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a-AMYLASE from Bacillus acidocaldarius was modified by

covalent coupling to activated dextran with retained activity of
77.7 %. After conjugation, the enzyme was stable within a broader
pH range than the native enzyme and its optimum temperature
increased by 10°C compared to the native enzyme. The conjugated o-
amylase exhibited a higher K, (Michaelis constant), lower V x
(maximal reaction rate) and lower E, (activation energy) than the
native enzyme. Covalent attachment of - amylase to activated
dextran protected the enzyme against heat inactivation. In the
presence of the substrate, the conjugated enzyme retained 68.2 % of
its original activity after incubation at 70°C for 30 min which was
more than that retained by the native enzyme (50.3 %) under the same
conditions. The calculated t;, (half-life time) values of heat
inactivation energy at 50, 60 °C were 89 and 56 min, respectively for
the conjugated enzyme, whereas at these temperatures the native
enzyme was less stable (ty, 60 and 47 min, respectively). The
deactivation rate constant at 80 °C for the conjugated a-amylase is
about 11.9x10%/ min, which is lower than that of the native enzyme
(14.8x10%/ min). Conjugated o-amylase was more stable against
chemical denaturation than the native enzyme, and retained 70.6% of
its activity in presence of CuSO,4 (10 mM) while the native form of
retained only 34.1%
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Amylases are among the most important hydrolytic enzymes for all starch based
industries, and the commercialization of amylases is oldest with first use in 1984,
as a pharmaceutical aid for the treatment of digestive disorders (Gupta et al.,
2003). In present day, amylases find application in all industrial processes such as
in food, detergents, textiles, paper industries, fermentation, pharmaceutical
industries and have completely replaced chemical hydrolysis in the starch
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processing industry (Alva et al., 2007 ; Ahmed et al., 2008 and De Souza
& Magalhaes, 2010). o-amylase (endo-1,4-a-D- glucan glucanohydrolase EC
3.2.1.1) are extra-cellular endo-enzymes that randomly cleave the 1,4-a linkages
between adjacent glucose unit in the linear amylose chain and ultimately
generates glucose, maltose and maltotriose units (Gupta et al., 2003). The
stability of enzymes in vitro remains a critical issue in biotechnology. Both
storage and operational stabilities affect the usefulness of enzyme-based products
(Fagain, 2003). Therefore, there is a continuing demand to improve the stability
of enzymes and to meet the requirements set by specific applications (Prakash
& Jaiswal, 2010 and David et al., 2011). It was demonstrated in a number of
studies that the stability of some enzymes is enhanced using covalent attachment
to water-soluble polymers (Ben Ammar et al., 2002 and Ahmed et al., 2007).
However, critical analysis leads to the conclusion that frequently the observed
stabilization was due to chemical modification or reduction of autolysis
(Klibanov, 1979). Historically, carbohydrate compounds have been extensively
used as modifying agents for enzymes (Gomez et al., 2000). It is postulated that
one of the functions of these carbohydrate residues is to stabilize the three-
dimensional structure of the protein moiety of the glucoenzyme (Klibanov, 1979).
Immobilized enzymes bound to a polymeric matrix are often prepared for the
purpose of changing some of their properties, in particular to obtain complexes
which exhibit an increased stability towards thermal denaturation, proteolytic
degradation and other unfavorable conditions. An increase in thermal resistance
and changes in the pH activity profile have been observed for enzymes
immobilized on soluble supports such as polysaccharides (dextran, CM-cellulose
and DEAE-dextran) (Lenders & Crichton, 1984 and Fernandez et al., 2004). This
is connected with their availability, easy modification, and hydrophily (Manaev
et al., 1985). In this study, we have addressed the possibilities of using activated
polysaccharides to improve o-amylase stabilization via covalent attachment,
focusing our attention on the enzymatic properties of the native and conjugated
enzyme.

Materials and Methods
Microorganism
Bacillus acidocaldarius was isolated by Dr. Mona Esawy, Department of
Chemistry of Natural and Microbial Products, NRC, Egypt. It was identified
according to Bergey’s Manual in Micro Analytical Center, Cairo University,
Egypt. The culture was maintained on nutrient agar medium at 30°C for 48 hr and
stored at 4°C.

Growth medium and cultivation

Basal medium for liquid culture consists of (g/l): Starch, 10; nutrient broth,
2.5; CaCl, 0.5 and the pH was adjusted to 7.0 before autoclaving. The same
medium was also used for inoculum preparation. Cultivation was in 250-ml
Erlenmeyer flasks containing 50 ml of sterile medium. The flasks were inoculated
with 1 ml of a 24 hr -old culture and incubated at 40°C for 42 hr with shaking at
200 rpm. The cultures were then centrifuged at 10000 x g for 15 min in a
refrigerated centrifuge at 4°C.
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Fractional precipitation with acetone

The crude enzyme prepared as described above was added slowly to two fold
cold acetone (v/v) under constant stirring. The mixture was allowed to stand for
1hr at 4°C and the enzyme fraction was dried over anhydrous calcium chloride
under decreased pressure at room temperature. The fraction was tested for
enzyme activity and was used for enzyme chemical modification.

Assay for a-amylase activity

o~ amylase activity was determined according to Apar & Ozbek (2005) 200 ul of
the enzyme were incubated with 1ml of 0.2 % soluble starch in acetate buffer
(0.05 M; pH 5.9) at 40 °C for 10 min. 200 pl of the reaction mixture was added to 5 ml
of an iodine solution to stop the reaction. The degradation of starch by the enzyme
was measured at 620 nm. One unit of a-amylase activity was defined as the quantity
of enzyme required to hydrolysis of 0.1 mg starch under assay conditions. All the
results reported are the mean of at least three separate experiments.

Protein estimation
Protein was determined according to the method of Lowry et al. (1951) using
bovine serum albumin as standard

Carbohydrates used for the enzyme chemical modification
Pectin (MW 30x10%-100x10°%), dextran (MW 70 x10®) and dextran
(MW 80 x10°) were from Sigma Chemical Co., USA.

Preparation of sodium periodate activated polysaccharides

a- amylase was coupled to soluble polysaccharides by the method reported by
Ben Ammar et al. (2002) as follows: 250 mg of each polysaccharide were
dissolved in 10 ml of 0.25 M sodium periodate solution and allowed to stand at
30°C for 6 hr, then 0.3 ml of ethylene glycol were added and allowed to react for
1 hr. The reaction mixture was dialyzed against water at 4°C overnight, and then
lyophilized.

Enzyme coupling with activated polysaccharides

Partially purified a- amylase (0.4 mg) and oxidized polysaccharides (100 mg)
were combined in acetate buffer (0.05 M; pH 5.9). The reaction mixture was
allowed to stand at 4°C overnight. The conjugates were precipitated at 50 %
ethanol and lyophilized.

Temperature profiles
Enzyme activities of both native and conjugated form were determined at
indicated temperatures (30-80°C). The temperature data were replotted in the
form of Arrhenius plots and the slope is related to the activation energy (E ) for
the molecule by the relationship:
Slope =EA/2.303 R

where R is the gas constant (R = 1.976 Cal/mol).
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Thermal stability

The thermal stability was determined by measuring the residual activity of the
enzyme exposed at a temperature range from 50 to 80°C for different periods
(15-90 min). Plotting activity data, Log of residual activity as a function of the time
and the slope is related to the deactivation rate constant. Determination of the half life
another important parameter related to enzyme stability. The enzyme half life (ty,)
corresponds to the time period necessary for the residual enzyme activity to decrease
to 50 % of its initial value and it was calculated from the following equation:

ty»= 0. 3/ Deactivation rate constant

Effect of reaction pH and pH stability

The effect of pH value on the activity of free and conjugated was investigated
using buffer (0.05M) with different pHs (from 5.0 to 8.0). The pH stability of a-
amylase was determined after pre-incubating the enzyme for lhr at 30°C with
buffer (0.05 M) at different pHs (from 5.0 to 9.5), followed by adjusting the pH to
the value of standard assay system.

Results and Discussion

The stabilization of enzymes is very important, especially when the stability is
required for the industrial use of the enzyme of interest. In this study, a method to
stabilize a- amylase from B. acidocaldarius was achieved using simple and quick
method. It depends on the oxidation state of different polysaccharides with periodate
to produce a dialdehyde with two free hydroxyl groups able to link with the o-
amylase molecule with any cross-linkage agent. It was reported that protein
glycosylation might affect the hydrophilic/ hydrophobic balance and/ or net charge at
the protein surface, leading to changes in protein-solvent and protein-protein
interactions. These, in turn, could lead to changes in folding, stability, protease
resistance, or biologic activity of glycosylated proteins (Pedrosa et al., 2000). Among
all preparations (Table 1), the enzyme conjugated to dextran (MW 70 x10°) showed
the highest retained activity (77.7 %) of the specific activity of the native enzyme and
was selected for further investigations. The 23 % decrease in specific activity after
glycosylation could be attributed to the rigidification of the enzyme protein
conformation (Lenders & Crichton, 1984 and Fernandez et al., 2004). On the other
hand, Gottschalk & Jaenicke (1991) deduced that the covalent attachment of the
enzyme to the immobilization matrix would also lead to a decrease in catalytic
activity owing to the decrease in the flexibility of the enzyme molecule. The drop of
the specific activity after the glycosylation of other enzymes were previously reported
(Abdel-Naby, 1999 and Ben Ammar et al., 2002).

Properties of the native and conjugated a- amylase enzyme

The optimum pH of the native and dextran conjugated o.- amylase was studied
using different pHs values ranging from 5.0 to 8.0. The results (Fig. 1) indicated
that the two forms of a- amylase expressed an activity optimum at pH 7.25. This
means that the ionization of the amino acid residues at the active site remains
unaffected by the glycosylation process. Similar result was reported for other
glycosylated amylase (Srivastava, 1991).
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TABLE 1. Covalent coupling of B. acidocaldarius a-amylase to activated polysaccharides.

Coupled enzyme Specific activity of Recovered
conjugates activity
Activated (U/ mg protein) (%)
polysaccharides Protein Activity

(mg) V)
Pectin 2.7 13824 512 314
30x10%-100x10°
Dextran 1.9 2408.5 3965.39 77.74
70 x10°
Dextran 1.45 1608.5 1109.3 68.03
80 x10°

Enzyme added to one gram activated polysaccharides in 1.40 mg protein containing 7141.17 U
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Fig.1. Effect of pH of the reaction on the activity of native and dextran conjugated
a-amylase.
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Activities of native and conjugated o- amylase were assayed at various
temperatures (30- 70°C). The temperature optimum of the enzyme shifted from
50°C to 60°C upon conjugation (Fig. 2). The increase of the temperature is
probably a consequence of enhanced thermal stability. EI-Refai (2000) reported
the changes in the optimal temperature of bacterial cyclodextrin
glucosyltransferase from 65 to 80°C after glycosylation. Fernandez et al. (2004)
reported changes in the optimal temperature of a-chymotrypsin after
glycosylation. The plots for both the native and conjugated enzyme were linear
(Fig. 3) and the values of the energy of activation were calculated as 2.37 and
2.23 Kcal/mol, respectively. This result indicated that the applied glycosylation
procedure introduced changes in the structure of the enzyme molecule which
enhanced its catalytic properties. A similar result was reported for other enzymes
by Ahmed et al. (2007). Abdel-Naby (1999) pointed to the decreased in activation
energy of Aspergillus niger cellobiase enzyme after glycosylation.
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Fig.2. Effect of temperature of the reaction on the activity of native and dextran
conjugated a-amylase.

Egypt. J. Microbiol. 46 (2011)



FUNCTIONAL CHANGE OF DEXTRAN-MODIFIED ... 147

2.04

2.02

2.00 -

1.98 -

1.96 -1

1.94 -

Log relative activity

1.92 1

1.90 +

1.88 T T T T T
3.05 3.10 3.15 3.20 3.25 3.30 3.35

1/T°K X 1072

—@— Native enzyme
— @ — Dextran conjugated enzyme

Fig.3. Arrhenius plots for the native and dextran conjugated a-amylase .

Lineweaver-Burk plots of the native and conjugated a- amylase with potato
starch (Fig. 4) gave K., (Michaelis constant) of 0.86 and 0.92 mg/ml, respectively.
The Ve (maximal reaction rate) of the native and conjugated a- amylase were
144.1 and 122.7 U/mg protein, respectively. The apparent increase of K, value
after conjugation is most likely a consequence of conformational changes in the
enzyme introduced by the glycosylation procedure which renders its active site
less accessible to the substrate. Consequently, the maximum reaction rate of the
enzyme-catalyzed reaction was lower than the native enzyme (Gottschalk
& Jaenicke, 1991). The increase of K., value and decrease of the V. after
stabilization of cellobiase by covalent coupling to soluble polysaccharide was
reported by Abdel-Naby (1999).

The rates of heat inactivation of the native and conjugated o- amylase were
investigated (Table 2). In general, covalent attachment of dextran to a- amylase
molecule protected the enzyme against heat inactivation. For example, the
calculated half-life values (ty;) showed that the heat inactivation of the
conjugated enzyme at 50 and 60°C were 89 and 56 min, respectively whereas the
native enzyme was less stable (t, of 60 and 47 min, respectively). The deactivation
rate constant at 80°C for the conjugated o- amylase is about 11.9x10° min which is
lower than that of the native o- amylase (14.8x10™ min). The mechanism
involved in the carbohydrate-induced stability of glycosylated proteins by
rigidification of the conformation has already been discussed (Klibanov, 1983).
On the other hand, Srivastava (1991) argued that the hydration effect of the
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attached carbohydrate may be responsible for improving the stability of
conjugated enzymes. Fernandez et al. (2004) reported that the modified o-
chymotrypsin was more resistant to thermal inactivation at different temperatures.
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Fig.4. Lineweaver-Bulk plot of native and dextran conjugated a-amylase.
TABLE 2. Thermal stability of native and dextran conjugated a-amylase.
Jemperature Residual activity (%)
(°C)
Time of
heating Native enzyme Conjugated enzyme
min)
50 60 70 80 50 60 70 80
Zero 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 85.0 | 805 | 67.2 | 575 | 89.9 | 84.7 | 79.6 | 66.6
30 711 | 65.1 | 50.3 | 30.6 | 785 | 71.6 | 68.2 | 57.6
45 65.0 | 505 | 349 | 2.1 | 702 | 66,5 | 54.7 | 33.7
60 58.5 | 375 | 335 63.1 | 546 | 486 | 204
75 254 | 136 | 4.3 483 | 37.8 | 21.6 | 11.9
90 4.5 0 0 236 | 179 | 116 | 7.0
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The results shown in Fig. 5 demonstrate that a- amylase conjugated with
dextran was significantly more stable against incubation at different pH values
(6.0-9.5) than the native enzyme. Fernandez et al. (2004) found that, a-
chymotrypsin stabilized by chemical modification was more stable at pH 9.0 than
the native enzyme.
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Fig. 5. pH stability of native and dextran conjugated a-amylase .

The enzyme activity was assayed after incubating with various metal ions
(10 mM) at 30°C for 30 min (Fig. 6). In general, it was observed that the
inhibitory effect of the investigated metal ions was less pronounced with the
conjugated enzyme as compared with the free a-amylase. The results pointed to
the inhibitory effect of most metal ions tested on the activity of native and
conjugated enzyme. Treatment of proteins with high water-binding salts (like
MgS0O,) reduces the water shield surrounding them and consequently, the
stability was negatively affected. In case of the conjugated a-amylase water
shield was probably preserved due to the hydrophilic nature of the
polysaccharide attached to it, the water shield was probably preserved. A similar
explanation was given by Srivastava (1991). On the other hand, Cu®" ion
decreased the enzyme activity, this inhibitory effect was higher in the native
enzyme (65.9 %) than the modified enzyme (29.4 %). The results revealed that
the glycosylation of a-amylase formed stable covalent bonds that led to
achievement of resistance against chemical and thermal denaturation.
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Fig.6. Effect of some metal ions on the activity of native and dextran conjugated a-
amylase.
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