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Abstract: Recently, Nedjar and Zeghdoudi [6] proposed a new lifetime model called gamma Lindley
distribution. Roozegar and Nadarajah [8] introduced some notes around gamma Lindley distribution
including only some statistical properties and estimations depending on the same probability density
function which proposed by Nedjar and Zeghdoudi [6]. In fact, the model proposed by Nedjar and
Zeghdoudi [6] is not a probabilistic model. Further, some of its fundamental properties as well as pa-
rameter estimations are incorrect. Hence, all corrections which proposed by Roozegar and Nadarajah
[8] are also incorrect. On the other hand, Messaadia and Zeghdoudi [5] proposed only one remark
around the parameter space of gamma Lindley distribution which proposed by Nedjar and Zeghdoudi
[6], but the mathematical properties and estimations are still wrong for both Nedjar and Zeghdoudi
[6] and Roozegar and Nadarajah [8]. Because, Messaadia and Zeghdoudi [5] did not discuss any cor-
rections around quantile function, entropies, estimation methods, simulation and data analysis. In this
paper, several corrections including probability density function, quantile function, entropies, estima-
tion the model parameters using the maximum likelihood estimation and moment estimation methods
and simulation are discussed in-detail because the previous three papers not make a benefit to the
readers, especially in practical field.
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1. Introduction

Recently, some attempts have been made to define new flexible distributions to analyze various
types of data in applied fields, especially, in medical, renewable energy, ecology and reliability analysis
fields. See for example, Jehhan et al. [4], Eliwa et al. [2], El-Morshedy and Eliwa [3], Okorie et al.
[7], Alizadeh et al. [1], among others. Lindley (Li) distribution is one of these distributions, which has
some nice properties to be used in lifetime data analysis, especially in applications modeling stress-
strength model. This model can be shown as a mixture of gamma (2,θ), say G(2,θ), and exponential
(θ), say E(θ), with non-negative mixture weights P1 =

1
1+θ and P2 =

θ
1+θ , respectively. Thus, the PDF

of Li distribution can be expressed as follows

v(x; θ) = P1 θ
2xe−θx + P2 θe−θx

=
θ2

1 + θ
(x + 1)e−θx ; x, θ > 0, (1.1)

where
∑2

i=1 Pi = 1. Due to its wide applicability in many fields, several works aimed at extending Li
distribution become very important. Among of those modifications, gamma Lindley (GLi) distribu-
tion (see Nedjar and Zeghdoudi [6]) and generalized Lindley (GNLi) distribution (see Roozegar and
Nadarajah[8]).
The remainder of the paper is structured as follow: Section 2 presents the improper PDF of the GLi,
section 3 presents the proper PDF of the GLi, Section 4 presents incorrect and correct statistical prop-
erties of the GLi, also the incorrect estimation methods and their corrections, section 5 presents sim-
ulations, section 6 presents applications using real data and section 7 presents the conclusion of the
study.

2. Improper PDF for GLi Distribution

Nedjar and Zeghdoudi [6] proposed this model as a mixture of two components: G(2,θ) and Li(θ)
with mixture weights β−1

β
and 1

β
, respectively. Or by another way, it can be shown as a mixture of three

components: G(2,θ), E(θ) and G(2,θ) with mixture weights M1 =
β−1
β
,M2 =

θ
β(1+θ) and M3 =

1
β(1+θ) ,

respectively. This means that the PDF of GLi distribution can be expressed as follows

f (x; θ, β) = M1 θ
2xe−θx + M2θe−θx + M3 θ

2xe−θx

=
β (1 + θ) − θ
β (1 + θ)

θ2xe−θx +
θ

β (1 + θ)
θe−θx ; x > 0, (2.1)

where θ, β > 0. From Equation (2.1), it is observed that GLi distribution can be also shown as a mixture
of G(2,θ) and E(θ) with mixture weights L1 =

β(1+θ)−θ
β(1+θ) and L2 =

θ
β(1+θ) , respectively. Unfortunately, the

PDF f (x; θ) in Equation (2.1) is not a probabilistic model, because the mixture weights must be non-
negative. But in this case, it is found that the mixture weight L1 =

β(1+θ)−θ
β(1+θ) < 0 for β < θ

1+θ . Hence,
Equation (2.1) is not a suitable PDF for GLi distribution, because it can be negative for some values of
the parameters θ > 0 and β > 0. It’s a contradiction for the PDF properties. Figure 1 shows the plots
of incorrect PDF and its corresponding CDF for various values of the model parameters when β < θ

1+θ .
From Figure 1, it is clear also that the CDF can be take values greater than 1. It’s a contradiction

for the CDF properties.
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Figure 1. The plots of improper PDF (left panel) and improper CDF (right panel for GLi
distribution when β < θ

1+θ .

3. Proper PDFs for GLi Distribution

Nedjar and Zeghdoudi [6], Roozegar and Nadarajah [8] and Messaadia and Zeghdoudi [5] didn’t
propose a proper PDF for GLi distribution. To obtain a suitable PDF for GLi distribution, we have two
propositions.

The first proposition: Modify the parameter space to be θ > 0 and β ≥ θ
1+θ . So, the random variable

X is said to have GLi distribution if its PDF can be expressed as follows

f (x; θ, β) =
θ2

β (1 + θ)
([
β + θβ − θ

]
x + 1

)
e−θx ; x, θ > 0, β ≥

θ

1 + θ
. (3.1)

Figure 2 shows the plots of correct PDF and its corresponding CDF for various values of the model
parameters when β ≥ θ

1+θ .

Figure 2. The plots of proper PDF (left panel) and proper CDF (right panel) for GLi distri-
bution when β ≥ θ

1+θ .

Note 1.

1. If β = θ
1+θ , then GLi distribution tends to E distribution.

2. If β = 1, then GLi distribution tends to Li distribution with one parameter.
3. If λ = β + θβ − θ, then GLi distribution tends to Li distribution with two-parameter.

Computational Journal of Mathematical and Statistical Sciences Volume 1, Issue 1, 1–12



4

The second proposition: Generate a new GLi (NGLi) distribution using a new two mixing param-
eters. The NGLi distribution can be shown as a mixture of G(2,θ) and Li(θ) with mixture weights
H1 =

β

1+β and H2 =
1

1+β , respectively. So, the PDF and CDF of NGLi distribution can be expressed as
follows

f (x; θ, β) = H1θ
2xe−θx + H2

θ2

1 + θ
(x + 1)e−θx

=
θ2

(1 + β) (1 + θ)
([
β + θβ + 1

]
x + 1

)
e−θx ; x > 0 (3.2)

and

F(x; θ, β) =
1

(1 + β) (1 + θ)

{[
β + θβ + 1

] [
1 − (θx + 1) e−θx

]
− θe−θx + θ

}
; x > 0, (3.3)

respectively, where θ, β > 0. Figure 3 shows the PDF and the corresponding CDF of NGLi distribution
for various values of the model parameters.

Figure 3. The plots of PDF (left panel) and CDF (right panel) for NGLi distribution.

The NGLi distribution is better than GLi distribution in practical application because of its new
parameter space where there is no constraint on θ and β except they are positive.

4. Incorrect Statistical Properties and Its Corrections

4.1. Incorrect quantile function (QF) and its correction

Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] didn’t propose a correct QF for GLi
distribution. Messaadia and Zeghdoudi [5] didn’t study the QF. Nedjar and Zeghdoudi [6] proposed
the QF as follows

QX(u) = −
β(1 + θ)

θ
[
β (1 + θ) − θ

] − 1
θ

W−1

(
β (1 + θ) (y − 1)
β (1 + θ) − θ

e−
β(1+θ)
β(1+θ)−θ

)
; 0 < u < 1, (4.1)

where θ, β > 0, W−1 denotes negative branch of Lambert W function (see Theorem 1, Page 169) and y
is considered one of typos. Actually, the proof of this theorem is incorrect in case of β ≤ θ

1+θ for the
following reasons:
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1. The authors started its proof using a correct formula F(x) = u to get the QF. But, the authors
multiplied the both sides of equation

[
θ (β (1 + θ) − θ) x + β (1 + θ)

]
e−θx = β (1 + θ) (1 − u) by

1
β(1+θ)−θ e−

β(1+θ)
β(1+θ)−θ . It is observed that, if β = θ

1+θ , then 1
β(1+θ)−θ e−

β(1+θ)
β(1+θ)−θ = 0

0 (undefined). Thus, we
wonder how the authors can multiply the both sides of equation by undefined term?.

2. The authors prove that β(1+θ)(u−1)
β(1+θ)−θ e−

β(1+θ)
β(1+θ)−θ ∈

(
−1
e , 0

)
. It’s incorrect for the following reasons:

• If β = θ
1+θ , then β(1+θ)(u−1)

β(1+θ)−θ e−
β(1+θ)
β(1+θ)−θ = ∞ <

(
−1
e , 0

)
.

• If β < θ
1+θ , then β(1+θ)(u−1)

β(1+θ)−θ e−
β(1+θ)
β(1+θ)−θ =

c(u−1)
c−1 e−

c
c−1 <

(
−1
e , 0

)
, where β = cθ

1+θ , 0 < c < 1.

From the previous two reasons, we can conclude that β(1+θ)(u−1)
β(1+θ)−θ e−

β(1+θ)
β(1+θ)−θ <

(
−1
e , 0

)
if β ≤ θ

1+θ . It’s a
contradiction with Lambert W function. Thus, the correct QF can be expressed as follows

QX(u) =


−

β(1+θ)
θ[β(1+θ)−θ] −

1
θ
W−1

(
β(1+θ)(u−1)
β(1+θ)−θ e−

β(1+θ)
β(1+θ)−θ

)
; β > θ

1+θ

− ln(1−u)
θ

; β = θ
1+θ ,

(4.2)

where − ln(1−u)
θ

is the QF for the E distribution.
On the other hand, Roozegar and Nadarajah [8] proposed the QF depending on improper PDF for

GLi distribution. Hence, its QF is incorrect when β < θ
1+θ .

4.2. Incorrect entropies and its corrections

In statistics, entropy is a measure of variation of the uncertainty. Two popular entropy measures are
the Rényi and Shannon entropies. Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] didn’t
propose correct entropies for GLi distribution. Messaadia and Zeghdoudi [5] didn’t study the entropies.
The Rényi entropy of the random variable X is discussed by Nedjar and Zeghdoudi [6] as follows

Iγ(X) =
1

1 − γ
log

 θ2γe γ
β+βθ−θ

βγ (1 + θ)γ

∫ ∞

0
uγe

−γ
β+βθ−θ udu

 ; γ > 0 and γ = 1. (4.3)

Moreover, the Shannon entropy can be derived from Equation (4.3) when γ −→ ∞. Actually, Equation
(4.3) is incorrect, in addition the Shannon entropy for the following reasons:

1. γ = 1 is considered one of typos where γ can be take all positive values except 1.
2. For γ > 0 and γ , 1, the Rényi entropy for the non-negative variable X can be expressed as

follows

Iγ(X) =
1

1 − γ
log

∫ ∞

0
f γ(x) dx

=
1

1 − γ
log

[
θ2γ

βγ (1 + θ)γ

∫ ∞

0

([
β + θβ − θ

]
x + 1

)γ e−θγx dx
]

=
1

1 − γ
log

 θ2γ

βγ (1 + θ)γ

γ∑
i=0

(
γ

i

) [
β + θβ − θ

]i
∫ ∞

0
xie−θγx dx


=

1
1 − γ

log

 θ2γ

βγ (1 + θ)γ

γ∑
i=0

(
γ

i

) [
β + θβ − θ

]i[
θγ

]i+1 Γ (i + 1)

 , (4.4)
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where γ = 1, 2, 3, ....
3. The Shannon entropy can be derived from Equation (4.4) when γ −→ 1, not when γ −→ ∞.

On the other hand, Roozegar and Nadarajah [8] proposed the entropies depending on improper PDF
for GLi distribution. Hence, its entropies are incorrect when β < θ

1+θ .

4.3. Incorrect maximum likelihood (ML) estimation and its correction

Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] didn’t propose correct estimation for
GLi distribution. Messaadia and Zeghdoudi [5] didn’t study the ML estimation. Nedjar and Zeghdoudi
[6] derived the log-likelihood equation of single observation as follows

L(x; θ, β) = 2 ln θ − ln β − ln (θ + 1) + ln
[
(β + θβ − θ) x + 1

]
− θx. (4.5)

The derivatives of Equation (4.5) with respect to θ and β are:

∂L(x; θ, β)
∂θ

=
2
θ
−

1
θ + 1

− x +
(β − 1) x

(β + θβ − θ) x + 1
(4.6)

and
∂L(x; θ, β)
∂β

=
−1
β
+

(1 + θ) x
(β + θβ − θ) x + 1

, (4.7)

respectively. The ML estimators can be obtained by solving the non-linear Equations (4.6) and (4.7).
Therefore, the ML estimator θ̂ of θ and β̂ of β can be expressed as follows

β̂ =
1

1 + x
and θ̂ =

1
x

. (4.8)

In fact, the estimation in Equation (4.8) is inaccurate for the following reasons:

1. When the non-linear Equations (4.6) and (4.7) are solved, we get

β̂ =
θ̂(

1 + θ̂
) (

2 − θ̂x
) where

1
x
≤ θ̂ <

2
x
. (4.9)

Equation (4.9) shows the range of θ̂ and therefore β̂. For n observations the estimation in Equation
(4.9) can be expressed as follows

β̂ =
θ̂(

1 + θ̂
) (

2 − θ̂x
) where

1
x
≤ θ̂ <

2
x
, (4.10)

where x represents the mean of data.
2. Equation (4.8) represents only the ML estimators for E distribution where β̂ = 1

1+x =
θ̂

1+θ̂
. Recall,

Note 1 in the proposed paper.

On the other hand, Roozegar and Nadarajah [8] proposed the ML estimator θ̂ of θ and β̂ of β as
follows

β̂ =
1

1 + x
and θ̂ =

1
x

. (4.11)

Actually, the estimation in Equation (4.11) is inaccurate. Recall, Equation (4.10). Messaadia and
Zeghdoudi [5] didn’t propose any corrections on ML estimation.

Computational Journal of Mathematical and Statistical Sciences Volume 1, Issue 1, 1–12
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4.4. Incorrect moment (MO) estimation and its correction

Nedjar and Zeghdoudi [6] derived the MO estimators using the first moment (m) and second moment
(m2) for GLi distribution where

m =
2β(1 + θ) − θ
θβ (1 + θ)

and m2 =
6θβ + 6β − 4θ
θ2β + θ3β

. (4.12)

The solving of the previous non-linear system gives

β̂ =
θ̂(

1 + θ̂
) (

2 − θ̂m
) and m2̂θ

2 − 4mθ̂ + 2 = 0, (4.13)

where m2 = s2 + m2 and s2 is the variance. The authors discussed Equation (4.13) as follows:

1. If m = 0 and m2 = 0, then β̂ = θ̂ = ϕ.
2. If m , 0 and m2 = 0, then θ̂ = 1

2m .
3. If m2 , 0, then θ̂ = 1

m2

(
2m +

√
2
√
−s2 + m2

)
or θ̂ = 1

m2

(
2m −

√
2
√
−s2 + m2

)
.

In fact, the authors must write θ̂ = 1
m2

(
2m +

√
2
√
−s2 + m2

)
for m ≥ s and 1

m ≤ θ̂ <
2
m . It is

considered a necessary condition to get a positive value for each θ̂ and β̂. Because for some data, we
may find that m < s such as actuarial data sets. Moreover, we wonder why the authors didn’t discuss
the case of θ̂ = 1

m2

(
2m −

√
2
√
−s2 + m2

)
, m2 , 0?. Although, this case may be give also a positive

value for θ̂ if m ≥ s and therefore β̂ if 1
m ≤ θ̂ <

2
m .

On the other hand, Roozegar and Nadarajah [8] and Messaadia and Zeghdoudi [5] didn’t propose
any corrections on MO estimation.

5. Simulation

Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] didn’t propose correct simulation for
some values of the parameters. Messaadia and Zeghdoudi [5] didn’t propose any simulation for the
model parameters. In this section, we assess the performance of the MLE with respect to sample size
n for the following two reasons:

1. Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] studied the performance of this
method using incorrect initial values like (θ, β) = (1, 0.1) and (3, 0.5) where β < θ

1+θ .
2. Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] didn’t propose the number of samples

(N) of size n.

For more information about simulation study see [10], [11], and [12].
Hence, we assess the performance of the MLE using correct initial values and an obvious algorithm

as follows:

1. Generate N = 500 samples of size n = 10, 11, 12, ....,50 from GLi(0.5, 0.5) and GLi(1.0, 0.5).
2. Compute the MLEs for N samples, say θ̂ j and β̂ j for j = 1, 2, ...,N.

Computational Journal of Mathematical and Statistical Sciences Volume 1, Issue 1, 1–12
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3. Compute the biases and mean-squared errors (MSEs), where

bias =
1
N

N∑
j=1

(
ϖ̂ j −ϖ

)
and MSE =

1
N

N∑
j=1

(
ϖ̂ j −ϖ

)2
.

4. The empirical results are given in Figures 4 and 5.
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Figure 4. The bias and MSE of θ̂ and β̂ versus for GLi model when (θ, β) = (0.5, 0.5).
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Figure 5. The bias and MSE of θ̂ and β̂ versus for GLi model when (θ, β) = (1.0, 0.5).

From Figures 4 and 5 the following observations can be made:

1. The magnitude of bias always decreases to zero as n→ ∞.
2. The MSEs always decrease to zero as n→ ∞. This shows the consistency of the estimators.
3. The MLE method can be used quite effectively for data analysis purposes.

We have presented results only for (θ, β) = (0.5, 0.5) and (1.0, 0.5). But, the results are similar for
other choices for θ and β.
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6. Real Data with Incorrect Estimators and Its Corrections

In this section, we show at first that Nedjar and Zeghdoudi [6] and Roozegar and Nadarajah [8] pro-
posed incorrect estimators for the first real data set considered. After that, we derive the correct estima-
tors for this data. The authors used some goodness-of-fit measures, namely, −L, Kolmogorov-Smirnov
(KS ) statistic as well as Akaike information criterion (AIC) and Bayesian information criterion (BIC).

The first data set (I): This data represents the failure times for a sample of 15 electronic compo-
nents in an acceleration life test (see Lawless [9]). The mean (m) and standard deviation (s) of this
data are 27.546 and 20.059, respectively. Roozegar and Nadarajah [8] proposed incorrect estimation
for the model parameters depending on inaccurate Equation (4.11) as follows θ̂ = 0.036, β̂ = 0.035 and
L = −64.738. Messaadia and Zeghdoudi [5] didn’t propose any estimation for the model parameters.
Nedjar and Zeghdoudi [6] estimated the model parameters and goodness-of-fit measures as follows:
θ̂ = 0.684 and β̂ = 1.129 with L = −64.015, AIC = 132.03, BIC = 133.45 and KS = 0.094. Actually,
the estimation results of Nedjar and Zeghdoudi [6] are incorrect for the following reasons:

1. The value of θ̂ is incorrect, because θ̂ must be located in the interval
[

1
27.546 ,

2
27.546

[
according to

Equation (4.10).
2. If θ̂ = 0.684 and β̂ = 1.129, then L = −255.617, AIC = 515.234, BIC = 516.650, KS = 0.835

and p-value = 0.00.
3. If θ̂ = 0.684, then β̂ = −0.0241 < 0 according to Equation (4.10). It is a fatal mistake.

Table 1 shows the correct MLEs with their corresponding standard errors (in parentheses) as well
as the correct goodness-of-fit measures for this data.

Table 1. The correct estimation for data set I using the ML method.

Model ↓ Estimation−→ θ̂(SE) β̂(SE) −L KS (p-value) AIC BIC
GLi 0.062(0.017) 0.205(0.292) 64.108 0.095(0.997) 132.215 133.632

The approximate 95% two sided confidence interval of the parameters θ̂ and β̂ are given respectively
as [0.036, 0.095] and [0, 0.776] where the variance-covariance matrix can be expressed as follows

I−1
0 =

(
0.000296 0.003809
0.003809 0.085075

)
. (6.1)

Figure 6 shows the fitted densities and fitted CDF as well as QQ plot for correct and incorrect estimators
which support our results.

Moreover, Figure 6 shows the profiles of the log-likelihood function for incorrect estimators using
data set I.

From Figure 7, it is observed that the estimator β̂ can be take different values. This means that this
estimator not a unique. Figure 8 shows the profiles of the log-likelihood function for correct estimators.

From Figure 8, it is clear that the parameters are unimodal functions. So, these two estimators are
the best for data set I.

On the other hand, we wonder why the authors didn’t discuss the MO estimators in data analysis
section?. Table 2 shows the MO estimators as well as the KS statistic and its p-value for this data.
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Figure 6. The fitted PDF (left panel), the estimated CDF (right panel)
and PP plots (bottom panel) of GLi distribution for data set I.

Table 2. Estimation for data set I using the MO method.

Model ↓ Estimation−→ θ̂ β̂ KS (p-value)
GLi 0.0704 1.1029 0.1107(0.9923)

According to Equation (4.13), it is found that θ̂ can take either 0.0244 or 0.0704. Depending on the
condition 1

m ≤ θ̂ <
2
m , the value of θ̂ = 0.0244 must be rejected.

7. Conclusions

In this study, we have shown that the PDF of the gamma Lindely (GLi) distribution developed by
Nedjar and Zeghdoudi [6] is improper. The corrected PDF of the GLi distribution is therefore devel-
oped. The incorrect statistical properties of the distribution are corrected and the correct estimators for
estimating the parameters of the distribution are developed. Simulation experiments are performed to
examine the performance of the correct estimators. The results revealed that the correct estimators are
consistent. Finally we illustrated the applications of the distribution using the incorrect estimators and
their corrections. The findings revealed that the correct distribution provides better fit to the data sets
compared to the incorrect distribution.
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Figure 7. The profiles of the log-likelihood function for incorrect estimators using data set I.

Figure 8. The profiles of the log-likelihood function for correct estimators using data set I.
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