of Der-matol, Venereol, and Leprol; 77(4):470-476.