
 

 

_________________________________________________________________________________________________ 

*Corresponding author e-mail: master_math2003@yahoo.com.; (Mohamed Y. Abou-zeid). 

Receive Date: 10 April 2022, Revise Date: 21 April 2022, Accept Date: 21 April 2022 

DOI: 10.21608/EJCHEM.2022.132580.5857 

©2022 National Information and Documentation Center (NIDOC) 
 

 

Egypt. J. Chem. Vol. 65, No. 12 pp. 647 - 655 (2022) 

 

                                                                                                                      

 Chemical reaction and non-Darcian effects on MHD generalized 

Newtonian nanofluid motion 

 
Mohamed Y. Abou-zeid 

Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, 11757, Cairo, Egypt. 

Abstract 

The aim of this paper is to study generalized Newtonian (Carreau) nanofluid flow with heat transfer through a non-Darcy porous 

medium in the presence of ectromagnetic field and biot number effects. Morever, The heat source, viscous and Ohmic 

dissipation,and chemical reaction effects are taken into consideration. The system of non linear equations which govern the 

motion is transformed into ordinary differential equations by using a suitable similarity transformations. These equations are 

solved by making use of Rung-Kutta-Merson method in a shooting and matching technique. The numerical solutions of the 

velocity, temperature and nanoparticles concentration are obtained as a functions of the physical parameters of the problem. 

Moreover the effects of these parameters on these solutions are discussed numerically and depicted graphically. It is found that 

bothtangential and normal velocities increaseor decease as the Darcy number increases. Morever, the temperature increases as 

both Forschheimer and Reynolds numbers increase, and  both Weissenberg and Biot numbers leads to increase the nanoparticles 

concentration. 

Keywords: Non-Newtonian nanofluid; heat transfer; non-Darcyporous medium; chemical reaction. 

 

1.Introduction 

     A liquid with very small particles of diameter 

less than 100 nm is called nanofluid.By adding these 

nanoparticles up to the fluid makes itnon-

homogeneous, consequently, thermodynamic is in 

theflow increases that will cause more energy and 

power lossesinto the system. Saving helpful energy 

will depend on how to designthe effective heat transfer 

process from a thermodynamicpoint of view. Energy 

transformation processes will tend to a 

proportionalincrease in entropy. Consequently, even if 

the energy is preserved,the high quality of energy that 

decreases converting them intoa different form of 

energy at which less work can be obtained.One of the 

first people whoadded the entropy generation to 

thefluid flow was Bejan [1, 2]. Also, he presenteda 

method which is called the entropy generation 

minimization (EGM) tomeasure and optimization 

disorder or disorganization generatedduring a process. 

There is no question that by ‘‘optimize’’ we meanthe 

stabled process in which the system loses the least 

energywhile still performing its fundamental 

engineering function.The method is also known as 

second law analysis and thermodynamicoptimization. 

This field has been developed astoundinglyduring the 

1990s, in both engineering and physics. Good example 

of such efforts found in references [3-6]. 

      Magnetohydrodynamics (MHD) is interested 

with Newtonian or non‐  Newtonian fluids motion and 

with the interaction of electrically conducting fluids. 

The concept of MHD was investigated by Alfvén [7]. 

The MHD fluid flow has received remarkable 

attention by scientists and researchers due to its 

enormous applications in the field of geophysics, 

mechanical, electrical, biological, geothermal as well 

as many other technical and industrial processes like 

cooling of generators, nuclear reactors, power 

generators, …etc. Radially varying magnetic field 

effects on the Jeffery fluid peristaltic flow with heat 

and mass transfer in the presence of radiation and heat 

source was analyzed by Eldabe and Abouzeid 

[8].Sheikholeslami et al. [9] studied the flow of a 
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nanofluid in the presence of thermal radiation and 

magnetic field. MHD non-Newtonian nanofluid flow 

through a porous medium with couple stresses effects 

is discussed by Abouzeid [10]. El-dabe et al.[11] have 

investigated the electromagnetic steady motion of 

Casson fluid with heat and mass transfer through 

porous medium past a shrinking plate.MHD fluid flow 

has received remarkable attention by scientists and 

researchers [12-19]. 

       Th problems in which the flow initiates from 

zero velocity at the wall to extreme velocity within the 

main flow is called boundary layer problem .The 

concept of boundary layer has a sence in all of viscous 

fluid dynamics within the hypothesis of heat transfer. 

The boundary layer flow with heat transfer over a 

stretching or shrinking platehas a great importance due 

to its applications including glass-fiber production, 

plastic pieces aero-dynamic extrusion, hot rolling and 

paper production. Carreau nanofluid flow over a 

stretching porous platewith thermal diffusion and 

diffusion thermo effects was studied by Eldabe et al. 

[20].Kamran and Wiwatanapataphee[21] reported that 

chemical reaction with the Newtonian heating impact 

is significant in the solidification process of liquid 

crystals and polymeric suspensions. The boundary 

layer flow with heat and mass transfer properties are 

achieved analytically in the presence of viscous 

dissipation and heat source by Abouzeid [22]. Many 

researchers considered various non-Newtonian fluid 

models in their studies [23-26]. 

    The main aim of this work is to extend the work 

of Eldabe et al. [11] to include Carreau nanofluid, 

pressure deriven flow, non-Darcian porousity and Biot 

number effects. Then the boundary layer motion of 

Carreau nanofluid conducting fluid with heat transfer 

over a shrinking plate is analyzed. The system is 

stressed by both uniform magneticand electric fields. 

A heat generation with radiation and chemical reaction 

are taken in consideration. This motion is modulated 

mathematically by a system of non-linear partial 

differential equations which transformed into non-

linear ordinary differential equations by using suitable 

transformation. This system is solved numerically 

subjected to the appropriate boundary conditions in the 

presence of Biot number to obtain the velocity, 

temperature and nanoparticles concentration 

distributions. The influences of the physical 

parameters of the problem on these solutions are 

discussed numerically and illustrated graphically 

through a set of figures. Physically, our model 

corresponds to the airfoils flow with low or high 

Reynolds number. 

 

2   Mathematical formulations 

     Cartesian coordinates (x, y, z) are considered, 

where x is along the direction of fluid flow, y is normal 

to x, and z is normal to the plane (xy). An electrically 

conducting Carreau nanofluid flows steadily over a 

shrinking sheet. The external applied magnetic field 

0= (0, ,0)B B , while the electric field 

0= (0,0, )E E . 

The constitutive equation ofCarreau fluid can be 

written as follows:  

. 
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where   γ is second invariant of strain-rate 

tensor ij .                                                 

The governing equations ofcontinuity, 

momentum,energy, andnanoparticles concentration 

can be written,respectively, as 
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where the thermal radiation heat flux;  
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. We assume that the differences of 

fluid-phase temperature in the flow are sufficient small 

such that 
4T  may be expressed as a linear function of 

temperature  

4 3 4= 4 3T T T T   (8) 

In order to simplify the above system, we use the 
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Nomenclature 

Prandtl number Pr  Reaction rate constant A 

Thermal radiation heat flux qr  Constant B0 

Heat source parameter Q0  Biot number Bi 

Radiation parameter R  The nanoparticles concentration C 

Reynolds number Re  Forchheimer 𝑠̀ constant C* 

Schmidt number Sc  The specific heat at constant pressure cp 

The fluid temperature T  Darcy number Da 

Tangential component of velocity u  Brownian diffusion coefficient DB 

Normal component of velocity v  Thermophoretic diffusion coefficient DT 

Weissenberg number We  Constant E0 

Tangential coordinate x  Local electric parameter E1 

Normal coordinate y  Eckert number Ec 

Greek symbols   Forchheimer number Fs 

Chemical reaction parameter 𝛿  Thermal conductivity K 

Zero-shear-rate viscosity 0   Permeability constant k 

time constant    the mean absorption coefficient k0 

Kinematic viscosity    Magnetic field parameter M 

Fluid density     dimensionless power-law index n 

The electrical conductivity of the fluid 𝜎  Brownian motion parameter Nb 

Stefan-Boltzmann constant 𝜎∗  Thermophoresis parameter Nt 

the stress tensor components, ij   The fluid pressure p   

 

Eq. (4) is autommatically satisfied. Substitution of 

Eqs.(9) in Eqs.(5-7), we get  
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It may be pointed out here that n=1 leads to the 

boundary-layer flow of ordinary Newtonian 

conducting fluid. While if we put Fs=
p

x




=0, n=1 and 

Bi→ ∞, this problem have been studied for the same 

boundary conditions by Eldabe et al. [11].Eq.(10-12) 

arecoupled non-linear ordinary differential equation of 

order three.  For Carreau fluid, as the parametern tends 

to zero, the fluid becomes ordinary Newtonian. 

The boundary conditions in the non-dimensional 

form are:  

1
(0) = 0,  (0) 1,  (0) = 1 '(0),

(0) = 1, ( ) = ( ) = ( ) = 0

f f
Bi

f

 
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      (13) 

 

3.Numerical solutions 

     NAG Fortran library with the help of subroutine 

D02HAF is used to solve the above system of 

equations (10-12). Moreover, then, shooting technique 

is applied. This subroutine requires to guess missing 

initial and terminal conditions. The governing 

equations (10-12) are solved by Rung-Kutta-Merson 
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method of order five. In this subroutine, we used 

variable step size in order to control the local 

truncation error, then, a modified Newton-Raphson 

method is used to obtain successive corrections for the 

estimated boundary values. The process is repeated 

iteratively many times until convergence and accuracy 

are occurred. 

4. Discussion 

     In this section, both the tangential and normal 

velocities, temperature and nano-particles 

concentration for different values of the problem 

physical parameters are analyzed in details and 

depicted graphically. Mathematica package Ver.10.1 

is used to obtain the numerical values of these physical 

quantities. The coefficients of skin-friction and both 

heat transfer and mass transfer are tabulated to obtain 

the effect of the above parameters in details.The 

following values of pertinent parameters are taken as 

follows 

𝑛 = 2, 𝑀 = 0.5, Da = 1, E1 = 1,
𝜕𝑝

𝜕𝑥
= −10, Re =

0.5, Fs = 0.4, We = 0.5, Pr = 1, R = 1, Ec =

3.5, Q0 = 1, Sc = 2.5, Bi = 0.5, Nt = 1.5, Nb =

2.5, m = 2, 𝛿 = 0.8. 

 

Pr M Bi 
−𝜃′(0)in the present 

work 

−𝜃′(0)in the work of 

Eldabe et al. [11] 

1 

2 

3 

3 
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0.5 

0.5 
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0.2 
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1.20705  

1.89802  

2.80445 

1.29605  

1.31918  

1.24717 

0.87026 

0.76004 

1.19268  

1.94141  

2.79731 

1.34502  

1.33632  

1.25013 

Table (1) 

Weissenberg number yields from the ratio between 

the elastic forces to the viscous forces. Morever, it 

usually measures the relation of stress relaxation time 

of the fluid and a specific process time, i.e. 

Weissenberg number may help to increase the fluid 

motion. Figures (1) and (2) display the variations of 

the normal velocity f versus the dimensionless 

coordinate 𝜂for different values of Weissenberg 

number We and the magnetic field parameterM, 

respectively. It is noted from these figures that the 

normal velocity increases with the increase of We; this 

is due to the above definition of Weissenberg number, 

while it decreases as M increases.Inaddition, 𝑓 

increases with 𝜂 for large values of We, and small 

values of M, till a definite value 𝜂 =𝜂0 (represents the 

maximum value of 𝑓) and it decreases afterwards. This 

maximum value of f increases by increasing We, while 

it decreases by increasing M.theresult in figure (2) is 

due to the fact that the effect of the magnetic field on 

electrically conductive fluid generates a drag force and 

develops the force which is known as Lorents force, 

and it makes to decrease the motion of fluid.Fig. (3) 

shows the variation of the normalvelocity f with 𝜂for 

various values of Darcy number Da. It is seen from 

Fig.(3), that the normal velocity decreases with the 

increasing of Da in the interval 𝜂∈ [0, 0.85]; 

otherwise, it increases by increasing Da. Therefore, 

the behavior of f in the interval 𝜂∈ [0, 0.85] is opposite 

to its behavior in the interval y ∈ [0.85, 1.2]. 

The variations of the tangential velocityf’ with the 

dimensionless coordinate 𝜂 forvarious values of the 

dimensionless power-law index nand Reynolds 

number Reare shown in Figs. (4) and (5), respectively, 

The graphical results ofFigs. (4) and (5),indicate that 

the tangential velocity increases with increasing in the 

parametern,  while  it  decreases  by  increasing  the  

parameter Re, respectively.Furthermore, It  is  

observed  that  for  smallvalues  of  n  and  large  values  

ofRe,  the  relation  between  f’  and  𝜂is  a parabola 

with down vertex, i.e.f’decreases  with  𝜂till  a  definite  

value 𝜂=𝜂0, (represents  the  minimum  value  of  f’)  

and  it  increasesafterwards. This absolute minimum 

value of f’ increases by increasing Re, while it 

decreases by increasing n. The following explains the 

result in Fig. (5); Reynolds number is defined as the 

rate of inertia forces to viscous forces in a fluid, this 

will lead to a resisitance in fluid flow as Reynols 

number increases. Morever, this result is in agreement 

with those which are presented by [27]. 

Figs. (6) and (7) show the behavior of the 

temperature distribution𝜃 with the dimensionless 

coordinate 𝜂 for various values of the thermophoresis 

parameter Ntand Brownian motion parameter Nb, 

respectively. It has been seen from these figures that 

https://en.wikipedia.org/wiki/Stress_relaxation
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the temperature increases with the increases of Nt, 

while it decreases as Nbincreases. It is also noted that 

for each value of both Nt and Nb, there exists a 

minimum value of 𝜃which its absolute value increases 

by increasing Nb and decreases by increasing Nt, and 

all minimum values occur at 𝜂 = 0.25.Brownian 

motion is an inherent flow of particles dangled in 

a fluid. This random transition agrees with the fact that 

the temperature decreases with Brownian motion 

parameter. So, the result in Fig. (7) agrees with the 

physical excpectation, and is in agreement with those 

which are presented by [28, 29]. The effect of Ec on 

the temperature distribution 𝜃as a function of the 

dimensionless coordinate 𝜂is shown in Fig. (8). It is 

found that the temperature distribution increases by 

increasing Ec in the interval 𝜂 ∈ [0.5, 1.2]; otherwise 

it decreases by increasing Ec.Fig. (9) illustrates the 

effect of Bi on the temperature distribution 𝜃as a 

function of the dimensionless coordinate 𝜂. It is found 

that in the interval of the coordinate 𝜂 ∈ [0.18, 1.2], 

the behavior of 𝜃for various values of Bi is exactly 

similar to the behavior of 𝜃for various values ofNb 

given in Fig. (7). It is also noted, from Fig. (9) that in 

the interval of the radial coordinate 𝜂 ∈ [0.18, 1.2], the 

behavior of 𝜃is an inversed manner of its behavior in 

the interval𝜂 ∈ [0, 0.18], except that the curves are 

quitely close to each other in the second interval. Eq. 

(13) evaluates how the nanoparticles concentration 

distribution 𝜑 changes with the dimensioless 

coordinate𝜂. The effects of both Biot number Bi and 

the local electric parameter E1on the the nanoparticles 

concentration distribution 𝜑 are given in figures (10) 

and (11), respectively. It is found that the nanoparticles 

concentrationincreases by increasing Bi, but it 

decreases by increasing E1. Furthermore, the 

nanoparticles concentrationis always positive and for 

large values of Bi and small values of E1, it increases 

with 𝜂till a maximum value of 𝜂, after which it 

decreases.The effects of Brownian motion parameter 

Nb on the nanoparticles concentration𝜑 which is a 

function of 𝜂 are given in Fig. (12). It  is  found  that  

the  nanoparticles concentration decreases  by 

increasing Nb in the interval 𝜂∈  [0, 0.55]; otherwise 

it increases by increasing 𝜂. So, the behavior of g in 

the interval 𝜂∈  [0, 0.55], is an inversed manner of its 

behavior in the interval 𝜂∈ [0.55, 1.2], and in the first 

interval, there is a maximum value of 𝜑holds at 𝜂 

=0.19. Figure (13) illustrates the effect of the pressure 

gradient
𝜕𝑝

𝜕𝑥
 on the nanoparticles concentration𝜑as a 

function of 𝜂. It is found that, the behavior of 𝜑for 

various values of 
𝜕𝑝

𝜕𝑥
is an inversed manner to the 

behavior of g for various values of Nb given in Figure 

(12). It is also noted from Fig. (13) that the 

nanoparticles concentrationis always positive. 

Moreover, the relation between 𝜑and 𝜂 is a parabolic, 

i.e. as 𝜂 increases, 𝜑 increases till a maximum value 

after which it decreases. 

     Table (1) presents a comparison between the 

numerical results of present study and those obtained 

by Eldabe et al. [18] for skin friction𝑓′′(0), Nusselt 

number −θ′(0) and Sherwood number −f′(0) for 

various values of both E1 and Ha. It is clear from table 

(1) that an increase in the local electric parameter E1 

gives an increase in the skin-friction, but both Nusselt 

number and Sherwood number decreases or increases. 

Moreover, as Hartman number Ha increases, the 

values of 𝑓′′(0)and Sh increase but decreases the 

dimensionless quantity Nu. Finally, It can be 

concluded from table (1) that the present results are in 

a good agreement with those obtained by Eldabe et al. 

[19] 

 

 
 Figure 1: The normal velocityf is sketched towards                                      

  under the impact of We 

 
Figure 2: The normal velocity f is sketched towards 

  under the impact of M 

 

We 0.42, 0.5, 0.58 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

0.25

f

M 0.5, 1, 1.5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

f

https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Fluid


Mohamed Y. Abou-zeid 
_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 65, No. 12 (2022) 

 

 

652 

 
Figure 3: The normal velocity f is sketched towards 

  under the impact of Da 

 
Figure 4: The tangential velocityf’ is sketched 

towards   under the impact of n 

 
Figure 5: The tangential velocity f’ is sketched 

towards   under the impact of Re 

 

Figure 6: The temperature   is sketched towards 

  under the impact of Nt 

 

Figure 7: The temperature   is sketched towards 

  under the impact of Nb 

 

Figure 8: The temperature   is sketched towards 

  under the impact of Ec 

 

Figure 9: The temperature   is sketched towards 

  under the impact of Bi 

 

 
Figure 10: The thenanoparticles concentration   

is sketched towards   under the impact of Bi 

Da 0.1, 0.2, 1 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

0.25
f

n 1.5, 1.8, 2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

f
'

Re 0.1, 0.3, 0.5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

0.6

0.8

1.0

f
'

Nt 1.5, 2.5, 3.5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

4

3

2

1

0

Nb 2.5, 4.5, 6.5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ec 1, 1.6, 2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

4

3

2

1

0

Bi 1 , 1.6, 2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Bi 1 , 1.6, 2 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0



 Chemical reaction and non-Darcian effects on MHD generalized Newtonian nanofluid motion 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 65, No. 12 (2022) 

 

653 

 
Figure 11: The thenanoparticles concentration   

is sketched towards   under the impact of E1 

 
Figure 12: The nanoparticles concentration   is 

sketched towards   under the impact of Nb 

 
Figure 13: The thenanoparticles concentration   

is sketched towards   under the impact of 
𝜕𝑝

𝜕𝑥
 

 

5.Conclusion 

This problem is an extension of Eldabe et al. [11] 

to include bothnon-Darcian and non-Newtonian 

nanofluid, viscous dissipation effects. The highly non-

linear partial differential equations of 

velocity,temperature and nanoparticles 

concentrationare converted into non-linear ordinary 

differential equation by using suitable similarity 

transformations. This system of equations is solved 

numerically by applying Rung-Kutta-Merson-method 

with a Newton iteration in a shooting and matching 

technique. The ready analysis can render as a model 

which may support in comprehension the mechanics 

of chemical and physiological flows [30-33]. The 

obtained results can be outlined as follows. 

1. By increasingn and We and Fs,both the 

normal and tangential velocites increase while they 

decrease as E1, M, and Re increase. 

2. The normal velocity becomes greater with 

increasing the dimensionless coordinate 𝜂 and reaches 

maximum at 𝜂 =0.52, after which, it decreases, but the 

tangential velocity has an opposite manner, i.e. it has 

a minimum value. 

3. The temperature distribution increases as Da, 

𝛿, Nt and Re increase, while it decreases or increases 

as Bi, Ec, n, Pr, R, Sc and We increase.  

4. The temperature becomes lower with increasing 

the dimensionless coordinate 𝜂 and reaches minimum 

at 𝜂=0.16, after which, it increases. 

5. The nanoparticles concentration has an opposite 

behavior with respect to the temperature behavior 

except that it increases as Bi, n,, Sc and We increase. 
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