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AS ONE of the leading global causes of environmental contamination, heavy metals hurt 
agriculture and human health through the food chain. Using the mitotic index (MI), 

chromosomal aberrations (CAs), and DNA damage, the cytotoxic and genotoxic effects of Cr(VI) 
on the root tips of Allium cepa and Nigella sativa were assessed. Six Cr(VI) concentrations (50, 
100, 400, 700, 1000, and 2000ppm) were administered for 6, 12, 18, and 24h. The germination 
percentages of A. cepa and N. sativa seeds decreased at 400ppm for both plants, without 
germination detected in N. sativa L. at or above 700 ppm. The MI in the treated group was 
significantly lower than the control cells after exposure to the various concentrations of Cr(VI) 
for different exposure times. The reduction of MI in N. sativa root tips was more pronounced 
than that of A. cepa. The largest abnormal percentages were identified in N. sativa after 24h of 
exposure to 100ppm Cr(VI), whereas A. cepa showed abnormal percentages after 24h of exposure 
to 400ppm Cr(VI). In all mitotic phases, distinct aberrations in the division of root tip cells were 
observed in both plant species. A few examples of these aberrations were stickiness, C-mitosis, 
anaphase–telophase bridges, disturbed laggards, and micronuclei. The comet test, which show the 
single-strand breaks in DNA, was used to determine how dangerous is Cr(VI) to DNA in A. cepa 
root cells. DNA damage was significantly obvious in the comet experiment than in the control at 
all concentrations. Evidence from both A. cepa and N. sativa root meristemic cells suggested that 
Cr(VI) is cytotoxic and genotoxic and induces DNA damage in a dose-dependent manner.
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Introduction                                                                        

In addition for being a significant contributor to 
environmental degradation worldwide, heavy 
metal pollution directly impacts agriculture and 
subsequently the human health. Chromium (Cr) is 
the seventh most common “heavy metal” element 
in the earth’s crust (Sadler, 1995). Several valence 
states of Cr exist; however, the trivalent (CrIII) and 
hexavalent (CrVI) forms are the most stable and 
shared in the earth’s crust (Kimbrough et al., 1999). 
Cr(VI) is a documented human carcinogen that has 
been classified as a Group A carcinogen (Winberry, 
1998). The widespread pollution of water and 
soil with Cr resulting from various industrial 
Applications or natural human-driven processes is 
a significant environmental concern. Chromium is 

used in various processes, including leather tanning, 
mining, painting, petroleum refining, textile 
manufacturing, fungicides, and wood preservation 
(Mishra, 2016). Chromate (-CrO4)

 −2 and dichromate 
(-Cr2O7)

 −2 anions are formed when Cr(VI) combines 
with oxygen; they are both very soluble, highly 
mobile in soil/water systems, and often more 
poisonous than Cr(III) (Shanker et al., 2009). As 
a result of its propensity to generate reactive 
oxygen species (ROS) in biological systems, Cr 
(VI) is phytotoxic, cytotoxic, and genotoxic element 
(Shanker et al., 2005; Nickens et al., 2010; Malherbe 
et al., 2011; Oliveira, 2012; Eleftheriou et al., 2012, 
2013). The United Nations Environment Program 
strongly recommends utilizing assays with vascular 
plants to investigate genotoxic chemicals. In this 
context, it has been demonstrated that plants are 
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promising tools because toxins generate equivalent 
chromosome aberrations in plant cells and animal 
cells in culture (Ditika & Anila, 2013). Plant 
bioassays have been used to help determining the 
metal and xenobiotic phytotoxicity (Di Salvatore 
et al., 2008). The A. cepa L. plant bioassay can 
determine the harmful effects of heavy metals, 
wastewater, complex mixtures, and nanoparticles 
by measuring chromosome aberrations and 
micronuclei, the mitotic index, root growth, DNA 
damage, and cell death (Leme & Marin-Morales, 
2009; Chakraborty et al., 2010; Panda et al., 2011). 
Over the past decade, the cyto-genotoxic potential 
of surface water and effluents has been evaluated 
using the A. cepa (common onion) bioassay, which 
is a quick, cheap, and sensitive method of toxicity 
testing (Leme & Marin-Morales, 2009; Masood & 
Malik, 2013). Ditika & Anila (2013) revealed that 
the sensitivity of the A. cepa root to chemicals is 
likely due to its significant number of metacentric 
chromosomes and the large size of its chromosomes. 
Furthermore, N. sativa L. is chosen because of its 
cytological originality (Saha & Datta, 2002) and its 
yield of a commercially valuable spice which has 
enormous therapeutic value (Datta et al., 2012).

The ability of onion (A. cepa) to absorb Cr 
has made it useful in evaluating abnormalities 
in chromosomes that lead to DNA damage and 
mitotic cycle disturbances (Zayed et al., 1998). 
Tedesco & Laughinghouse (2012) recognized 
that DNA damage, chromosomal alterations, and 
perturbations in the mitotic cycle could all be 
evaluated in A. cepa. The A. cepa test has been 
emphasized as an indication of human health and a 
means of diagnosing toxicity and genotoxicity (El-
Shahaby et al., 2002).

Rapid and low-cost implementations are 
essential in agricultural regions contaminated with 
heavy metals such as chromium. The ability of a 
seed to germinate in a medium containing Cr would 
show tolerance to this metal, because germination is 
the first physiological function that is altered by Cr 
(Akinci & Akinci, 2010).

Multiple sources agreed that a seedling’s earliest 
developmental stages of seedlings are critical for 
deciding whether it will be affected by heavy metals 
such as chromium (Pandey et al., 2008; Kundu et 
al., 2018). Amin et al. (2019) analyzed the toxicity, 
tolerance, and accumulation of Cr(VI) in six biofuel 
plant species using soils with eight different Cr 
concentrations. Those researchers found that the 

germination rates and other growth metrics dropped 
significantly when seeds were subjected to extreme 
Cr stress. Previous researches demonstrated that 
increasing quantities of chromium negatively 
affected plant germination, growth, and yield 
(Lakshmi & Sundaramoorthy, 2003; Purohit et al., 
2003; Chidambaram et al., 2006; Sundaramoorthy 
et al., 2006; Youssef, 2020). Because of its speed 
and sensitivity, the comet test is gaining importance 
in the evaluation of the DNA-damaging by 
environmental contaminants. The measurement of 
comet tails is crucial because they represent free 
DNA fragments and indicate damage to particular 
cells (Klaude et al., 1996; Hafez & Fouad, 2020).

This study compared the reactions of A. cepa 
and N. sativa to heavy metal stress by measuring 
the effects of chromium at six concentrations over 
a variety of treatment intervals (from 6 to 24h) on 
seed germination and plant growth, chromosomal 
frequency and architecture, and DNA damage.

Materials and Methods                                                                                                                  

A. cepa seeds were received from the Onion 
Research Department of the Field Crops Research 
Institute at the Agricultural Research Center in 
Giza, Egypt. The Medicinal and Aromatic Plants 
Research Center (Giza, Egypt) provided seeds of N. 
sativa plants. Potassium dichromate (K2Cr2O7) was 
acquired from Advent Chembio PVT. LTD. TM 
(CAS No. 7778-50-9) MW 294.185) as a source of 
hexavalent chromium Cr(VI).

Preparation of hexavalent chromium concentrations, 
seed germination and root length measurements 

The effect of various concentrations of 
hexavalent chromium (50, 100, 400, 700, 1000, 
and 2000ppm) on the germination rate of onion 
(A. cepa) and black seed (N. sativa) was examined. 
The seeds of the two plants were selected, soaked 
in a sodium hypochlorite solution (20% V/V) for 
15min, washed many times with deionized water, 
and placed directly in distilled water for 2h.  For 
each treatment, 30 seeds were utilized in triplicate. 
The treated seeds were rinsed adequately with 
distilled water before being placed in Petri dishes 
containing a wet filter paper with solution of 
various concentrations of Cr(VI), ranging from 50 
to 2000ppm. Germination time was detected 5 
and 9 days after incubation for onions and black 
seed plants, respectively. The seeds were deemed 
germinated when the radicle protruded from the 
seed coat by 2mm. The germination percentage was 
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calculated using the following formula: G percent= 
(number of germinated seeds / total number of 
planted seeds) ×100 (Scott et al., 1984). After 10 
days for onions and 14 days for black seeds, the 
radicle length was measured after each treatment 
period. The relative change in root length was 
determined as a percentage of the variation from the 
control or reported as a percentage of the control.

Cytological investigations
In deionized water, Cr(VI) solutions at various 

concentrations (50, 100, 400, 700, 1000, and 
2000ppm) were prepared as follows: 0.1414, 
0.2828, 1.131, 1.980, 2.8282, and 5.657g/L, 
respectively, from K2Cr2O7 powder. After the 
sprouting seeds were placed in a tiny bottle with 
various concentrations of Cr(VI) for varying amounts 
of time (6, 12, 18 and 24h), the viability of the 
seedlings was determined. The seeds were taken 
from the treatment apparatuses and washed with 
deionized water after treatment. Carefully cut root 
tips were employed for cytological processing. The 
root tips of the studied plants were meticulously 
removed and utilized for cytological processing. 
Briefly, the root tips (1–2cm in length) from 
untreated and treated plants were fixed in freshly 
prepared Carnoy’s fixative (3:1 v/v absolute 
alcohol and glacial acetic acid, respectively). 
Cytological slide preparations were made using the 
Feulgen squash technique (Darlington & La Cour, 
1976). The slides were examined microscopically 
for checking and counting the chromosomal 
aberrations, and photography using an XSZ-N 107 
research microscope equipped with a Premiere 
MA88-900 digital camera.

Single-cell electrophoresis (comet assay)
Onion (A. cepa) and black seed plant (N. 

sativa) seeds that had germinated were taken out 
of their respective treatment solutions and washed 
well under running water before being used in 
the alkaline comet test (Patnaik et al., 2011). First 
clean slides were coated with 50µL of 1% standard 
melting point agarose (type I, Sigma-Aldrich, USA) 
diluted in distilled water, and allowed to dry at room 
temperature for an overnight, then labeled. After 
root cutting out, the roots were frozen in a 60-mm 
Petri dish, and then sprayed with 100–200µL of a 
cold Tris-HCl buffer pH 7.4. After slicing the roots 
using a fresh razor blade, the nuclei were extracted 
in the same buffer and carefully transferred by a 
pipette into a micro centrifuge tube at 4°C. First, 
the afterward nuclear suspension was mixed 
with an equivalent volume (1:1) of 1.5 % LMPA 

dissolved in Tris-HCl buffer at 37 °C to create a 
0.75% low-melting point-agarose (LMPA, type 
VII, Sigma-Aldrich, USA) nuclear suspension. A 
20mm ´ 40mm coverslip was used to apply 80µL 
of the prepared nuclear suspension to the slides at 
37oC. The coverslip was removed carefully after 
the agarose had been set for 5min on the cold metal 
plate. Another layer of 0.75% (80µL) LMPA in 
Tris-HCl buffer was placed on top of the nuclear 
layer and allowed to gel. The slides containing the 
agarose-embedded nuclei were submerged in an 
alkaline solution (300mM NaOH and 1mM EDTA) 
in a horizontal electrophoresis unit for 10min 
after the coverslips were removed. In the same 
alkaline buffer at 4oC, 0.75V cm−1 and 300mA, 
electrophoresis was run out for 15min. Afterward 
the slides were washed in distilled water and then 
neutralized in 0.4M Tris buffer (pH 7.4). After that 
rinsing the slides for 5 min in distilled water, then 
200µL of ethidium bromide solution (2g mL−1) 
was used to stain the nuclei on each slide plate. 
A fluorescence attachment was used (excitation 
filter, 515–560nm ;and barrier filter, 560nm) for 
an Olympus BX51 microscope, a Cohu camera, 
and the Kinetic KometTM Imaging Software 5.5 
(AndorTM Technology, www.andor.com) was used 
to analyze comets.

Ten roots on two slides were used to compare 
the treatments. At least 50 comets were ranked on 
each slide and comet photographs were acquired 
at a magnification of 1009. Among the many 
parameters used by researchers to evaluate comets 
is the so-called Olive tail moment (OTM), which 
is calculated by taking the difference between the 
comet’s head and tail intensity centroids (centers 
of gravity) along the X axis and the percentage of 
DNA in the tail. Based on this trait, the differences 
in DNA distribution inside the tail can be detected. 
As a result, one micrometer (OTM) is considered 
an absolute parameter (Kumaravel et al., 2009). The 
entire process of analyzing the comet was carried 
out under yellow or low-level lighting. 

Statistical analysis
The mitotic index (MI) was computed by 

scoring dividing cells from a population of 2000 
–3000 non-dividing (interphase) cells. Statistical 
analysis was performed on the outcomes. The 
statistical significance of variations in the mitotic 
index and chromosomal abnormality frequency 
between treatments and controls was examined. 
Each treatment was performed in triplicate. The 
significance levels of P< 0.05and P< 0.01 were 
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determined using one-way ANOVA (Sigma Plot 
13.0 software) and SPSS for statistical analysis.

Results                                                                                     

Effect of hexavalent chromium on seed germination 
and root length

As shown in Fig. 1a, more significant amounts 
of chromium inhibited the germination of specific 
plants compared with the control. All concentrations 
had comparable effects on the germination of A. 

cepa and N. sativa, with a considerable decrease 
in germination beginning at 400ppm. N. sativa 
performed poorly in response to increasing 
chromium concentrations, with no germination 
observed at 700, 1000, and 2000 ppm (Fig. 1a 
and c). There were significant differences in the 
germination percentage (GP. %) in A. cepa (Fig. 1a 
and c) at all levels of Cr, with reductions of 72.22 
%, 70 %, 47.78 %, and 20.89 % for concentrations 
of 400, 700, 1000, and 2000 ppm, respectively. 

Fig. 1. Effect of different concentrations of hexavalent chromium Cr(VI) on Allium cepa and Nigella sativa: (A) 
germination percentage (percent), (B) radicle length (cm), and (C) morphological characteristics of the 
treated plants at all concentrations (where a, b, c and d in the black boxes were the control, 50ppm, 
100ppm, and 400ppm, respectively, and e, f, and g were 700, 1000, and 2000ppm, respectively).
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In addition, all A. cepa and N. sativa seeds were 
directly treated with Cr(VI) solutions for 5 and 9 
days, respectively. However, the resulting seedlings 
developed differently based on Cr concentration 
(Fig. 1b). When exposed to Cr concentrations as 
low as 400ppm, the transition zone between the root 
and cotyledon became clearly defined in A. cepa. 
The cotyledon partially emerged from the seed 
coat and grew at medium and high concentrations, 
whereas the roots did not grow. The average root 
length measurements used to check the correlation 
between the root growth and concentration (Fig. 
1b). According to these values (Fig. 1b), harmful 
effects were observed between 400 and 2000ppm. 
Above 50ppm, a modest development of radicles 
was detected in the tested plants. Treating two 
plants with 100ppm or more of Cr dramatically 
reduced the development of radicles. N. sativa 
showed no radicle emergence over 400ppm.

At Cr concentrations of 400, 700, 1000, and 
2000ppm, the average root length of A. cepa was 
significantly impacted by 0.68 ± 0.04, 0.57 ± 
0.03, 0.27 ± 0.02, and 0.2 ± 0.00cm, respectively. 
Similarly, increases in chromium at 50, 100, and 
400ppm in N. sativa significantly reduced root 
length relative to the control plants by 3.01 ± 0.01, 
2.07 ± 0.05, and 0.23 ± 0.01cm, respectively. All 
plants failed to develop radicles beyond 400 ppm, 
demonstrating that greater levels of chromium 
severely inhibited root germination in A.  cepa and 
N. sativa.

Effect of Cr(VI) on mitotic index
Cytological markers, such as the chromosomal 

abnormalities percentage, mitotic index (MI), and 
chromosomal aberrations (CAs), were used to 
evaluate the cytotoxicity and genotoxicity of Cr 
on onion and black seed plants. The investigation 
of the effect of various doses (50, 100, 400, 700, 
1000, and 2000ppm) with four different durations 
of exposure to Cr revealed a dose–time-dependent 
decrease in the mitotic index in the treated group 
compared with the control cells (P < 0.05 and P < 
0.01) (Tables 1, 2).

The highest onion and black seed MI values 
were recorded  at 6h after 50ppm Cr treatment 
(6.35 ± 0.196 and 5.35 ± 0.19), whereas the lowest 
MI values were found at 24h after 2000ppm 
Cr treatment (1.07 ± 0.042 and 1.09 ± 0.04, 
respectively) (Tables 1, 2 and Fig. 2a, b). As the 
exposure duration or Cr concentration increased, 
the proportion of abnormal cells increased. 

The percentage of chromosomal abnormalities 
was reported to be more significant at all 
examined concentrations. The highest number of 
chromosome abnormalities in A. cepa occurred 
at Cr concentrations of 2000ppm with continuous 
exposure and at lower Cr concentrations with an 
extended exposure time of 24h. (Fig. 3a). When 
the exposure duration to N. sativa reached 18 h, 
the percentage of defective chromosomes reached 
the maximum of 100 % (Fig. 3b). A.  cepa and N. 
sativa showed the lowest abnormality percentage 
at 50ppm for 6h (28.42%± 1.02 and 81.43 % ± 
0.60%, respectively) as compared with the control 
(18, 58 ± 0.93, and 16.86 ± 0.48 %, respectively) 
(Fig. 3a and b).

Effect of Cr(VI) on chromosomal aberrations
Cells with bridge, forward, diagonal, 

vacuolated, lagging, micronucleus, fragmented, 
and sticky chromosomes were the most prevalent 
forms of aberrant cells when both plants were 
subjected to different concentrations of Cr. The 
analysis of the total number of CAs revealed 
that, stickiness was the most frequent aberration, 
with a high occurrence in cell division stages 
measured as 49.43 % and 56.04 % in A.  cepa and 
N. sativa, respectively, followed by c-mitosis with 
ratio 13.15%  and 22.08% CAs (Fig. 3c). These 
aberrations (disturbed and irregular) were grouped 
and measured as 16.06% and 10.64% for A. cepa 
and N. sativa, respectively. Bridge, forward, 
diagonal, vacuolated, lagging, and fragmented 
chromosomes were pooled together and labeled 
“others” (Fig. 3c). In A.cepa and N.sativa, they 
were attributed the ratio 21.16 % and 11.04%, 
micronucleus was found in A. cepa and N. sativa 
with ratio 0.21% and 0.20 % respectively (Fig. 3c). 
Types of abnormalities are illustrated in Fig. 4.

Effect of Cr(VI) on DNA damage
The DNA damage was caused by different 

Cr concentrations after 24 and 18h of treatment 
in root meristem cells of A. cepa and N. sativa, 
respectively, is reported in Table 3 and Fig. 5 as 
tail DNA percentage (percent of comet tail DNA) 
and tail length. The tail moment (TM) was assessed 
as a damage parameter. Root tip cells exposed to 
Cr concentrations for 24 and 18h showed a comet 
tail compared with control cells (Fig. 5), which 
indicates the instability of the nuclear DNA. 
Whereas the length of the comet tail increased as 
the Cr concentration and exposure time increased. 
At 50ppm Cr, DNA damage was severe, and at 
2000ppm, the damage was extremely worse.
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TABLE 1. Mitotic index and mitotic phase percentage in Allium cepa meristematic cells treated with various doses 
of hexavalent chromium Cr(VI)

Treatments
Counted 

cells
Divided 

cells
  Mitotic index  

(MI ± S.E)

Mitotic phases (%)

Time 
(h)

Conc. 
(ppm) Prophase Metaphase Anaphase Telophase

6

Control 5745 323 5.62 ± 0.038 31.50 28.43 16.38 23.69

50 2985 190 6.37 ± 0.196 45.46 22.70 13.55 18.29

100 3216 200 6.22 ± 0.163 23.28 38.92 16.48 21.32

400 3532 210 5.95 ± 0.392 36.28 30.86 17.74 15.12

700 3683 204 5.54 ± 0.239 33.19 20.09 16.95 29.76

1000 3511 181 5.16 ± 0.038 36.07 37.79 10.96 15.18

2000 5612 165 2.94 ± 0.167** 30.55 26.18 17.37 25.90

12

50 4327 243 5.62 ± 0.162 40.97 18.60 15.28 25.15

100 2977 144 4.84 ± 0.291 30.30 26.08 23.38 20.24

400 4033 164 4.07 ± 0.039** 32.05 33.76 20.25 13.94

700 3922 150 3.82 ± 0.174** 37.11 21.55 10.28 31.06

1000 4483 150 3.35 ± 0.227** 27.12 53.23 9.67 9.98

2000 5197 116 2.23 ± 0.081** 27.26 47.63 14.01 11.11

18

50 2712 141 5.20 ± 0.193 48.80 26.94 9.21 15.05

100 4305 184 4.27 ± 0.160** 28.45 19.48 13.12 38.95

400 3318 133 4.01 ± 0.388** 35.98 35.61 9.51 18.90

700 3828 140 3.66 ± 0.318** 31.92 40.26 15.97 11.85

1000 4319 84 1.94 ± 0.153** 22.11 51.87 12.34 13.68

2000 5328 87 1.63 ± 0.226** 22.72 56.12* 10.23 10.93

24

50 2558 98 3.83 ± 0.176** 47.26 27.13 10.06 15.55

100 3431 91 2.65 ± 0.175** 45.07 17.21 11.82 25.90

400 3898 96 2.46 ± 0.181** 34.75 43.45 8.72 13.08

700 2038 50 2.45 ± 0.198** 43.74 14.35 17.68 24.23

1000 2916 39 1.34 ± 0.030** 17.86 26.32 24.21 31.61

2000 5540 59 1.06 ± 0.042** 30.92 34.22 16.51 18.36

S.E., standard error       *Significant at P < 0.05       ** Significant at P < 0.01       
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TABLE 2. Mitotic index and mitotic phases proportion of Nigella sativa meristematic cells subjected to various 
doses of hexavalent chromium Cr(VI)

Treatments
Counted 

cells
Divided 

cells

  Mitotic 
index   

 (MI ± S.E)

Mitotic phases (%)

Time (h) Conc. 
(ppm) Prophase Metaphase Anaphase Telo-

phase

6

Control 5182 261 5.04 ± 0.092 45.89 25.65 8.36 20.09

50 4435 237 5.34 ± 0.191 43.72 31.17 9.01 16.10

100 5097 229 4.49 ± 0.211 38.85 27.98 12.21 20.95

400 3532 155 4.39 ± 0.222 47.89 27.80 11.53 12.79

700 4557 198 4.34 ± 0.142 33.37 30.22 24.53 11.88

1000 4793 194 4.05 ± 0.112** 35.11 30.39 15.96 18.54

2000 5481 195 3.56 ± 0.218** 31.39 31.93 15.33 21.35

12

50 5539 259 4.68 ± 0.227 35.64 37.80 14.28 12.29

100 4922 210 4.27 ± 0.124 38.97 34.60 14.58 11.85

400 5382 191 3.55 ± 0.139** 40.67 30.67 13.83 14.83

700 5365 176 3.28 ± 0.092** 34.24 36.85 15.76 13.16

1000 6093 162 2.66 ± 0.140** 29.86 55.97** 4.76 9.40

2000 5645 142 2.52 ± 0.140** 50.32 22.78 12.75 14.14

18

50 5022 211 4.20 ± 0.191* 32.12 42.83 11.28 13.76

100 4379 159 3.63 ± 0.107** 49.71 25.21 12.91 12.17

400 6207 167 2.69 ± 0.188** 29.55 41.83 11.84 16.79

700 6210 158 2.54 ± 0.150** 34.98 41.55 11.95 11.52

1000 7395 179 2.42 ± 0.318** 30.64 43.28 19.43 6.66

2000 4544 75 1.65 ± 0.178** 48.83 33.92 7.69 9.56

24

50 4847 189 3.90 ± 0.071** 31.33 46.76 9.17 12.74

100 5758 179 3.11 ± 0.051** 30.95 32.42 17.45 19.18

400 6988 155 2.22 ± 0.072** 28.27 49.31 13.93 8.49

700 5789 113 1.95 ± 0.045** 29.55 39.31 20.71 10.44

1000 5130 70 1.36 ± 0.177** 35.60 35.02 21.69 7.68

2000 4192 46 1.10 ± 0.046** 51.71 29.50 15.29 3.51

S.E., sandard error       *Significant at P < 0.05       ** Significant at P < 0.01  
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Fig. 2. Mitotic Index for (A) A. cepa and (B) N. sativa 

Fig. 3. Abnormalities caused by different 
concentrations of hexavalent chromium 
(CrVI ) in Allium cepa and Nigella sativa 
Percentages : (A) Ab. % for A. cepa, (B) 
Ab. % for N. sativa, and (C) types of most 
abundant abnormalities , with Ab reffering 
to abnormalities.
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Figure 2:  Mitotic Index   (A & B) 
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Figure 3: Abnormalities caused by different concentrations of hexavalent chromium Cr (VI) in A. 
cepa and N. sativa (A , B & C) 
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Figure 3: Abnormalities caused by different concentrations of hexavalent chromium Cr (VI) in A. 
cepa and N. sativa (A , B & C) 

Fig. 4. Different types of chromosomal abnormalities 
in Allium cepa and Nigella sativa: (a) 
Micronucleus at interphase (b) Irregular 
prophase, (c) Disturbed metaphase in A. 
cepa  and sticky metaphase in N. sativa , (d) 
Sticky metaphase in A. cepa and disturbed 
metaphase in N. sativa, (e) c-meta phase in 
A. cepa and sticky anaphase in N. sativa, (f)  
Sticky anaphase in A. cepa and anaphase 
with forward chromosomes in N. sativa, (g) 
Anaphase with forward and bridges in A. 
cepa and anaphase with bridges in N. sativa 
and (h) Sticky telophase with with forward 
chromosome in A. cepa and sticky telophase 
with bridges in N. sativa
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TABLE 3. DNA damage in the nuclei of Allium cepa and Nigella sativa root meristems exposed to hexavalent 
Chromium (Cr(VI)) was detected using the Comet method

Concentration Tails length (µm) Tail DNA(%) Tail moment

Allium cepa L.

Control 1.08 ± 0.09 g 1.25 1.35
50ppm 2.82 ± 0.11 f 3.14 8.85
100ppm 4.14 ± 0.15 e 4.17 17.26
400ppm 5.90 ± 0.19 d 4.78 28.20
700ppm 7.08 ± 0.32c 6.05 42.83
1000ppm 9.33 ± 0.40 b 8.12 75.76
2000ppm 11.20 ± 0.47 a 9.39 105.17

Nigella sativa L.

Control 1.20 ± 0.10 f 1.39 1.67
50ppm 3.05 ± 0.13 e 3.47 10.58
100ppm 4.53 ± 0.18 d 4.36 19.75
400ppm 6.62 ± 0.26 c 5.14 34.03
700ppm 7.51 ± 0.48 c 6.38 47.91
1000ppm 10.82 ± 0.57 b 9.03 97.70
2000ppm 12.11 ± 0.60 a 10.28 124.49

* Data are presented as the mean ± standard error of mean (SEM). Values with different superscript letters [a (highest) to g (lowest) in 
the tail length column are significantly different at P ≤ 0.05.
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Figure 5: Comet character in nuclei isolated from A. cepa and N. sativa root meristems exposed 
to hexavalent Chromium Cr (VI) at all concentrations. 

 

Fig. 5. Comet character in nuclei isolated from Allium cepa and Nigella sativa root meristems exposed to hexavalent 
Chromium (CrVI) at all concentrations

The ANOVA test revealed a substantial 
difference between the investigated values. In 
control samples of A. cepa and N. sativa, the 
measured TM was 1.35 and 1.67mm, whereas 
cells exposed to 2000ppm displayed TM 
value of 105.17 and 124.49mm, respectively. 
Multiple comparisons between the treatment 
and control groups revealed that variations in 
the mean values of the percentage of tail DNA 
were statistically significant at concentrations 
higher than 700ppm. The tail length and 
moment values varied significantly through all 
concentrations.

Discussion                                                                                  

The toxicity of Cr(VI) differs depending on the 
type of plant and the source of the heavy metal, 
and there is a wide range of sensitivity or tolerance 
to Cr(VI) in the environment among different plant 
species (López-Luna et al., 2009). The results of 
this study proved that chromium is hazardous to 
seed germination at high concentrations. From 
the current publications revealed that Cr(VI) has 
previously been shown to reduce or inhibit 
the germination of plants depending on the Cr 
concentration and the plant genotype; for example, 
Lycopersicum L., Triticum aestivum L., Hibiscus 
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esculentus L., some essential pulses ( such as gram 
, necessary pulses, Lycopersicon esculentum L., 
Green gram and Chickpea), Brassica oleracea 
L. var. acephala DC,as well as some crops from 
India, which was consistent with the present 
results,  (Jun et al., 2009; López-Luna et al., 2009; 
Lakshmi & Sundaramoorthy, 2010; Ozdener et al., 
2011; Datta et al., 2012; Amin et al., 2013; Singh 
& Sharma, 2017; Joshi et al., 2019; Hafiz & Ma, 
2021). However, when exposed to 50µM Cr(VI), 
Panda (2007) discovered that the biomass and root 
length of Oryza sativa increased rapidly during 
the first 24h but gradually inhibited over the next 
48h. Higher concentrations of Cr(VI) (2.0–3.2mM) 
had no inhibitory effect on the seed germination 
percentage in several pulse crops (López-
Luna et al., 2016; Mathur et al., 2016). Several 
mechanisms, such as the effect of Cr on amylase 
activity and the subsequent transport of sugars to 
embryo axes, may have led to the negative effect of 
Cr on seed germination observed here, resulting in 
a low germination percentage. This was attributed 
to disruptions in respiration activity and the 
mobilization of significant seed reserves including 
starch, proteins, and lipids, which prevented 
normal seed imbibition. (Kumar et al., 2016; 
Steinbrecher & Leubner-Metzger, 2016; Medda & 
Mondal, 2017). Even though that protease activity 
increases in tandem with chromium treatment, it 
could be a factor in the reduced germination of 
chromium-treated seeds (Zied, 2001).

Contact Roots are the first organs in plants to 
come into contract with toxic materials, and they 
often accumulate more metals than do shoots 
(Shanker et al., 2004; Mangabeira et al., 2011), 
hence limiting growth and root development. 
Several investigations have shown that Cr(III, 
VI) is detrimental to root and shoot development 
and biomass. Under Cr(III) stress, Liu et al. (2008) 
observed a reduction in the root development of A. 
cepa. All plants failed to develop radicles beyond 
a Cr concentration of 400 ppm, demonstrating that 
greater levels of chromium severely inhibited root 
extension in A. cepa L. and N. sativa L. Similar 
findings were found in a photo-genotoxic assay 
of chromium (Cr) and arsenic (As) on A. cepa 
conducted by Gupta et al. (2018). In that research, 
root length significantly decreased with increasing 
Cr and As concentrations, suggesting a negative 
correlation between root length and Cr and As 
treatment. A hormetic dose-response analysis 
revealed that Cr(VI) accelerated root growth at low 
doses and retarded it at high levels (Calabrese 

& Blain, 2009; Belz et al., 2011). According to 
previous researches, the principal morphological 
impacts of heavy metals on roots include a 
reduction in root extension, root hair breakdown, 
and a reduction in root number (Mallick et al., 
2010). The length of root and shoots of Arachis 
hypogea was altered by increasing  Cr(VI) 
concentrations (Rajalakshmi et al., 2010). It 
has also been shown that the root growth of rice 
(Oryza Sativa L.) cultivars was inhibited to be a 
significantly greater extent than shoot growth 
(Rajalakshmi et al., 2010); this could be because 
chromium trapped in the vacuoles of the root cells, 
making it less toxic. This may be a natural way 
for the plant to deal with toxicity (Shanker et al., 
2004).

Root meristemic cells can be examined 
for cytogenetic abnormalities under an optical 
microscope, thus allowing the speedy and accurate 
determination of the MI, chromosome breaks 
and aberrations, and micronuclei. This technique 
is invaluable in genotoxicity research (Prasad 
et al., 2012), spindle failure, and polyploidy and 
aneuploidy incidence (Lin & Aarts, 2012; Nalci et 
al., 2019). Moreover, the mitotic index shows how 
often cells divide, which is crucial in determining 
how fast roots grow and how well anti-mitotic 
agents work (Zou et al., 2006). The value of the 
MI in onion and black seed plants was at its beak 
6h after treatment with a concentration of 50ppm 
of Cr, whereas it was at its lowest at 24h after 
treatment with a concentration of 2,000ppm of 
Cr. These findings were consistent with those of  
Eleftheriou et al. (2012) and Gupta et al. (2018), 
who discovered that Cr(VI) had a dose-and time-
dependent detrimental effect on root growth 
rate and the MI during the cell division cycle in 
A. cepa. In addition, Hemachandra & Pathiratne 
(2015) found that the roots of A. cepa bulbs 
exposed to Cr(VI) exhibited the highest levels of 
growth inhibition, MI suppression, and nuclear 
abnormalities. According to the obtained results, 
the proportion of aberrant cells increased when the 
duration of exposure or Cr concentration increased. 
In this regard, Glińska et al. (2007) hypothesized 
that the suppression of MI in metal-exposed 
roots could stem from a disrupted cell cycle or 
chromatin disfunction resulting from the metal-
DNA interaction. The mito-depressing effect of Cr 
on the roots of A. cepa and N. sativa reduces root 
length. This inhibition may result from a blockage 
of the G1 phase and suppression or inhibition of 
DNA synthesis at the S phase.
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In contrast to other metals, chromium salts 
readily permeate the cell membrane. They are 
converted to trivalent type that directly react with 
DNA, resulting in the alteration of bases, single-
and double-strand breaks, and different adducts 
such as Cr-DNA, DNA-Cr-DNA, and protein-Cr-
DNA adducts. Cr causes genotoxicity by acting 
directly on DNA (Santos & Rodriguez, 2012).

Natural and environmental factors, such 
as radiation or chemicals, both contribute to 
the induction of chromosomal abnormalities 
(Russel, 2002). The effects of pollutants, such 
as heavy metals, on plants have been extensively 
studied, and the results of current investigations 
agree well with those of previous publications 
(Gupta et al., 2012; Hemachandra & Pathiratne, 
2015). Increases in the proportion of aberrant 
root meristems suggest the genotoxicity of 
the tested chemicals (Ghosh et al., 2016). In 
the present study, a wide range of mitotic cell 
division defects in the two plant species analyzed 
here, with some concentrations approaching the 
maximum level of aberrations (100%). Increasing 
chromosomal abnormalities may result from a 
multitude of events. Chemical interference has 
the most significant impact during DNA repair. 
Sticky chromosomes, which are a hallmark 
of chromosome-harming effects, were among 
the most frequently detected abnormalities in 
the root tips of plants treated with Cr during 
metaphase, anaphase, and telophase. This finding 
directly contradicts those of Kumari et al. (2011), 
Ghosh et al. (2016), and Sun et al. (2019), who 
demonstrated that chromosomal stickiness was 
the most prevalent CA, supporting the significant 
DNA fragmentation observed in the comet assays 
conducted on A. cepa specimens. In addition, 
the enzyme system disrupted by the stickiness, 
that slowed down cell division (Mahakhode 
& Somkuwar, 2013). The high c-metaphase 
values indicate that Cr is aneugenic (Zou et al., 
2006). The increased Cr content may cause 
oxidative damage, and abnormally high c-mitosis 
frequencies may indicate that the mitotic apparatus 
is partially blocked.  Aneuploidy is more likely 
to be caused by the chromosome bridges formed 
when chromatids fuse together after being broken 
off from their homologous chromosomes (Leme 
& Marin-Morales, 2009).

Although few micronuclei were discovered, 
this technique is crucial for determining the 
genotoxic and cytotoxic effects of mutagens and 

environmental contaminants. Acentric fragments 
or lagging chromosomes that cannot join with 
telophasic daughter nuclei are the most common 
causes of micronuclei. A loss of primary genes 
could lead to cell death via this process (Kirsch-
Volders et al., 2011). Only a few micronuclei 
were observed here because of the short exposure 
time to Cr, which generally occurs after 48 to 72h 
of exposure, as described by Eleftheriou et al. 
(2012). Cr may cause chromosomal abnormalities 
in the metaphase and ana-telophase stages of 
mitosis. It has been shown through chromosomal 
anomalies that Cr can disrupt nucleic acids and 
cause chromosome breakage. 

The comet test, which is a sensitive method 
for detecting DNA damage, was used to 
determine the genotoxicity of Cr in A. cepa root 
tip cells. This method permits the identification 
of DNA strand breakage in individual cells. At 
concentrations greater than 700ppm. Results 
revealed that statistically significant differences 
in the mean values of tail DNA percentage; 
however the tail length and moment values 
differed considerably at all concentrations. 
In a study using A. cepa bulbs, Patnaik et al. 
(2013) found that exposure to Cr(VI) at varying 
concentrations led to micronuclei, chromosomal 
abnormalities, and DNA damage in the plants’ 
root cells, which agree with the present  results. 
The comet assay showed that, compared 
with the controls, the measured amounts of 
Cr generated a substantial spectrum of DNA 
damage in the nuclei of A. cepa and N. sativa 
roots. Furthermore, permanent changes in 
DNA replication, repair, recombination, and 
transcription have been linked to Cr(VI)  induced 
DNA damage or genotoxicity (Ueno et al., 1995; 
Casadevall et al., 1999; Rodriguez et al., 2011) 
because of the metal ion’s propensity to generate 
ROS in plant or mammalian cells (Watanabe & 
Suzuki, 2002; Yadav & Sehrawat, 2011).

Conclusion                                                                        

In this study, we investigate the responses of 
common onion (A. cepa) and black seed (N. 
sativa) to hexavalent chromium Cr(VI), which 
cause negative effects on plants. All applied 
concentrations of Cr(VI)  for different treatment 
times cause a gradual decrease in the percent of 
germination and radicle lengths in A. cepa and 
N. sativa. Moreover, all concentrations of Cr(VI)  

applied for different treatment times cause both 
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cytotoxic and genotoxic effects on the tested 
plants by reducing the MI, causing an imbalance 
in the frequency of different mitotic phases, 
and inducing a wide range of chromosomal 
aberrations in root tip cells of A. cepa and 
N. sativa. There was a variation between the 
two plants in response to Cr(VI) : the N. sativa 
responded toCr(VI)  more effectively than the A. 
cepa. Finally, Cr(VI)  was found to cause severe 
DNA damage in A. cepa and N. sativa at all 
concentrations.
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 تقييمات السمية النباتية والسمية الجينية للكروم سداسى التكافؤ على خلايا الجذور فى نباتى 
البصل وحبة البركة

محمود عزت، عباس أحمد الغمرى، هانى أحمد مرغنى محجوب، عبدالغنى صبحى شعبان 
قسم النبات والميكروبيولوجي - كلية العلوم)بنين( – جامعة الأزهر – القاهرة- 11884- مصر.

كواحد من الأسباب العالمية الرئيسية للتلوث البيئي، تضر المعادن الثقيلة بالزراعة وصحة الإنسان من خلال 
السلسلة الغذائية. باستخدام مؤشر معدل الانقسام (MI) ، والانحرافات الصبغية (CAs) ، وتلف الحمض النووي، 
البصل  نباتى  فى  الجذور  التكافؤ على خلايا  للكروم سداسى  الجينية  والسمية  للخلايا  السامة  التأثيرات  تقييم  تم 
وحبة البركة. تمت معاملة النباتات بستة تركيزات من الكروم السداسى )50  ، 100 ، 400 ، 700 ، 1000 ، 
 2000جزء في المليون( لمدة 6، 12، 18، 24 ساعة. انخفضت نسب إنبات بذور البصل وحبة البركة عند 400 
جزء في المليون لكلا النباتين، مع ملاحظة عدم وجود انبات في نبات حبة البركة عند أو أعلى من 700 جزء 
في المليون. كان معدل الانقسام الميتوزى في المجموعة المعالجة أقل بكثير من خلايا الكنترول بعد التعرض 
التكافؤ لأوقات تعرض مختلفة. أيضا كان الانخفاض فى معدل الانقسام  لتركيزات مختلفة من الكروم سداسى 
للشذوذ  أكبر نسبة  نبات البصل. تم تحديد  البركة أكثر وضوحا منه فى  لحبة  النامية  القمم  الميتوزى في خلايا 
فى حبة البركة بعد 24 ساعة من التعرض لـ 100 جزء في المليون، بينما أظهر نبات البصل أكبر نسبة شذوذ 
بعد 24 ساعة من التعرض لـ 400 جزء في المليون. في كل مراحل الاقسام، لوحظ وجود شذوذ في الانقسام 
فى خلايا القمم النامية للجذور في كلا النباتين. بعض الأمثلة على أنواع الشذوذ هي اللزوجة، الطور الاستوائى 
القناطر فى الطور الانفصالى والنهائى، الكروموسومات الشاردة المضطربة، والنويات الدقيقة.  الكولشيسينى، 
لتحديد مدى  النووي،  الحمض  في  الخيط  أحادي  الانكسار  يظُهر  الذي   ،)Comet assay( اختبار  استخدام  تم 
خطورة الكروم السداسى على الحمض النووي في خلايا الجذور للبصل. كان من الواضح تلف الحمض النووي 
بشكل كبير في تجربة المذنب مقارنةً بالكنترول في جميع التركيزات. تشير الدلائل المستمدة من كل من الخلايا 
المرستيمية لجذور البصل وحبة البركة إلى أن الكروم سداسى التكافؤ سام للخلايا وسام للجينات ويؤدي إلى تلف 

الحمض النووي بطريقة تعتمد على الجرعة.


